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Abstract—In this paper, we propose a new framework for
compressed sensing (CS) based on data fusion principles, where
several CS algorithms work in parallel to recover a K-sparse
signal, and their outputs are combined convexly using a set of
combiner coefficients drawn randomly, followed by a 2K level
hard-thresholding, a pursuit step and final pruning by another
K level hard-thresholding. A rigorous convergence analysis is
presented and sufficient conditions for convergence are derived.
Unlike other existing algorithms which use data fusion concepts
but do not employ convex combination of estimates generated
by the participating algorithms and instead, use a union of
support of individual estimates, the proposed method is free
from the restrictions on the number of participating algorithms.
Empirically, it is observed that the proposed framework allows us
to recover the sparse signal of interest using fewer measurements
than required by any individual algorithm. It is further seen that
even when some of the participating algorithms do not perform
well, the proposed framework is still able to recover the K-sparse
signal maintaining the same level of performance. Simulations
also reveal that performance of the proposed framework is either
at par or better than that of existing algorithms that apply data
fusion.

Index Terms—Data fusion, Compressed Sensing, Sparse recov-
ery, Convex combination.

I. INTRODUCTION

In recent years, the field of compressed sensing (CS) has
attracted a lot of attention from the research community due
to its vast applications. In CS, the problem is to recover a
vector x ∈ RN with number of nonzero entries no larger than
K for the linear system with the measurements y ∈ Rm given
by y = Ax+ e, where A ∈ Rm×N ,m < N is the so-called
sensing matrix and e denotes the measurement error. This can
be solved by using linear programming (LP) methods such as
the basis pursuit, which aims at solving the following problem

min ‖z‖1 subject to y = Az. (1)

However, the LP methods are computationally heavy and thus
impractical in many applications [1]. In recent years, numer-
ous greedy and thresholding-based algorithms that provide
a good tradeoff between computational cost and reconstruc-
tion performance have been proposed and analyzed. These
include subspace pursuit [1], orthogonal matching pursuit
(OMP) [2], iterative hard thresholding (IHT) [3], compressive
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sampling matching pursuit (CoSaMP) [4], hard thresholding
pursuit (HTP) [5], [6], Newton step (NS) based iterative hard
thresholding (NSIHT), NS based hard thresholding pursuit
(NSHTP) [7] algorithms etc. Success of reconstruction by any
of these algorithms depends on parameters like as m,N,K,
as well as on the underlying statistical distribution of x, and
no sparse recovery algorithm outperforms other algorithms in
all respects [8]–[10]. In many cases, statistical distribution of
the underlying data is not known and thus we are unable to
judiciously choose the best algorithm for the problem under
consideration [11].

The concept of merging various estimators in order to form
a better estimator has been employed in various applications
such as image processing [12], [13], sparse representation
[14] and machine learning [15]. For CS, the use of multiple
algorithms for a better recovery performance was proposed in
[16] and was termed “Fusion of Algorithms for Compressed
Sensing (FACS)”. Based on FACS, generalized FACS
(gFACS) was proposed in [11] wherein, at each iteration,
the estimates arising from different algorithms were used for
finding a better K sparse estimate. In both FACS and gFACS,
a union of support sets of the estimates arising from different
algorithms was taken and a least squares (LS) problem was
solved with restriction to this unified support. However, the
underlying assumption was that the cardinality of this unified
support is smaller than m, which in practice may not hold
good if the number of participating algorithms is large enough.

Main Contributions : In this paper, a new framework based
on data fusion for reconstructing the sparse signal is proposed.
This framework is termed as Convex Combination of Com-
pressed Sensing Algorithms (CCCSA). In the CCCSA frame-
work, rather than taking union of the support sets as in the case
of gFACS, at each iteration, we take a convex combination of
the estimates arising from different algorithms and this is then
followed by a hard thresholding (HT) operation. The next steps
are similar to that of gFACS, where a LS problem is solved and
then pruning is done to ensure that the estimate is K sparse.
Unlike FACS and gFACS, the proposed framework, however,
does not require a constraint on the size of the unified support,
thus permitting any number of algorithms to participate in
the CCCSA framework without any modifications. Also, the
dimension of the LS problem being solved in the proposed
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CCCSA framework (at the most 2K × 2K) is less than in the
case of gFACS, resulting in distinct computational advantage.
Though the proposed CCCSA framework can be applied to any
set of sparse recovery algorithms, for simplicity, we restrict
ourselves in this paper to the algorithms which have been
analyzed using restricted isometry property (RIP) and which
satisfy the following recursive inequality :

‖xk+1 − x‖2 ≤ α‖xk − x‖2 + β‖e‖2, (2)

where xk denotes the estimate at kth iteration and α, β are
constants that depend on other parameters of the algorithm
like stepsize µ in the case IHT and HTP, and stepsize µ and
perturbation parameter ε in case of the NSIHT and NSHTP.
We carry out a convergence analysis of the proposed algorithm
using RIP and derive sufficient conditions for convergence.
For simulation-based comparative assessment of the proposed
CCCSA framework, we evaluate and compare the performance
of the proposed scheme with FACS and gFACS in terms of
the probability of successful reconstruction and probability
of support reconstruction in noiseless and noisy settings,
respectively. The following algorithms : IHT, CoSaMP, HTP,
NSIHT, and NSHTP are chosen as the participating partners,
all of which satisfy (2). Simulation results demonstrate that
the proposed CCCSA framework outperforms all the chosen
competing algorithms and also its performance is superior to
FACS and gFACS.

II. NOTATIONS

We use lowercase and uppercase bold letters for vectors
and matrices respectively. The number of nonzero entries in
z is denoted by ‖z‖0. A vector z is said to be K sparse if
‖z‖0 ≤ K. For k ∈ Z, by Hk(z) we refer to the operation of
hard thresholding, which retains top k elements (in magnitude)
of z and sets the other elements to zero. The support of a vector
z is defined as S = {i : zi 6= 0} where zi is the i th element
of z. If T is some indexing set then AT is a submatrix formed
by columns of A indexed by T and zT denotes a subvector of
z with entries indexed by T . The complement of the set T is
denoted by T . The notation sni = Algoi(y,A,x

n) denotes the
output of one iteration of the ith CS algorithm when presented
with the input xn.

III. PROPOSED CCCSA ALGORITHM

The proposed CCCSA framework is a three stage procedure.
At the (n + 1)-th iteration, in the first stage, combining
coefficients are generated and a convex combination of the
estimates arising from L participating algorithms is taken.
These coefficients are allowed to be random, in an attempt that
the proposed framework is not biased towards any particular
algorithm. This is then followed by a HT operation to retain
top 2K elements to form un. In the second stage, x̃n+1 is
obtained by solving the LS problem given by (3). In the last
stage, pruning is done by HT the signal x̃n+1 to retain top
K elements to form xn+1. This resulting estimate xn+1 is
then fed to each participating algorithm which completes one
iteration of the procedure. The pseudo-code for the proposed
framework is presented in Table 1.

Table 1: Proposed CCCSA Algorithm
Input: Initial estimates x0, s0i , i = 1, . . . , L,A,y. Typically
x0 = 0, s0i = 0.
While stopping criteria not met
• Generate combining coefficients cni randomly, satisfying∑L

i=1 c
n
i = 1, cni ≥ 0, i = 1, . . . , L.

• un = H2K

[∑L
i=1 c

n
i s
n
i

]
, supp(un) = Un

•

x̃n+1 = arg min
z∈RN

supp(z)⊆Un

‖y −Az‖22 (3)

• xn+1 = HK [x̃n+1]
• sn+1

i = Algoi(y,A,x
n+1), i = 1, . . . , L.

• n← n+ 1.

Output: Final estimate x∗, S∗ = supp(x∗).

IV. CONVERGENCE ANALYSIS

In this section, we carry out a convergence analysis of the
proposed CCCSA algorithm and derive sufficient conditions
for convergence. For this, we first recall some of the useful
definitions and lemmas.

Definition 4.1. [17] The Kth order restricted isometry
constant (RIC) δK for the matrix A is defined to be the
smallest δ such that

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22,

holds for all z ∈ RN satisfying ‖z‖0 ≤ K.

Lemma 4.1. [5] [7] Let u,v ∈ RN with u being k sparse.
Then following holds:

‖Hk(v)− u‖2 ≤
√
3‖(v − u)T∪V ‖2, (4)

where T = supp(u), V = supp(Hk(v)).

Lemma 4.2. [6] Let y = Ax + e denote the noisy
measurements of K sparse vector x and T denote any indexing
set of size t. If the sensing matrix satisfies RIP of order K+ t
with RIC δK+t < 1, then the solution of pursuit step

z∗ = arg min
z∈RN

supp(z)⊆T

‖y −Az‖22, (5)

satisfies the following:

‖z∗ − x‖2 ≤ ρK+t‖xT ‖2 + γK,t‖e‖2, (6)

where ρK+t =
1√

1−(δK+t)
2

and γK,t =
√
1+δt

1−δK+t
.

Using the above, it is then possible to state and prove the
following :

Theorem 4.1. Let the ith participating algorithm satisfy (2)
with constants αi, βi and the sensing matrix A satisfy 3Kth

order RIP with δ3K < 1. Then for any iteration index n ≥ 0,
the following relation holds:∥∥xn+1 − x

∥∥
2
≤ τn+1

∥∥x0 − x
∥∥
2
+ γ′

1− τn+1

1− τ
‖e‖2, (7)
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where τ = 3ρ3K maxi αi and γ′ = 3ρ3K maxi βi + γ
√
3.

Proof. The estimate xn+1 is given by xn+1 = HK [x̃n+1].
Applying lemma 4.1, we obtain∥∥xn+1 − x

∥∥
2
≤
√
3
∥∥(x̃n+1 − x

)
Sn+1∪S

∥∥
2

≤
√
3
∥∥x̃n+1 − x

∥∥
2
, (8)

where Sn+1 = supp(xn+1) and S = supp(x). Now using the
update procedure for x̃n+1 given by (3), it follows from (6)
that ∥∥x̃n+1 − x

∥∥
2
≤ ρ3K ‖xUn‖2 + γK,2K‖e‖2
= ρ3K ‖(x− un)Un‖2 + γK,2K‖e‖2,

where, from (6) and the fact that |Un| is at most 2K,
we have, ρ3K = 1√

1−(δ3K)2
and γK,2K =

√
1+δK

1−δ2K . Since

‖(x− un)Un‖2 ≤ ‖x− un‖2, we obtain from above,∥∥x̃n+1 − x
∥∥
2
≤ ρ3K ‖x− un‖2 + γK,2K‖e‖2. (9)

Now, from the first stage of the CCCSA framework un =
H2K [

∑L
i=1 c

n
i s
n
i ]. Applying Lemma 4.1 with k = 2K, we

obtain

‖un − x‖2 ≤
√
3

∥∥∥∥∥
(
x−

L∑
i=1

cni s
n
i

)
S∪Un

∥∥∥∥∥
2

=
√
3

∥∥∥∥∥
(

L∑
i=1

cni (x− sni )

)
S∪Un

∥∥∥∥∥
2

≤
√
3

L∑
i=1

cni ‖(x− sni )S∪Un‖2

≤
√
3

L∑
i=1

cni ‖x− sni ‖2 . (10)

Here, in the second step, we have used the fact that the
combining coefficients satisfy

∑L
i=1 c

n
i = 1. The third step

follows from repeated use of triangle inequality while noting
that cni are non-negative. Combining (8), (9) and (10) and
defining γ := γK,2K we have,

∥∥xn+1 − x
∥∥
2
≤ 3ρ3K

L∑
i=1

cni ‖x− sni ‖2 + γ
√
3‖e‖2. (11)

Invoking the recursive inequality satisfied by the i-th algorithm
with constants αi and βi and noting that at any n-th iteration,
all the participating algorithms are provided with the same
input xn, (11) can be written as

∥∥xn+1 − x
∥∥
2
≤ 3ρ3K

L∑
i=1

cni [αi ‖x− xn‖2 + βi‖e‖2]

+ γ
√
3‖e‖2

= 3ρ3K

(
L∑
i=1

cni αi

)
‖x− xn‖2

+

(
3ρ3K

L∑
i=1

cni βi + γ
√
3

)
‖e‖2

≤ 3ρ3Kαmax ‖x− xn‖2 +
(
3ρ3Kβmax + γ

√
3
)
‖e‖2,

where αmax := maxi αi and βmax := maxi βi. Finally,
applying above inequality recursively backwards we obtain (7)
where τ and γ′ are defined as earlier. �

Corollary 4.1. For the noiseless measurements i.e. e = 0, if

maxi αi <

√
1−δ23K

9 , where maxi αi is defined in Theorem
4.1, then the estimate xn converges to the target signal x.

Proof. From (7) it readily follows that, if maxi αi <

√
1−δ23K

9
then τ < 1, and with e = 0, clearly limn→∞ xn = x. �

Remark 4.1. The proposed CCCSA framework requires the
sensing matrix to satisfy the RIP of order 3K with small RIC
values, which is a relaxed condition than the gFACS model,
which requires the sensing matrix to satisfy the RIP of order
(L+ 1)K with small RIC values.

V. SIMULATIONS

We consider a problem with dimension N = 200. The
mean square deviation (MSD) is defined to be MSD(n) =
‖x−xn‖22
‖x‖22

. The entries of the sensing matrix A are i.i.d with
aij ∼ N (0, 1/m). For generating the combining coefficients
ci, i = 1, . . . , L, we first generate L random numbers from
uniform distribution U(0, 1] and then normalize them by their
sum. The support of x is chosen randomly from {1, . . . , N}
without replacement. The nonzero values of x are generated
from Gaussian distribution N (0, 1). The values of the stepsize
parameter are set to 10 and 1 for the IHT and HTP algorithms
respectively. For both NSIHT and NSHTP algorithms, the
stepsize parameter µ and perturbation parameter ε are set to
µ = ε = 5. We allow all the algorithms to run for a maximum
of 100 iterations. For each result, ensemble averaging is done
by taking 100 instances of the problem. We present our
results for both noiseless as well as noisy scenario. In the
noiseless setting, we say that reconstruction is successful if
the MSD falls below 10−3. For the noisy case, we consider
the probability of support recovery (PSR) for performance
evaluation. The PSR is defined as PSR = |S∩S∗|

|S| . In the noisy
scenario, e is drawn from N (0, σ2I) and signal to noise ratio
(SNR) is set to 20dB, where SNR := ‖x‖22/‖e‖22. All the
simulations are carried out on a core i5−9500 CPU equipped
with 8 GB of memory. Lastly, all the data fusion schemes i.e.
FACS, gFACS and CCCSA use all the five algorithms in each
of the result.

In Fig. 1, we plot the probability of recovery with the
number of measurements (m). The sparsity level (K) is
fixed to K = 20 in this case. It is observed that even if
the performance of some of the participating algorithms is
poor (IHT in this case), the proposed CCCSA framework can
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Fig. 1: Variation of recovery performance with number of
measurements for K = 20 (noiseless measurements).
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Fig. 2: Variation of recovery performance with level of sparsity
(K) for m = 100 (noiseless measurements).

reconstruct the signal with less measurements than any other
method under consideration including gFACS.

In Fig. 2, the recovery performance against the level of
sparsity (K) for fixed number of measurements (m = 100) is
shown. In this case also, CCCSA framework is able to recover
the signal for a higher sparsity value K than any other method
under consideration.

In Fig. 3, we plot PSR against number of measurements
for fixed value of K = 20 in the noisy scenario. It is
observed that while HTP and NSHTP algorithms are able to
offer better recovery results when m is small, the CCCSA
framework outperforms each method as soon as the number
of measurements increase beyond a certain threshold.

In Fig. 4, we plot PSR against the level of sparsity (K),
with the number of measurements fixed at m = 100 for
the noisy scenario. It can be clearly seen that the CCCSA
framework offers a better support recovery performance than
other methods under consideration.
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Fig. 3: Variation of probability of support recovery with
number of measurements for K = 20 (SNR = 20dB).
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Fig. 4: Variation of probability of support recovery with level
of sparsity (K) for fixed m = 100 (SNR = 20dB).

We also compare the run-time of the proposed framework
against the gFACS model for a variety of distributions for the
target signal x and the sensing matrix A. For simplicity, we
restrict ourselves to the noiseless setting for this particular
set of experiments. All the quantities except x and A are
generated/set as earlier. Three types of sensing matrices are
employed which are as follows:

1) Gaussian sensing matrix, as described in the beginning
of this section.

2) Gaussian sensing matrix with `2 normalized columns: We
generate the matrix A as in above and then normalize it
so that each column has unit `2 norm.

3) Bernoulli sensing matrix: The entries of matrix A are
i.i.d with aij = ±1/

√
m, equiprobable.

The support of target signal x is generated as described
earlier at the beginning of this section. Two distributions are
used for generating the nonzero values of the target signal x.
The distributions are as follows:
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Table 2: Experimental results for a fixed number of measurements (m) for various distributions.

S.No m K Dist. of A Dist. of x PR -
gFACS

Runtime
gFACS

PR -
CCCSA

Runtime
CCCSA

1 100 40 Gaussian Gaussian 0.92 3.95 1 1.72
2 100 42 Gaussian Gaussian 0.75 6.57 0.99 2.76
3 100 30 Gaussian Rademacher 0.95 1.49 0.98 0.96
4 100 32 Gaussian Rademacher 0.88 2.47 0.92 2.05
5 100 30 Bernoulli Rademacher 0.92 1.82 0.97 1.33
6 100 32 Bernoulli Rademacher 0.77 3.46 0.95 1.78
7 100 40 Bernoulli Gaussian 0.90 4.25 0.98 1.98
8 100 42 Bernoulli Gaussian 0.70 6.27 0.98 2.86
9 100 38 Gaussian,

Normalized columns
Gaussian 0.94 2.91 1 1.49

10 100 42 Gaussian,
Normalized columns

Gaussian 0.68 7.46 0.99 2.47

11 100 30 Gaussian,
Normalized columns

Rademacher 0.93 1.78 0.96 1.44

12 100 42 Gaussian,
Normalized columns

Rademacher 0.84 2.88 0.96 1.77

1) Gaussian distribution, as described in the beginning of
this section.

2) Rademacher distribution, with the entries being ±1
equiprobable.

We fix the number of measurements m to be 100 in this case.
The probability of recovery (PR) for the gFACS model and the
proposed CCCSA framework along with the corresponding
run-time (in seconds) for 100 problem instances are given
in Table 2 for different values of sparsity level K. It can
be clearly seen from Table 2 that the proposed CCCSA
framework is faster and also provides better probability of
recovery as compared to the gFACS model. Such a gain in
computation is observed due to the fact that pursuit step in
the proposed CCCSA framework is solved on a set with a
smaller cardinality vis-a-vis the gFACS model, especially in
the high sparsity regime. Finally, we would like to mention
that our implementation for the algorithms/models used in this
paper might not be optimal and further improvements are still
possible.

VI. CONCLUSION

We have proposed and analyzed a new framework based
on the data fusion principles for sparse signal recovery from
compressed measurements, which takes into account the val-
ues of estimates along with the support of the estimate. The
numerical experiments carried out on random linear systems
indicate that the proposed CCCSA outperforms the existing
data fusion based methods in recovering the sparse signal of
interest with lower computation.
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