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Abstract—Model selection is an indispensable part of data
analysis dealing very frequently with fitting and prediction
purposes. In this paper, we tackle the problem of model selection
in a general linear regression where the parameter matrix
possesses a block-sparse structure, i.e., the non-zero entries occur
in clusters or blocks and the number of such non-zero blocks is
very small compared to the parameter dimension. Furthermore,
a high-dimensional setting is considered where the parameter
dimension is quite large compared to the number of available
measurements. To perform model selection in this setting, we
present an information criterion that is a generalization of
the Extended Bayesian Information Criterion-Robust (EBIC-R)
and it takes into account both the block structure and the
high-dimensionality scenario. We name it Generalized EBIC-
R (GEBIC-R). The analytical steps for deriving the GEBIC-R
are provided. Simulation results show that the proposed method
performs considerably better than the existing state-of-the-art
methods and achieves empirical consistency at large sample sizes
and/or at high-SNR.

Index Terms—Model selection, block-sparsity, compressed
sensing, information criterion, orthogonal matching pursuit.

I. INTRODUCTION

Selecting the best model/subset in the high-dimensional
(HD) linear regression has been an active research topic for a
long time now. In this context, methods based on Information
Criterion (IC) have played a pivotal role ever since Akaike pro-
posed the famous Akaike IC [1]. In the present era, popular IC-
based methods for model selection in the HD setting include
extended Bayesian IC (EBIC) [2], extended Fisher IC (EFIC)
[3], and extended BIC-Robust (EBICR) [4], [5]. Apart from
the IC-based methods, there are other non-IC-based model
selection approaches in the HD regime. They include methods
based on hypothesis testing framework such as the Residual-
Ratio-Thresholding (RRT) [6] and the Multi-Beta-Test (MBT)
[7]. Some recent methods also include the significance test
of the LASSO [8] and knock-off-filters [9]. Another popular
method is cross-validation (CV) [10], [11]. However, CV-
based procedures can be computationally intensive, and their
performance in the HD setting is not satisfactory [12]–[14].

In this paper, we specifically consider model selection in
a general linear regression where the nonzero coefficients in
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the parameter matrix occur in clusters (or groups). Such sig-
nals are referred to as block-sparse [15]–[17]. Block-sparsity
inherently arises in a variety of scenarios. For example in
multi-band signals [18], [19], in the recovery of signals from
compressed microarray measurements [20], and in the multiple
measurement vector (MMV) problem [21]–[24]. Furthermore,
as shown in [15] and [16], the block-sparsity model can be
used to handle the issue of sampling signals that lie in a union
of subspaces [25], [26].

A recent method for model selection in block-sparse HD
linear regression is the Generalized RRT (GRRT) [27]. GRRT
is an extension of RRT [6] developed to treat the block-
sparse structure in linear regression. The authors also present
a new approach that allows GRRT to perform model selection
in non-monotonic predictor sequences generated by LASSO
[28]. However, to the best of our knowledge, there are no
existing IC-based methods designed to take into account the
block structure during model selection. Hence, in their current
form, they cannot be applied directly without tailoring them
to incorporate the block nature of the underlying linear model
into the criterion. In this paper, the main goal is to develop
an IC-based model selection method for the general linear
regression model assuming a block structure and HD setting.

Notations: matrices and vectors are denoted by boldface
letters. The notation (·)T stands for transpose. IN is an
N × N identity matrix. Π(A) = A(ATA)−1AT represents
the orthogonal projection matrix on the column space of
A and Π⊥(A) = IN − Π(A) the orthogonal projection
matrix on the null space of AT . The notation

∣∣X∣∣ denotes
the determinant of the matrix X, ∥·∥2 denotes the Euclidean
norm and ∥·∥F the Frobenius norm. X ∼ N (µ,C) signifies
a Gaussian distributed random variable with mean µ and
covariance matrix C. The symbol ⊗ represents the Kronecker
product and vec(A) the vectorization of the matrix A. Further,
card(S) denotes the cardinality of the set S and O(·) denotes
the standard Big-O notation.

II. PROBLEM STATEMENT

Technically there can be four different linear regression
structures depending on the configuration of the parameter
matrix (or vector). They are (a) single measurement vector
(SMV), (b) block single measurement vector (BSMV), (c)
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Type Specifications dim(Y), dim(X)
SMV L = 1, LB = 1, pB = p N × 1, p× 1
MMV L > 1, LB = 1, pB = p N × L, p× L
BSMV L = 1, LB > 1, pB = p/LB N × 1, p× 1
BMMV L > 1, LB > 1, pB = p/LB N × L, p× L

TABLE I
TYPES OF LINEAR REGRESSION STRUCTURES.

multiple measurement vector (MMV) and (d) block multiple
measurement vector (BMMV). For example, as mentioned in
[27], SMV models are used in wireless signal detection [29],
MMV models in Electroencephalogram (EEG) [30], BSMV
models in multi pitch estimation [31] and BMMV models in
face recognition [32]. Here, we consider the BMMV model,
since it is the general setting and the rest of the models are
special cases of BMMV. The BMMV model is as follows:

Y = AX+W, (1)

where, Y ∈ RN×L is the observed response matrix, A ∈
RN×p is the design matrix, X ∈ Rp×L is the unknown param-
eter matrix and W ∈ RN×L is the noise/error matrix, whose
elements are assumed to be i.i.d. and W[i, j] ∼ N (0, σ2).
The p rows of X are divided into pB = p/LB unique
blocks of equal size LB . Each of these pB blocks of size
LB × L is non-zero or zero at once. The block size LB is
assumed to be known a-priori. The jth block consists of the
rows of X indexed by Ij = {(j − 1)LB + 1, (j − 1)LB +
2, . . . , jLB}. We denote the true block support of X as SB =
{j : X[Ij , :] ̸= 0LBL} where j ∈ {1, 2, . . . pB}. Also, X is
assumed to be block-sparse such that KB = card(SB) ≪ pB .
Table I shows different linear regression structures. The goal
of model selection herein is estimating SB given Y and A.

The model selection procedure can be divided into two
stages: (i) In the first stage, we pick a competent set of can-
didate models using an appropriate predictor/subset selection
algorithm up to maximum cardinality K under the assumption
that KB ≤ K ≪ N . (ii) In the second stage, we estimate the
true model using a suitable model selection criterion. Let us
denote IB as the block support of a candidate model such
that card(IB) = kB , where kB ∈ {1, 2, . . . , pB}. Then we
can reformulate the linear model in (1) as

HIB
: Y = AIB

XIB
+WIB

, (2)

where HIB
signifies the hypothesis that the data Y is actually

produces in accordance with (2), AIB
∈ RN×(kBLB) is the

sub-matrix consisting of columns from the known matrix A
with block support IB ⊆ {1, 2, . . . , pB}, XIB

∈ R(kBLB)×L

is the corresponding unknown parameter coefficient matrix,
and WIB

∈ RN×L is the associated noise matrix.

III. PROPOSED METHOD

In this section, we provide the necessary steps to derive
the GEBICR. Note that while EBICR [4], [33] is for model
selection in SMV scenarios in the absence of any block
structure, GEBICR is a generalization (or extension) of EBICR
to perform model selection in block general linear regression

(e.g. BMMV scenarios which is the most general setting). The
generalization involves some crucial steps that are not trivial
and affect the performance drastically. The analysis assumes
the following property of the design matrix A [34]–[36]

lim
N→∞

{
N−1(AT

IB
AIB

)
}
= MIB

, (3)

where MIB
is a (kBLB×kBLB) positive definite matrix and

bounded as N → ∞. The assumption in (3) holds true in
many cases but not all (see [34], [37] for more details).

To arrive at the GEBICR for the BMMV model, we first
reformulate the linear model in (2) into vector form as

vec(Y) = IL ⊗AIB
vec(XIB

) + vec(WIB
). (4)

This step allows us to utilize the same derivation steps as in
EBICR [4] without the need to carry out the analysis from
scratch. Also, (4) is technically equivalent to (2), hence we do
not alter the underlying original linear model but just restruc-
ture it for our convenience. Now, let y = vec(Y) ∈ RNL×1,
ĂI = IL ⊗ AIB

∈ RNL×kBLBL, xI = vec(XIB
) ∈

RkBLBL×1 and eI = vec(WIB
) ∈ RNL×1. The elements

of eI are i.i.d. and eI ∼ N (0, σ2
IINL). Then, we can rewrite

(4) as
HI : y = ĂIxI + eI , (5)

where I ⊆ {1, 2, . . . , pL}. Then the pdf of y under HI is

p (y|θI ,HI) =
exp{−∥y − ĂIxI∥22/2σ2

I}
(2πσ2

I)
NL/2

, (6)

where θI = [xT
I , σ

2
I ]

T comprises of all the unknown pa-
rameters of the model under HI . The maximum likelihood
estimates (MLE) θ̂I = [x̂T

I , σ̂
2
I ]

T are obtained as [38]

x̂I =
(
ĂT

I ĂI

)−1

ĂT
Iy & σ̂2

I =
yTΠ⊥(ĂI)y

NL
. (7)

GEBICR is derived under the Bayesian framework of model
selection. We follow similar steps as in EBICR [4], [33], but
incorporate the block structure into it. Let us denote the prior
pdf of the parameter vector θI as p(θI |HI), the marginal
of y as p(y|HI) and the prior probability of the model with
support I as Pr(HI). Then the MAP estimate of the true
support S ⊆ {1, 2, . . . pL} is equivalently given by [34], [36]

ŜMAP = argmax
I

{
ln p(y|HI) + lnPr (HI)

}
. (8)

Applying a second order Taylor series expansion an approxi-
mation of ln p(y|HI) is obtained under the presumption that
N is large or/and SNR is high (see [34], [36] for details)

ln p(y|HI) ≈ ln p(y|θ̂I ,HI) + ln p(θ̂I |HI)

+
kBLBL+ 1

2
ln(2π)− 1

2
ln
∣∣F̂I

∣∣. (9)

Here, F̂I is the sample Fisher information matrix [38] under
HI evaluated at the MLE which gives us (see [34], [36])

F̂I =

[
1
σ̂2
I
ĂT

I ĂI 0

0 NL
2σ̂4

I

]
. (10)
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From the linear model in 5 we have

−2 ln p(y|θ̂I ,HI) = NL ln σ̂2
I + const. (11)

Now, using (11), it is possible to rewrite (9) as

−2 ln p(y|HI) ≈ NL ln σ̂2
I + ln

∣∣F̂I
∣∣− 2 ln p(θ̂I |HI)

−kBLBL ln 2π + const.
(12)

Furthermore, the prior term in (9), i.e., ln p(θ̂I |HI), is ignored
under the pretext that it is flat and uninformative. Thus,
discarding the constants and the terms not dependent on the
block model dimension kB , we can equivalently reformulate
the MAP-based model estimate as

ŜMAP = argmin
I

{
NL ln σ̂2

I + ln
∣∣F̂I

∣∣− kBLBL ln 2π

− 2 lnPr (HI)
}
. (13)

GEBICR is derived from (13) with some further modifications
and approximations. The two key terms that require further
analysis are ln|F̂I | and the prior term Pr(HI). First, we
perform normalization of F̂I under both large-N and high-
SNR assumption. For this we factorize the ln

∣∣F̂I
∣∣term in a

similar manner as performed in [4], [33], [36]

ln
∣∣F̂I

∣∣ = ln
[∣∣Q∣∣ ∣∣∣Q−1/2F̂IQ

−1/2
∣∣∣]

= ln |Q|+ ln
∣∣∣Q−1/2F̂IQ

−1/2
∣∣∣. (14)

The objective here is to choose a suitable Q matrix that
normalizes F̂I such that the second term in (14) is O(1), i.e.,
it should be bounded as N → ∞ and/or σ2 → 0. To achieve
this purpose, we choose the following Q−1/2 matrix [4]

Q−1/2 =

√LB

N

√
σ̂2
I

σ̂2
0
IkBLBL 0

0
√

LB

N

(
σ̂2
I

σ̂2
0

)
 , (15)

where σ̂2
0 = ∥y∥22/NL. Also for the considered generating

model (5), σ̂2
0 → const. as N → ∞ and/or σ2 → 0 [35],

[36]. Two important points to note here regarding the choice
of the Q−1/2 matrix are: (i) The ratio

(
σ̂2
I

σ̂2
0

)
is introduced to

normalize the F̂I w.r.t. σ2 where the factor σ̂2
0 is especially

utilized to counteract the data scaling problem (as discussed
elaborately in [4], [36]). (ii) The 1

N portion of the factor LB

N
is used to normalize the FIM w.r.t. N . However, note that LB

(which is absent in EBICR [4], [33]) is also included as part
of the normalizing term because for the mean-squared-error
of σ̂2 to approach the Cramér-Rao bound, we require that
NL ≫ KBLBL or in other words N/LB ≫ KB . Hence, we
use the normalization factor LB/N instead of just 1/N in (15).
In this way, the penalty will be a function of N/LB instead of
N alone (as will be seen in the subsequent steps). This novel
modification helps to counteract the effects of changing LB

on the performance of GEBICR.
Now, using (3), (10), and (15) we can show that∣∣∣Q−1/2F̂IQ

−1/2
∣∣∣ = ∣∣∣∣∣LB

σ̂2
0

ĂT
I ĂI
N 0

0 LBL
2σ̂4

0

∣∣∣∣∣

=
LkBLBL+1
B L

2(σ̂2
0)

kBLBL+2

∣∣∣∣∣IL ⊗
AT

IB
AIB

N

∣∣∣∣∣
= const. × |IL|kB×LB

∣∣∣∣∣AT
IB

AIB

N

∣∣∣∣∣
L

= O(1) (16)

as N grows large and/or σ2 → 0. Hence, this term can be
removed without significantly affecting the criterion. Next,
observe that the ln

∣∣Q∣∣ term in 14 can be expanded as follows

ln |Q| = ln

∣∣∣∣∣∣
(

N
LB

)(
σ̂2
0

σ̂2
I

)
IkBLBL 0

0
(

N
LB

)(
σ̂2
0

σ̂2
I

)2

∣∣∣∣∣∣
= (kBLBL+ 1) ln

(
N

LB

)
+ (kBLBL+ 2) ln

(
σ̂2
0

σ̂2
I

)
.

(17)

Therefore, using (16) and (17) we can rewrite (14) as

ln
∣∣F̂I

∣∣ =kBLBL ln

(
N

LB

)
+ (kBLBL+ 2) ln

(
σ̂2
0

σ̂2
I

)
+

O(1) + ln (N/LB) . (18)

Next, for the model prior probability term −2 lnPr(HI) in
(13), a similar strategy is adopted as in EBIC [2] such that
Pr(HI) ∝

(
pB

kB

)−ζ
, where ζ ≥ 0 is a tuning parameter. If

pB is sufficiently large, the following approximation can be
assumed ln

(
pB

kB

)
≈ kB ln pB [3]. This gives

−2 lnPr(HI) = 2ζkB ln pB + const. (19)

Now, substituting (18), (19) in (13) and dropping the O(1),
the ln (N/LB) term (since independent of kB), the constant
and the p(θ̂I |HI) term we arrive at the GEBICR

GEBICR(I) = NL ln σ̂2
I + kBLBL ln

(
N

2πLB

)
+ (kBLBL+ 2) ln

(
σ̂2
0

σ̂2
I

)
+ 2kBζ ln pB . (20)

In practice, we compute the GEBICR score block-wise, i.e.,
GEBICR(IB) where IB ⊆ {1, . . . , pB}. Then the σ̂2

I can be
replaced by σ̂2

IB
= ∥Π⊥(AIB

)Y∥2F
/
NL. Finally, the true

block support is estimated as

ŜB = argmin
IB

{
GEBICR(IB)

}
. (21)

Observe that for L = LB = 1, GEBICR boils down to EBICR
[4]. Thus GEBICR can cater to all forms of linear regression
scenarios.

IV. SIMULATION RESULTS

In this section, we provide numerical simulations to high-
light the performance of GEBICR for model selection in
BMMV models. We consider the linear model Y = AX+W,
where the design matrix A is generated with independent
entries following normal distribution N (0, 1). The cardinality
of the true block-support SB is chosen to be KB = 4. Also,
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Algorithm 1 BMMV-OMP with K iterations
Inputs: Design matrix A, measurement Y.
Initialization: ∥aj∥2 = 1 ∀j, R0 = Y, S0

B-OMP = ∅
for i = 1 to K do

Next block index: di = argmax
j=1,...,pB

∥∥A[:, Ij ]TRi−1
∥∥
F

Add current index: Si
B-OMP = Si−1

B-OMP ∪ {di}
Update residual: Ri = Π⊥(ASi

B-OMP
)Y

end for
Output: B-OMP generated block index sequence SK

B-OMP

without loss of generality, we assume SB = [1, 2, 3, 4]. The
non-zero entries in X are randomly assigned ±1. The SNR
in dB = 10 log10(σ

2
s/σ

2), where σ2
s and σ2 denote signal and

true noise power, respectively. The signal power is computed
as σ2

s = ∥AX∥2F /NL. The chosen SNR (dB) and σ2
s are then

used to determine the noise power as σ2 = σ2
s/10

SNR (dB)/10.
Using this σ2, the elements of the noise matrix W are
generated following W[i, j]

i.i.d∼ N (0, σ2). The probability
of correct model selection (PCMS), i.e., Pr(ŜB = SB) is
evaluated over 1000 Monte Carlo trials. At each Monte Carlo
trial, a new design matrix A is generated in order to preserve
the randomness in the data. For predictor/subset selection,
BMMV-OMP (B-OMP) [27], [39] (Algorithm 1) is utilized
because of its ease of use and broad application. BMMV-OMP
(B-OMP) [27], [39] (Algorithm 1) is used for predictor/subset
selection for its simplicity and wide range of applicability.
The performance of GEBICR is compared with GRRT and
the oracle, which is B-OMP with a-priori knowledge of the
block sparsity KB . Hence, the oracle provides the upper bound
on the maximum achievable PCMS for any given setting.
The tuning parameters chosen are α = 0.01 for GRRT (as
mentioned in [27]) and ζ = 1 (EBICR) [4].

Fig. 1 shows the PCMS vs SNR (dB) with N = 150 and
p = 1000. Since LB = 10, hence, pB = p/LB = 100.
Additionally, the performance is shown for two different
settings of the L parameter, viz. L = 5 and 15 to highlight

L = 5

L = 15

Fig. 1. PCMS vs SNR (dB) for N = 150, p = 1000, L = [5, 15], LB = 10
and KB = 4.

Algorithm 2 Model selection GEBICR with B-OMP
Run B-OMP for K iterations to obtain SK

B-OMP
for kB = 1 to K do

IB = SkB

B-OMP
Compute GEBICR(IB)

end for
Block support estimate: ŜB = argmin

IB

{GEBICR(IB)}

the influence of L on the overall behaviour of the methods.
The first clear observation is that for the considered tuning
parameter setting, both GEBICR and GRRT are empirically
consistent in high-SNR, i.e., PCMS → 1 as SNR → ∞
(or inversely σ2 → 0). Second, compared to GRRT, the
performance curve of GEBICR is much closer to the oracle,
especially for low values of SNR. Furthermore, compared to
L = 5, the oracle plot shifts toward the left when L = 15.
This indicates that increasing L improves the true support
recovery ability of B-OMP, which ultimately improves the
model selection performance of the methods.

Fig. 2 presents the PCMS vs N plot. Here, a fixed value of
p = 5000 is chosen. Additionally, the performance is shown
for two different values of the LB variable, viz. LB = 5
and 20 to highlight the impact of LB on the overall model
selection performance. A similar trend is observed here as
well. Both methods achieve empirical consistency (PCMS
→ 1) as N grows large. However, GEBICR provides slightly
better performance compared to GRRT for smaller N values,
and is much closer to the oracle performance. Furthermore, we
also observe that increasing LB lowers the support recovery
performance of B-OMP, which is evident from the shift in the
oracle performance towards the right. Thus, requiring more
samples to achieve the same PCMS for LB = 20 as compared
to LB = 5. This ultimately lowers the overall performance of
all model selection methods. Hence, we can say that increasing
LB affects the performance negatively.

L
B
 = 20

L
B
 = 5

Fig. 2. PCMS vs N for SNR = -4 dB, p = 5000, L = 5, LB = [5, 20] and
KB = 4.
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V. CONCLUSION

In this paper, we presented GEBICR which is a generalized
version of EBICR to handle model selection in the block-
sparse HD general linear regression. GEBICR is applicable
to all forms of the linear regression structure such as SMV,
BSMV, MMV, and BMMV thus making it a versatile IC. The
steps to arrive at the criterion are shown in detail. Simulation
results show that GEBICR is an empirically consistent criterion
as N → ∞ and/or SNR → ∞. Also, its performance for
lower SNR and N values is close to the oracle behaviour.
Furthermore, we also underline the manner in which the
parameters L and the block length LB affect the overall model
selection performance.
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