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Abstract—Time-of-Flight (ToF) cameras have become a pop-
ular imaging modality for macroscopic scene detection. In
particular, amplitude-modulated continuous wave (AMCW) ToF
cameras use the phase difference between sent and received
signals for object depth reconstruction. However, various sources
of multipath reflections exist in practice, causing each ToF pixel
to erroneously receive a superposition of multiple reflections
instead of a single bounce. This leads to distortions in the
phase difference and consequently, errors in the depth maps.
Compressed Sensing methods have emerged as an effective
approach to solve this multipath interference (MPI) problem.
However, it has two major disadvantages—large sensing matrix
size leading to high computational load, and a high mutual
coherence causing reconstruction failure. This paper introduces a
subdivision-based nested compressed sensing algorithm that aims
to alleviate these known disadvantages. Measurements at multiple
modulation frequencies are used to isolate the k interfering
signals in the time domain. Simulation results are presented with
a noise performance analysis and results based on real multi-
target measurement data are also discussed.

Index Terms—time-of-flight, multi-path interference, depth
resolution improvement, compressed sensing

I. INTRODUCTION

There is an increasing demand for high-resolution remote
sensing systems across different parts of the wavelength spec-
trum. The Time-of-Flight (ToF) camera is one such remote
sensing system for macroscopic scene detection that has
gained popularity in the recent years and is being used in
a wide range of applications such as vehicle monitoring and
obstacle detection in the automotive industry, safe patient
monitoring for healthcare, 3D scanning, and human-machine
interactions [1], [2], [3]. Specifically, the amplitude-modulated
continuous wave (AMCW) ToF cameras have had a wide
commercial impact due to their small size and high signal-
to-noise (SNR) ratio [4].

In AMCW ToF cameras, the intensity of the emitted sinu-
soidal signal is modulated at one or several frequencies of the
order of 10-100 MHz. In an ideal case, this signal is reflected
by a sparse number of objects in the scene, causing specific
time-shifts or phase-shifts in the signal, corresponding to the
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object depths. The pixels of the ToF camera capture these
shifts in phase, which can then be scaled by the modulation
frequency to obtain the object depths.

ToF systems work on the assumption that each pixel receives
a signal reflected by a single object. However, in practice, the
signal received by each pixel corresponds to the superposition
of signals from multiple scatterers, leading to multipath inter-
ference (MPI). As a result, the detected phase shift is distorted,
which ultimately leads to an inaccurate depth estimation.
Therefore, in ToF systems, depth resolution improvement
equates to better multipath interference mitigation.

A flurry of research work has appeared on different ways of
tackling this MPI problem. Some of these research directions
include sensor modification [5], [6], spectral estimation [7], [8]
and deep-learning based approaches [9]. Under the umbrella
of spectral estimation, research on compressed sensing (CS)
based optimization has shown promising results [10], [11],
[12]. However, the main challenges have been the computa-
tional load due to the size of the sensing matrix, and its high
coherence, leading to a failure in the l1 norm minimization.

The aim of this paper is to tackle the MPI problem using
a new subdivision-based nested CS approach. It aims to
use multiple submatrices constructed from a main structured
sensing matrix. This serves to reduce the coherence as well as
the computational load of the optimizations. The depth-regions
of interest can then be identified based on the variance of the
sub-estimates. Re-applying CS on the combination of these
interest areas can provide better estimates with a much lower
computational cost. The performance of the algorithm is tested
on a simulated multi-target scene, as well as on real ToF data.

The paper is structured as follows. Section II discusses
the ToF operation and generation of the measurements at
different modulation frequencies. Section III describes the CS
formulation in detail. Section IV discusses the CS specific
challenges encountered in ToF MPI mitigation and introduces
the subdivision-based CS algorithm to overcome these prob-
lems. Section V provides results based on simulations as well
as real data, demonstrating the effectiveness of the proposed
method. Section VI discusses the conclusions drawn and the
scope for future work.
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II. PROBLEM STATEMENT

In this work, the focus is placed on a multi-frequency
AMCW ToF system. In this section, the mathematical formu-
lation of the frequency-domain sensing model is described.

The scene response function in the phase domain is given
by

e(ϕ) =

P∑
k=1

akδ(ϕ− ϕk) , (1)

where δ(ϕ − ϕk) is a Dirac delta function centered at ϕk,
which is the phase shift that the transmitted signal undergoes
when following the path k ∈ [1, P ]. P represents the number
of paths which is assumed to be low or ’sparse’. ak is the
attenuation factor due to non-unit reflectance of target. The
received signal at each pixel can then be expressed as a
convolution of the transmitted periodic illumination signal
s(ϕ), and the scene response e(ϕ), i.e.,

r(ϕ) = s(ϕ) ⋆ e(ϕ) . (2)

As described in [11], the final measurement at each pixel is
obtained by a cross-correlation of r(ϕ) with the PMD control
signal pA−B, yielding

m(ϕ) = pA−B ⊗ r(ϕ) (3)

Substituting (2) in (3),

m(ϕ) = pA−B ⊗ (s(ϕ) ⋆ e(ϕ))

=

P∑
k=1

ak(pA−B ⊗ s(ϕ))(ϕ− ϕi) .
(4)

The per-path amplitude and the phase terms in (4) are the
only two parameters of interest and can be determined by
2P +1 measurements [11]. If these two measurements have a
phase shift of π/2, they can be used to construct the Fourier
coefficients of the scene response function as follows:

y(j) = mj(0) + imj(π/2)

=

P∑
k=1

ak(cos (−jϕk)− i sin (−jϕk))

=

P∑
k=1

ake
(ijϕk) ,

(5)

where j represents the index specifying the frequency in
the multi-frequency acquisition mode. Considering f0 as the
base operating frequency, the data acquisition is carried out
for different frequencies given by fj = jf0, j = 1, ...,M .
Therefore (5) can be simplified to give

y(j) =

P∑
k=1

ake
(ij(2πf0tk))

=

P∑
k=1

ake
(i2πfjtk)) .

(6)

Thus, (6) provides a simplified expression of the measure-
ments at every pixel in terms of discrete time and frequency

samples. The aim is to retrieve the terms ak and tk, ∀k ≤ P ,
that can correctly explain y. The matrix pencil method, a
robust variant of Prony’s method, is a standard way to achieve
this goal [16]. Compressed Sensing (CS) based approaches
may improve the depth resolution by promoting sparse solu-
tions in a finer grid. However, existing CS algorithms pose
certain challenges that are discussed later.

III. COMPRESSED SENSING APPROACH

In practice, the number of objects of interest that reflect the
illumination signal are sparse in comparison to the ambient
dimension in time/depth domain. Therefore, it is logical to
follow a CS-based approach for ToF depth resolution improve-
ment.

A general CS problem is expressed as

y⃗ = AAAx⃗+ e⃗ ,

where y⃗ ∈ CJ containing the measurements in frequency
domain, AAA ∈ CJ×K , J ≪ K, is the sensing matrix, and
x⃗ ∈ CK is an s-sparse reflectivity vector constructed from
the sparse reflectivities of the objects in the scene. e⃗ is white
Gaussian noise in the measurement y⃗. (6) can be expanded
into this general CS formulation, giving y(1)

y(2)

...
y(J)


︸ ︷︷ ︸

y⃗

=

 ej2π(f1,t1) ··· ej2π(f1,tK )

ej2π(f2,t1) ··· ej2π(f2,tK )

...
. . .

...
ej2π(fM,t1) ··· ej2π(fM,tK )


︸ ︷︷ ︸

AAA

 a(1)
a(2)

...
a(K)


︸ ︷︷ ︸

x⃗

+e⃗ . (7)

The sensing matrix AAA resembles a horizontal discrete fourier
transform (DFT) matrix, oversampled in time. Such a sensing
matrix construction aligns with the structured CS approach
[13], and is different from the traditionally used random
sensing matrices. The sparse reflectivity vector x⃗ consists
of the real-valued reflectivities a(k) from each object in the
scene. Based on this framework, the solution for x⃗ is given by

min ∥x⃗∥1 s.t. ∥AAAx⃗− y⃗∥2 ≤ η , (8)

where η is the upper bound on the norm of the measurement
error, i.e., ∥e⃗∥2 ≤ η. For the ToF application, if the location
of the non-zero reflectivities can be determined accurately, the
corresponding columns of AAA can be identified as the active
columns, thereby identifying the correct ’times of flight’, tk.
These time instances then directly provide the depth infor-
mation for each object, since dk = ctk

2 . In order to get an
improved depth resolution using this CS formulation, the ToF
camera must acquire a sufficient number of measurements
at different modulation frequencies. Theoretically, given a
sparsity s and a finely-resolved depth grid of length N , the
relation [14]

m ≥ 2s ln(N)

gives the number of multi-frequency measurements required.
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IV. SUBDIVISION BASED ITERATIVE SOFT
THRESHOLDING ALGORITHM

The use of popular CS algorithms for the depth resolution
improvement in ToF systems poses certain challenges. In the
CS formulation described in (9), a depth resolution improve-
ment is possible only when CS algorithms support a finely-
spaced time (or depth) grid. However, this is challenging due
to the following reasons:

1) Given a constant depth to be covered, a finely-spaced time
grid increases the size of the sensing matrix, leading to
a large computational load.

2) With a finely-spaced time grid, the degree of similarity
between adjacent columns, which is measured by their
normalized inner product, increases, and, as a result, the
coherence of the sensing matrix increases, leading to an
ill-posed CS problem. In such a scenario, conventional
CS methods fail to provide a good estimate.

In order to solve these issues, a sub-division-based nested CS
algorithm is introduced. A different algorithm based on this
idea was applied for radar range resolution improvement in
[15].

A. Subdivision-based Nested CS

It must be noted that in order to get (real-valued) reflectivi-
ties using complex measurement vector y⃗, a symmetric version
of the DFT matrix is used as the sensing matrix AAA, i.e., the
time grid is always centered around 0. Based on this sensing
matrix structure, the subdivision-based nested CS algorithm is
outlined in Algorithm 1 and is described as follows:

1) Determine the factor ksub = K
J that dictates the differ-

ence between the number of rows and columns of AAA.
2) Divide AAA into k sensing matrices AsubAsubAsub that cover different

parts of the time or depth grid, while maintaining a
symmetric structure. Thus,

AsubAsubAsub(i) =

[
AAA(:,1:ksub:mid−i)

AAA(:,mid)
AAA(:,mid+i:ksub:J)

]T
, (9)

where, mid represents the column index for time 0, and
i = 1, ...ksub. Due to this subdivision, each AsubAsubAsub(i)
has a lower coherence and a ksub-times smaller column
dimension compared to AAA, thereby addressing both the
challenges previously described.

3) The measurement vector y⃗ may now be represented as
y⃗ = AsubAsubAsub(i)x⃗sub(i), i = 1, ..., ksub. These k sub-
problems can be directly solved using a greedy CS
method or basis-pursuit minimization.

4) The columns of each sub-matrix AsubAsubAsub(i) capture a dif-
ferent part of the depth grid. Since the detected scene
is sparse, only a few of the x⃗sub(i)s will have sharp
peaks representing the on-grid targets for the specific
sub-matrices. ksub/2 of the x⃗sub(i)s having the highest
standard deviation values are selected, since high standard
deviation (or variance) corresponds to the CS results with
the sharpest peaks.

5) The fine-grid locations corresponding to these peaks are
used to construct the final support S.

6) The final estimate is given by solving a normal CS
problem, as expressed in (8), such that

x⃗final = CS(ASASAS , y⃗) , (10)

where ASASAS consists of the columns of AAA identified by the
support set S.

Algorithm 1: Subdivision-based Nested CS
Data: sensing matrix AAA, measurement vector y⃗
Result: x⃗final

for I = 1 to ksub do

Ω(I) =
[
1:ksub:mid−I

mid
mid+I:ksub:J

]T
;

x⃗
(I)
sub = CS(AsubAsubAsub

(I), y⃗);
σ(I) = std(x⃗sub);

end
[σ, idx] = maxk(σ, ksub/2);
for I = 1 to ksub/2 do

locsub = findpeaks(x⃗sub(idx
(I)));

loc(I) = Ω(idx(I))(locsub);
S = ⋓I loc

(I);
end
x⃗final = CS(ASASAS , y⃗);

V. RESULTS

A. Simulation Results
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Fig. 1: Synthetic Scene with SNR=∞ and SNR=30.
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Fig. 2: SNR vs MSE plots for the 3 synthetic targets.

The performance of the algorithm was tested on synthetic
measurements from 3 point targets at depths of 0.92, 1.84 and
2.4 m respectively. Following the parameters of the real mea-
surement setup, 53 frequency samples were considered ranging
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(a) Depth images from Subdivsion-based CS (top) and Matrix Pencil (bottom). (b) 3D depth images from Subdivsion-based CS.

Fig. 3: Depth Image results from Subdivision-based CS and Matrix Pencil methods.

from 0 to 179.214MHz, with steps of 3.514MHz. Since a
centered measurement vector is considered, as described in
Section IV-A, the frequency grid ranges from −179.214MHz
to 179.214MHz. The measurements corresponding to the
negative frequencies are complex conjugates of the ones at
the positive frequencies. Therefore, the centered measurement
vector y⃗ consists of 103 measurements. For all simulations, a
depth of 3m was considered with a grid resolution of 8mm.

Fig. 1 shows the 3 peaks on the depth grid and the
reconstruction results from subdivision-based nested CS for
SNR= ∞ and SNR=30. As expected, the amplitudes of the de-
tected peaks reduce for the noisy case, however, the positions
are detected accurately. Using the Iterative Soft-Thresholding
Algorithm (ISTA) as the CS reconstruction method, every
instance of the subdivision algorithm has a computation time
of 0.004 sec, while the standard ISTA requires 0.13 sec. This
improvement greatly affects the computation time, specially
when the a large number of ToF pixels are considered.

B. Performance Analysis

The matrix-pencil method [16] has been used as the basis
for performance comparison. It was observed that the matrix-
pencil method performed better for lower values of the pencil
parameter L, J

2 ≤ L ≤ J . This agrees with the conditions for
a noise-robust pencil method in [16]. Fig. 2 shows the MSE
vs SNR plots for the depth images of the 3 targets obtained
using the subdivision-based nested CS method (in red) and
the matrix-pencil method (in blue), for an average of 5 noisy
measurements. The error reduces with increase in SNR for
both methods and becomes constant at around 20 dB. For all
3 cases, the results from the CS method has a lower error
as compared to the MPI method. This is expected, since the
synthetic scene is quite sparse. The small irregularities in the
low SNR region arise due to a small number of measurements
used for the average.

TABLE I: Target position estimates from the Subdivision-
based CS method and the matrix pencil method.

Targets
Methods T1 (m) T2 (m) T3 (m)

Ground Truth 0.87 1.87 2.408
Matrix Pencil 0.38 1 3.1-3.18

Subdivision-based CS 0.86 1.937 2.35-2.4

To analyze the performance of the proposed algorithm for
different levels of sparsity and different numbers of measure-
ments in the presence of noise, phase transition diagrams are
constructed. In Fig 4, m

K denotes the ratio of the number of
available measurements to the number of range cells, and s

m
denotes the ratio of sparsity to the number of measurements.
For each plot, the ratios m

K and s
m are varied from 0.05 to 1

in steps of 0.05 and for every point
(
m
K , s

m

)
, 20 iterations of

the proposed method are executed. The success or failure of
each iteration is determined by calculating the averaged mean-
squared error between the ground truth and the reconstruction
results. An error of 0.001 or less is considered a success. The
averaged rate of success is then shown in the corresponding
position in the phase transition diagram. Since the sensing
matrix is always horizontal (K ≫ m), the number of columns
(K) considered for the phase transition diagrams must cor-
respond to the maximum number of available measurements
(m). Figs show the phase transition plots for the nested CS
method for SNR = ∞, 80, 40, and 20 dB.

C. Results on Multi-Target Measurement Data

This section discusses the results obtained using real ToF
data. The experimental setup, shown in Fig. 5, consists of 3
targets—a glossy translucent target (T1) at 0.87m, a diffusive
translucent target (T2) at 1.87m, and an opaque white placard
target (T3) at 2.408m depth.

Fig. 3(a) shows the depth images obtained using the
subdivision-based CS (top) and the matrix pencil method
(bottom) on real measurements. Fig. 3(b) presents the 3D
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Fig. 4: Phase transition diagrams.Black corresponds to 100%
empirical success probability. White corresponds to 0% suc-
cess probability.

Fig. 5: Experimental Setup

plots of the depth images obtained using subdivision-based CS.
Table. I shows the estimated depths of each target from both
methods. Since the position in depth is decided by the location
of the amplitude peaks, the sparsity-inducing methods perform
better as they are capable of identifying prominent data points
in noisy environments. The matrix pencil method shows much
higher sensitivity to noise and fails with real data. Specially
in the case of T3, the same amplitude was detected for a large
number of inaccurate points in the depth grid, leading to an
incorrect estimate. Overall, the estimation accuracy of the CS
based method is much better than that of the matrix pencil
method adopted in prior works to solve the MPI problem.

VI. CONCLUSION

A new subdivision-based nested CS algorithm was proposed
with an aim to improve on the disadvantages of existing CS
methods applied to ToF MPI mitigation. Simulation results

were presented along with a performance analysis. A 3-target
setup was used to test the performance of the algorithm for
both simulated and real-world measurements. The proposed
algorithm is flexible and can be further explored using different
types of CS methods. A more detailed comparative study based
on different CS methods can be performed in future. The effect
of the pencil parameter on the performance of the matrix pencil
method can also be further explored.
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