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Abstract—In this work, the problem of recovery of sparse
signals by means of compressed sensing in the Discrete Cosine
Transform (DCT) domain is addressed. We design a new sam-
pling pattern in the transform domain which is a generalization
of arithmetic sequences of difference d. For the DCT Type-I even
(DCT1e), we provide a rigorous characterization of the differ-
ences d that ensure perfect recovery of sparse signals from their
corresponding arithmetic sampling sequences in the transform
domain. They constitute new universal sampling patterns, which
guarantee the reconstruction of sparse signals from a minimal
amount of measurements in the DCT1e domain. Simulations illus-
trate the good behavior of traditional compressed sensing solvers
with this novel compressive sampling scheme, outperforming the
sparse recovery rate of the existing solution for the DCT1e.

Index Terms—Compressed sensing, sparse signals, universal
sampling pattern, spark, DCT.

I. INTRODUCTION

Discrete cosine transforms (DCTs) have become an alter-
native to Discrete Fourier Transform (DFT) in some signal
processing applications. For instance, they are widely used
for signal and image compression, due to their property of
compactation of the information [1]. But they are not limited
to these applications: DCTs also present very good behaviour
with respect to carrier frequency offset (CFO), outperforming
the DFT in some scenarios [2], so they are constitute a good
alternative in telecommunications [3].

Among the four types of even DCTs, the Discrete Cosine
Transform Type-I even (DCT1e) is the unique that presents
two additional properties [4]: On one hand, DCT1e transforms
convolution of symmetric signals into a pointwise product of
their DCT1e in the transform domain. On the other hand,
DCT1e equals its inverse (up to a constant factor), speeding up
the implementation of the corresponding algorithms. Based on
these properties, recent works have shown the effectiveness of
DCT1e both for signal reconstruction and channel estimation
in multicarrier communications [5], [6].

In this paper, we address the problem of reconstruction
of sparse signals from a small number of its DCT1e co-
efficients. From compressed sensing (CS) theory [7], it is
possible to recover s-sparse signals by means of a set of
p ≥ 2s measurements in a transform domain, whenever the
corresponding transform matrix has maximum spark. Recall
that a matrix with p rows has maximum spark if any set
of p out of its columns are linearly independent. For a

given transform matrix, proving that it presents maximum
spark is a very difficult issue. Nevertheless, for the DCTs,
in [8] it was mathematically shown that all the even-type
DCTs present maximum spark in its first rows. This important
result guaranteed that any s−sparse signal could be perfectly
reconstructed by just measuring its first 2s DCT coefficients,
regardless the signal length. However, that method cannot be
applied if any of the first DCT samples is missing.

For this reason, here we present a more general sampling
pattern, based on a set of samplers that keep only 1 out
of each d coefficients of the DCT vector. This arithmetic
sequence is a generalization of the previous solution [8], which
corresponds to d = 1, since it considered consecutive samples.
The advantage of this general method is the flexibility for
choosing the difference d and the number p of samples.

In order to prove the validity of the proposed solution, it is
necessary to study the maximum spark issue. To this aim, in
this paper we develop thorough mathematical results which are
valid for the DCT1e, and yield an important characterization
of the differences d which guarantee maximum spark of the
corresponding DCT1e measurement matrix. Thus, we provide
universal sampling patterns for perfect sparse recovery in the
DCT1e domain.

The paper is organized as follows: Section II presents the
new sampling scheme. Section III provides the main contribu-
tions of this work, say, the theorems that guarantee the validity
of the proposed solution when using the DCT1e. Section
IV illustrates some numerical simulations of the performance
of the proposed method. Finally, Section V summarizes the
conclusions of this work. Throughout the paper, upper bold-
face letters denote matrices, vectors are denoted by lowercase
boldface letters, and the superscript T stands for transposition.

II. DESIGN OF THE NOVEL SAMPLING PATTERN

In this section we present a new sampling method from
the components of a vector. For the sake of simplicity, we
will assume that the vector length is (N + 1) . Let us fix an
integer 1 ≤ d ≤ N, and consider the samples indexed as

dm = dm, m = 0, . . . , p− 1. (1)

As the difference d between consecutive samples is constant,
they constitute an arithmetic sequence. We may consider that
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it is the output of a sampler that works at a fixed rate, as in [9].
However, this would imply that (p− 1) d ≤ N : hence, for
high values of the sampling difference d, a very small amount
of measurements p could be applied, and only sparse signals
of small order s = p/2 would be reconstructed.

In order to overcome this problem, we propose an extension
of the initial sampling scheme, which is also valid for any
amount p ≤ (N + 1), regardless the difference d of the
arithmetic progression. Let us explain this method:

1) We start with the first coefficient (indexed as m = 0),
and continue by taking 1 out of d consecutive samples,
as in Eq. (1).

2) In case there is an integer m0 ≤ p− 1 such that

N < dm
0
< 2N,

then we compute the number

m′
0 = 2N − dm0, 0 < m′

0 < N (2)

and keep a new sample indexed as m′
0 instead of dm0.

Note that m′
0 = −dm0 mod (2N).

3) Next, we continue the arithmetic sequence, considering
the samples indexed by numbers d(m0 + k). As

m′
0 − dk = −d (m0 + k) mod (2N),

we substitute these numbers by the indices m′
0 − dk,

which also constitute a (descending) arithmetic progres-
sion of difference −d.

4) Moreover, if any other m1 ≤ p satisfies

2N ≤ dm1 ≤ 3N

then we compute the number

m′
1 = dm1 − 2N, 0 ≤ m′

1 ≤ N (3)

and keep the sample indexed as m′
1 = dm1 mod (2N).

5) The next samples are indexed as m′
1 + dk =

d (m1 + k) mod (2N), which constitute an (increasing)
arithmetic progression of difference d.

6) This procedure is applied until we complete the desired
amount p of samples.

In summary, for any number dm > N of the arithmetic
sequence, we write it as dm = 2Nk±m′ for some integer k,
and 0 ≤ m′ ≤ N . Then it suffices to substitute the index dm
by the sample index m′ defined as

m′ = |2Nk − dm| , 0 ≤ m′ ≤ N. (4)

Note that the particular cases of Eqs. (2) and (3) are derived
from the expression given by Eq. (4). Hence, Eq. (4) yields
the general procedure for our novel sampling pattern, which
can be applied to any m = 0 . . . , p − 1. This way, we keep
the desired number p of samples.

Remark: The proposed sampling pattern provides a family
of indices which form arithmetic sequences of the same
difference d, with eventually different initial values. Thus,
they can be considered as the output of a set of asynchronous
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Fig. 1. Example of the proposed sampling pattern for N = 14, p = 8 and
d = 5, as explained in Section II.A.

samplers, all of them with the same fixed rate. In this sense,
this approach is similar (but not equal) to the one proposed in
[10] for the DFT.

A. Example

For the case N = 14, let us choose p = 8 numbers with
difference d = 5 through our approach. The first eight multi-
ples of d are {0, 5, 10, 15, 20, 25, 30, 35}. With our method,
we keep the ones in [0, N ], say, {0, 5, 10}. Secondly, the
numbers in the interval (N, 2N) = (14, 28), say, {15, 20, 25},
following Eq. (2) should be substituted by the respective in-
dices {13, 8, 3} (which indeed form an arithmetic progression
of difference −d = −5). Next, the numbers greater than
2N = 28 are simply replaced by their remainders modulo
(2N = 28) as in Eq. (3). Hence, 30 and 35 are replaced by 2
and 7 (with difference d = 5, as expected).

Fig. 1 shows a diagram for this example: notice that this
procedure is equivalent to folding the numbers on the right of
[0, N ] with respect to N = 14 (marked with triangles), and
folding the samples on the left with respect to 0 (marked with
squares). Finally, we have obtained the pattern

{0, 5, 10} ∪ {3, 8, 13} ∪ {2, 7}

which corresponds to three arithmetic sequences of the same
difference d = 5. In other words, it equals the output of three
samplers at the same rate.

III. PERFECT RECOVERY FROM THE DCT1E DOMAIN

Once the sampling scheme has been introduced, now we
study its validity for perfect sparse reconstruction in the
DCT1e domain. First, let us recall that the DCT1e matrix of
order N + 1, C1e, is defined in [4] as

[C1e]k,n = αn cos

(
knπ

N

)
, 0 ≤ k, n ≤ N,

where αn = 1 if n ∈ {0, N}, and αn = 2 if 0 < n < N.
Notice that the factor αn only multiplies each column, so it
does not affect the spark of its submatrices. Therefore, we will
consider αn = 2 from now on.

Let us analyze the submatrices of C1e built by p rows
indexed as multiples of an integer d, say, k = dm, m =
0, ..., p− 1. If A denotes such submatrix, its entries are

am,n = 2 cos

(
πmnd

N

)
m = 0, ..., p−1, n = 0, . . . , N. (5)

Our aim is the characterization of d which yield maximum
spark of A. Our first result constitutes a necessary condition:
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Theorem 1: If d and 2N are not coprime, then A does
not have maximum spark.

Proof: It suffices to show that if d is even or d is not coprime
to N, then A has not maximum spark.

Notice that the first column of A (n = 0) equals
2 (1, 1, ..., 1)

T
, whereas its last column (n = N ) is:

2
(
1, (−1)d, 1, ..., (−1)

d(p−1)
)T

.

Thus, if d is even, it is straightforward that A has two identical
columns, which are linearly dependent, so its spark is not
maximum. Here we had assumed that d (p− 1) ≤ N ; if
dm > N , the proposed sampling scheme will substitute the
even number dm by its remainder modulo 2N which is also
even. Besides, in case dm = Nk + r with odd k, then

dm+ (N − r) = N (k + 1)

and the last number is even, so in case dm is even, so is
(N − r). We conclude that all the corresponding rows are
even-indexed, so this scheme will also provide a submatrix
whose first and last columns are equal; therefore, the spark
will not be maximum either.

Let us now suppose that d is odd and d,N are not coprime,
there exist integers 1 < k < N and 1 ≤ L < d such that
kd = NL. Hence the column of index k < N has entries

2 cos

(
πmkd

N

)
= 2 cos (πmL) = 2 (−1)

mL
.

If L is even, this column has entries (2, 2, ...2)
T proportional

to the first column, and if L is odd this column is

2
(
1, (−1)

L
, 1, ..., (−1)

L(p−1)
)T
=2
(
1,−1, 1, ..., (−1)

(p−1)
)T

which is proportional to the last column, since(
1, (−1)d, 1, ..., (−1)

d(p−1)
)T

=
(
1,−1, 1, ..., (−1)

(p−1)
)T

because d is odd. Thus, in this case the spark of A would not
be maximum, and the claim holds. □

The previous result assures that for maximum spark, d
and 2N must be coprime, so this is a necessary condition
for perfect recovery. Conversely, the following theorem states
that this condition is not only necessary, but sufficient. This
constitutes one of the main contributions of this work:

Theorem 2: For any integers 1 ≤ d, p ≤ N, the p×(N+1)
matrix A defined in Eq.(5) has maximum spark (p) if and only
if d and 2N are coprime.

Proof: Theorem 1 guarantees the first part of the proof. Let
us prove that if d is coprime to 2N, then A has maximum
spark, say, any set of p of its columns are linearly independent.
Let us consider any p columns with indices 0 ≤ n1 < n2 <
... < np ≤ N . We build the p× p square submatrix B formed
by these p generic columns; its entries are

bm,n = 2 cos

(
πmnd

N

)
, 0 ≤ m ≤ p−1, n ∈ {n1, n2, ..., np}.

In order to prove that B is invertible, it suffices to demonstrate
that the unique row vector a = (a0, a1, ..., ap−1) such that
aB = 0 is a = 0. Let us rewrite the condition aB = 0 as

p−1∑
m=0

2am cos

(
πmnkd

N

)
= 0, k = 1, ..., p. (6)

By using the complex unitary numbers

wk = exp

(
πnkd

N
j

)
k = 1, . . . , p (7)

then Eq. (6) is rewritten as
p−1∑
m=0

am
(
wm

k + w−m
k

)
= 0, k = 1, ..., p.

Now we multiply the latter expression by wp−1
k :

p−1∑
m=0

am

(
wm+p−1

k + wp−1−m
k

)
= 0, k = 1, ..., p.

This way, each wk of Eq. (7) is a root of the polynomial

q (z) =

p−1∑
m=0

am
(
zm+p−1 + zp−1−m

)
(8)

of degree 2p − 2. But q is a self-reciprocal polynomial (its
coefficients are symmetric with respect to the central one) so
w−1

k is also root of q :

w−1
k = exp

(
−πnkd

N
j

)
k = 1, ..., p.

Let us count how many different roots of q there are: it
suffices to see that their arguments do not differ in an integer
multiplied by 2π. If there exist 0 < nk < nk′ < N such that

πnkd

N
± πnk′d

N
= 2πm ⇐⇒ (nk ± nk′) d = 2mN

then d would not be coprime to 2N , and it is impossible. This
implies that q has at least 2(p− 1) different roots. Notice that
if n1 > 0 and np < N , then q would have 2p different roots,
more than its degree, so q should be the null polynomial, and
the claim follows.

Let us analyze the cases n1 = 0 or np = N : for n1 = 0,
the corresponding root is w1 = 1 = w−1

1 , which should be
counted only once; the same occurs for np = N with the root
wp = (−1)d = −1 = w−1

p . Thus, if n1 = 0 or np = N (not
simultaneously), then the amount of different roots of q is at
least 2p − 1, there would be more roots than its degree, and
the claim follows in the same way.

It remains to study the case when n1 = 0 and np = N :
both w1 = 1 and wp = −1 are roots of q, and the others
are pairs of conjugate roots wk, w−1

k , k = 2, . . . , p − 1, so
there are 2p− 2 different roots. Let us now show that this is
impossible: as the degree of q defined in Eq. (8) is 2p − 2
(because ap−1 ̸= 0), it is known that the product of all its
roots zk is equal to the quantity

2p−2∏
k=1

zk = (−1)
2p−2 ap−1

ap−1
= 1
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but in this case the product is
2p−2∏
k=1

zk = w1wp

(
p−1∏
k=2

wk

)(
p−1∏
k=2

w−1
k

)
= 1 · (−1) = −1.

Thus, we get a contradiction, that comes from the assumption
that ap−1 ̸= 0 so we derive that ap−1 = 0. But this implies
that the degree of q is ≤ 2p − 3 and q has 2p − 2 different
roots, more than its degree. Therefore, the only chance is that
q is the null polynomial, and the claim follows. □

Remark: Fortunately, the assumption d (p− 1) ≤ N is not
necessary for the validity of this result, since it has not been
required for its proof. In other words, if d (p− 1) > N , then
the corresponding matrix A of Eq. (5) also has maximum
spark if and only if d is coprime to 2N. But notice that its
rows are the same as the rows of the DCT1e matrix indexed
by our sampling pattern: in effect, for each row index m, by
writing dm = 2Nk ±m′ as in Eq. (4), its entries are:

cos

(
(dm)nπ

N

)
= cos

(
(2Nk ±m′)nπ

N

)
= cos

(
m′nπ

N

)
which correspond to the entries of the m′-indexed row of
the DCT1e matrix. Thus, we have shown that the maximum
spark result is valid for the novel sampling pattern presented
in Section II.

Finally, note that the example given in Section II.A verifies
that d and 2N are coprime. Thus, it is guaranteed that the
corresponding novel sampling pattern yields maximum spark.

IV. EXPERIMENTAL RESULTS

In this section we show some simulations where traditional
compressed sensing techniques have been applied to the
proposed sampling pattern in the DCT1e domain. In each
experiment, first we set the parameters N (the length of the
signal minus 1), p (number of measurements in the transform
domain), and the difference parameter d (coprime to 2N ).
Then, for each sparsity value s, 1 ≤ s ≤ p, a s-sparse signal
x of length N + 1 is built: its s nonzero locations are drawn
at random, and its respective nonzero values are drawn from a
normal Gaussian distribution N (0, 1). We compute its DCT1e
transform vector b = C1e · x, and extract its p components
indexed by the arithmetic sequence of difference d.

Secondly, from these p measurements we apply traditional
CS solvers; basis pursuit (BP), smoothed ℓ0 algorithm (SL0)
[11], and Orthogonal Matching Pursuit in its modified version
(OMP1) [12]. Each of these algorithms compute an estimation
of the sparse signal x. Finally, the experiment is repeated 100
times for each sparsity value s, and the empirical recovery rate
of each algorithm is computed for each sparsity value s.

Let us show some results obtained for N = 14, p = 8: with
this setting, we can choose any value of difference d coprime
to 2N = 28. Here we consider two cases, d = 1 and d = 5:

• d = 1 always yields the sampling pattern {0, 1, ..., p−1},
which keeps the first p = 8 samples of the transformed
vector b. This corresponds to the existing solution [8].

• Difference d = 5 provides the new sampling pattern in b
designed by our proposed method. In this case, it has al-
ready been obtained in Section II.A, and depicted in Fig.
1: it corresponds to the samples {0, 2, 3, 5, 7, 8, 10, 13}.

Fig. 2 shows the corresponding recovery rate of the CS
solvers (SL0, BP, OMP1) along the sparsity values s, for
the former solution d = 1 (top) and our new approach with
d = 5 (bottom). As expected, high recovery rates are obtained
through these algorithms for sparsity values s ≤ p/2 = 4, both
for d = 1 and d = 5. Recall that CS theory never ensures
recovery for sparsity values s > p/2 = 4. Hence, in these
simulations, both arithmetic pattern schemes present similar
good behaviour.

Nonetheless, their results differ if we consider random s-
sparse signals with concentrated support, say, whose support
is an (unknown) interval of length s. This is a very common
scenario in some applications, for instance in cognitive radio,
where the support of each signal is an interval whose location
is unknown. Fig. 3 shows the respective results for the former
solution [8] with d = 1 (top) and our new approach with
d = 5 (bottom): in this case, the recovery rate for d = 1
drops quickly for s > 2, whereas the novel sampling pattern
with d = 5 provides as good results as for the general sparse
signals.

Simulations have also been done for higher values of N .
By setting N = 64 and p = 32, Fig. 4 compares the recovery
rates of the BP solver for d = 1 and d = 13 (coprime to
2N ) for sparse signals of concentrated support: the choice of
d = 13 outperforms greatly the recovery rate of d = 1, which
decreases dramatically. Hence, the proposed sampling pattern
presents better behaviour than the existing solution for DCT1e
given in [8].

V. CONCLUSIONS

In this work, a novel compressive sampling pattern has
been designed in the DCT1e domain. It consists of a simple
generalization of arithmetic sequences, which can be obtained
by sampling the transform vector at a fixed rate. The main
contributions of this work are the theorems that provide the
necessary and sufficient condition that guarantees that the
corresponding measurement matrix has maximum spark, so
recovery of sparse signals can be ensured. In summary, this
is possible if and only if the difference d of the arithmetic
sequence is odd and coprime to the length of the signal minus
1. Thus, s-sparse signals can be perfectly recovered by a
small amount of DCT1e coefficients: the 2s ones given by
the proposed universal sampling scheme with difference d.
Simulations illustrate the good behaviour of this technique,
outperforming the previous solution in case the support of
the sparse signal is localized. Future research will address
the problem of finding the optimal values of d for numerical
issues. Further theoretical results should also be developed in
order to show the validity of the proposed method for the rest
of the DCTs.
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Fig. 2. Recovery rate versus sparsity value s for the CS solvers SL0, BP and
OMP1 for the DCT1e. In all cases N = 14, and p = 8 samples are selected
from the DCT1e vector, following the arithmetic sequence of difference d = 1
(top), or the proposed arithmetic sequence with d = 5 (bottom).
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Luengo and M. Moonen: DCT based channel estimation for single-and
multicarrier communications. Signal Processing 128: 332-339, 2016.

[4] S.A. Martucci: “Symmetric Convolution and the Discrete Sine and
Cosine Transforms”. IEEE Trans. Signal Processing 42 (5): 1038-1051,
May 1994.

[5] M.E. Domı́nguez-Jiménez, D. Luengo, G. Sansigre Vidal and F. Cruz
Roldán: “A Novel Channel Estimation Scheme for Multicarrier Commu-
nications with Type-I Even Discrete Cosine Transform”. Proceedings of
EUSIPCO 2017, pp. 2303-2307, Sept. 2017.
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