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Abstract—The use of Time-of-Flight cameras has been recently
popularized due to the relatively low-power consumption and
manageable size. However, the optical system imposes a restric-
tion in the field of view of the camera and motion artifacts
appear in unsteady environments. In this paper, we present a
novel sensing system that enables flexible trade-offs between the
field of view and the lateral resolution, no longer fixed by the
array geometry, in close to real-time operation. Our approach
is based on the introduction of a controlled rotation during
sensing. As a result, we propose an original sparsity-aware greedy
algorithm for 3D reconstruction. The novel computational sensor
is validated via numerical simulations.

Index Terms—Coded demodulation, Compressive Sensing,
Depth priors, 3D imaging, Time-of-Flight

I. INTRODUCTION

In this paper, we examine three important topics for the

current and future development of indirect Pulse-based Time-

of-Flight (PB-ToF) cameras. Firstly, the increase of the angular

range at bounded hardware and computational complexity.

Secondly, the enhancement of the lateral resolution. Finally,

the transformation of an adverse circumstance, such as the

relative motion between the camera and the scene, into a useful

tool during sensing.

Our methodology relies on four fundamental aspects.

Firstly, we make use of Compressive Sensing (CS) techniques

to reduce the number of measurements required for 3D

reconstruction, and allow for real-time operation. Secondly,

we design a near-to-optimal coding scheme [1] which yields

temporal super-resolution, i. e., the recovery of the target’s

depth in a grid much finer than the number of elements of the

codes that the demodulation functions are built upon. Thirdly,

we exploit some a priori knowledge of the signals being

recovered, i. e., the relationship between the depth at which

the target is found and the perceived intensity. Finally, we

make use of the rotation of the sensing system, and the derived

sampling redundancy, to uncouple the lateral resolution from

the pixel count.

Specifically, the two main contributions of this paper are:

1) An original 360◦ PB-ToF 3D sensing system leveraging

coded demodulation.

2) A novel algorithm to reach temporal super-resolution

whilst uncoupling the lateral resolution from the number

of pixels in the introduced rotating PB-ToF camera.
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research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 860370 (MENELAOSNT).
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Fig. 1. Components of the camera prototype developed at ZESS.

II. GENERAL DESCIPTION OF THE CAMERA SYSTEM

As shown in Fig. 1, our prototype is designed to allow

for rotation whilst minimizing the number of moving parts

during operation. The camera comprises four sub-systems.

The sensing system consists of a PB-ToF sensor array, where

each pixel can be seen as a correlator between a delayed

pulse, the delay of which encodes the depth of the target,

and a number of demodulation functions [1]. The illumination

system comprises a number of vertical-cavity surface-emitting

lasers (VCSELs). The optical system is composed of a large-

aperture lens capable of operating in very-low-light conditions

and reach medium-to-long ranges, and a mirror rotating around

the vertical axis and placed at 45◦ with respect to it. The mirror

is used to increase the angular range, redirecting the light paths

from the illumination system to the scene, and from the scene

to the sensor. The mechanical rotation system consists of two

externally toothed gears, and a truncated cone.
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III. METHODOLOGY

A. ToF Camera Geometrical Modelling

As shown in Fig. 2, we make use of the observation

direction n⃗(j,k) for each pixel to retrieve the distance to the

target r
(j,k)
P , with −M/2 ≤ j ≤ M/2 and −N/2 ≤ k ≤ N/2,

being M and N the number of rows and columns of the sensor

array, respectively. The time-dependant geometrical model of

the sensing system can be analytically modelled as follows:

The mirror plane π0 is given by P0 = (0, 0, dπ0
) and the

normal n⃗π0 (1), being ω1 the rotational velocity of the mirror

around z1-axis, and dπ0
the height at which z1-axis intersects

the mirror.

n⃗π0 (t) = RRRz (ω1t)RRRx (45
◦) z⃗1 (1)

The observation direction for the pixel (j, k) is given by

n⃗(j,k) (2), being βz , and βx the angles formed by the y1-axis

and the projections of n⃗(j,k) onto the Ox1y1 and Oy1z1 planes,

respectively.

n⃗(j,k) = RRRz (βz)RRRx (βx) z⃗1 (2)

The intersection point between the line of sight and the

mirror plane is given by P = αn⃗(j,k), with α such that

αn⃗(j,k) ∈ π0. Then, we calculate the distance with respect

to the camera reference system origin ∆r⃗
(j,k)
12 = O1 − P (j,k),

and, finally, the re-directed observation direction, given by the

coordinates of P (j,k) and the direction vector n⃗′(j,k) (3).

n⃗′(j,k) (t) = RRRz (βz + ω1t)RRRx (90
◦ + βx) z⃗1 (3)

The position vector of the observed point with respect to

the pixel (j, k), supposing O0 ≡ O1 is given in (4).

r⃗(j,k) (t) =
✟
✟
✟∆r⃗0,1 +∆r⃗

(j,k)
1,2 (t) + λ · n⃗′(j,k) (t) (4)

The coordinates of the virtual focal point are given in (5).

Note that, differently from [1], [2] the virtual focal point O2

is time-dependant.

⃗O1O2 (t) = dπ0
·RRRz (ω1t) (0,−1, 1)

⊺
(5)

B. ToF Sensing Scheme

We consider two different sensing approaches depending on

wether ω1 is high enough to induce significant changes in the

observation direction during the exposure time texp.

1) Semi-continuous rotation: In this regimen of operation,

the camera stops at each angular pose to take up to m
measurements. In this case, the observation direction1 n⃗′ =
n⃗′(t = t0) remains constant during texp. The emitted signal

pr⃗(t), given by a train of light pulses periodically repeated

at fr during texp, interacts with the scene represented by the

Scene Response Function (SRF) defined in (6), where δ(t)

1For readability, hereinafter, we refer to the pixel (j, k) and omit the super-
script in the formulation.
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Fig. 2. Schematic of the observation geometry of the proposed ToF camera.

and {Γr⃗[i], τr⃗[i]}
s−1
i=0 are the Dirac delta function and the

reflectivities and time delays introduced by s return paths of

light [3], respectively.

hr⃗(t, t
′) =

s−1
∑

l=0

Γr⃗[l]δ(t− t′ − τr⃗[l]) (6)

Then, the reflected signal can be formulated as the convolu-

tion of both signals rr⃗(t) = (pr⃗ ∗ hr⃗)(t). The pixel correlates

rr⃗ with m controllable shift-invariant functions [a0,i]
m

i=1 (t)
(7).

yi,r⃗(t) = ((pr⃗ ∗ hr⃗)⊗ a0,i)(t), 1 ≤ i ≤ m (7)

Ideally, the demodulation functions are a periodic repetition

of binary codes of n elements, such that al0,i = al+n
0,i or,

equivalently, in the continuous-time domain a0,i(t) = a0,i(t+
tr), 0 < t ≤ texp − tr, being tr the code duration. Each

of the n elements are further discretized in nsteps sub-steps

yielding nsamples sub-divisions for each code. Equation (7)

translates into (8), by exploiting cyclic convolution properties

[3].

yi,r⃗(t) = ((pr⃗ ⊗ a0,i) ∗ hr⃗)(t), 1 ≤ i ≤ m (8)

As n⃗′ remains constant during texp, (8) yields (9) in the

discrete case, where y⃗r⃗ = [yi,r⃗(t = 0)]
m

i=1 is the measurement

vector, AAA is the sensing (or measurement) matrix with AAA =
[[

ali
]m

i=1

]nsamples

l=1
:= (pr⃗ ⊗ a0,i)(tl), and x⃗r⃗ := [hr⃗(tl)]

nsamples

l=1

is the signal to be reconstructed.

y⃗r⃗ = AAA · x⃗r⃗ (9)

2) Continuous rotation: Differently, if ω1 is high enough

to induce a relevant change of n⃗′ (t) with 0 ≤ t < texp
(3), the time-domain cross-correlation a⃗i will effectively sense

over a 1D curve in the 3D spatial domain
[

a⃗3Di
]m

i=1
(10),

as illustrated in Fig. 3. In order to guarantee µ < 1 and,

therefore, uniqueness of the solution of the inverse problem,
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tr ≥ texp, and the number and bandwidth of the elements shall

be adjusted accordingly.

a⃗3Di (r⃗) =







ai (t) for r⃗ =
c(t− ⌊ t

tr
⌋)

2
· n⃗′ (t)

0 elsewhere

(10)

We translate the formulation from the continuous-time

domain, into a global discrete grid expressed in spherical

coordinates D := {Γk}
nD

k=1 where Γk = [θk, ϕk, ρk]. Firstly,

we define a set of ntot equidistributed times Υt = {tl}
ntot

l=1

with tl ∈ [0, texp), and calculate the corresponding cross-

correlations Υa = {ai (tl)}
ntot

l=1 , and position vectors Υq =
{q⃗l}

ntot

l=1 such that q⃗l = r⃗ (tl). Secondly, we estimate the

cross-correlation a3Di (ρ⃗k) (11) for each ρ⃗k ∈ D, being I an

interpolation operator, which represents a row of AAA3D and ex-

plains how each of the scattered points of the grid contributes

to the pixel measurement. Thus, the pixel measurements are

yi = a3Di (ρ⃗k) · x⃗ρ⃗k
.

a⃗3Di (ρ⃗k) =

{

I (ρ⃗k,Υq,Υa) if |q⃗ − ρ⃗k| < ε

0 elsewhere
(11)

AAA3D shall now account for all m measurements and all

pixels

[

[[

a
(j,k)
i

]m

i=1

]M

j=1

]N

k=1

(12). The resulting matrix is

structured and features very-low density. The recovery of the

sparse targets in D can now be solved jointly for all the pixels

of the sensor array.

y⃗ρ⃗ = AAA3D
ρ⃗ · x⃗ρ⃗ (12)

If AAA exhibits an eminently block diagonal structure, the lim-

ited measurement entanglement allows for working on a per-

pixel basis. As in the previous case, we generate Υt, Υa, and

Υq, and calculate the cross-correlations as a⃗3Di =
[

ali (q⃗l)
]ntot

l=1
,

and the resulting sensing matrix AAA3D
j (for pixel j). This

methodology is computationally advantageous, as it allows to

sequentially recover the signals for each single pixel, which

reduces the size and complexity of the problem. However,

it may lead to sampling inhomogeneities due to the relative

motion between the mirror and sensor.

C. Signal Recovery and Image Reconstruction

Since m ≪ nsamples, (9) and (12) are under-determined.

We exploit the sparsity of x⃗, yielding a constrained ℓ0-

minimization problem (13), i. e., to find the sparsest solution

which complies with (9) or (12).

ˆ⃗xr⃗ = argmin
x⃗r⃗

|x⃗|0, s.t.: y⃗r⃗ = AAA · x⃗r⃗ (13)

Generally, in classical greedy algorithms, such as Orthogo-

nal Matching Pursuit (OMP) [4], a discrete probability density

function g⃗ is generated as the scalar product of the normalized

columns of AAA and the residual of the measurement vector y⃗r⃗.

Then, the target location is identified as the first peak of this

target

ai3D(t = tr)

ai3D(t = tl)

ai3D(t = tj)

ai3D(t = 0)

r = rmax
tr = 1

fr

a0,i3D(t)
r(t)

rmax
p(t)

𝐷𝐷

Fig. 3. Sensing scheme in continuous rotation mode.

distribution for s = 1. This assumption may not be correct

in some scenarios, such as for low SNR signals, i. e., under

low-lighting conditions or multi-path interference (MPI).

The use of prior modeling based on the relationship between

the depth and intensity maps have been applied in tasks

such as depth super-resolution exploiting High Resolution

(HR) intensity maps [5]. As described in Algorithm 1, we

propose to incorporate an empirical prior 2D distribution over

depth an intensity ⃗̄gDI during the calculation of the discrete

probability density function ⃗̂g = g⃗ ⊙ ⃗̄gDI, which accounts for

unlikely depth-intensity pairs and, therefore, helps to reduce

large reconstruction errors. We make use of the transient

profiles and depth maps from the state-of-the-art dataset [6]

as ground truth (GT). This dataset consists of nscenes = 25
scenes with a resolution of 120 px × 160 px. We select 21

of them to calculate an empirical 2D discrete probability

density function, i. e., 3.84 × 105 transient profiles, and use

the remaining four scenes for testing and validation of the

proposed recovery algorithm. We perform a pre-processing of

the depth maps by removing any existing flying pixels, as per

Neighborhood Distance (ND) methodology [7]. We extract and

merge the depth-intensity histograms of the 21 scenes, being

the intensity approximated as the ℓ2-norm of each transient

profile which consists of nsamples = 2000 samples, and

estimate GGGraw
DI , such that g⃗rawDI (Ĩ) =

[

P
(

l|I = Ĩ
)]nsamples

l=1
.

As shown in Fig. 4, we perform 1D smoothing via least-

squares followed by non-dimensionalization, yielding g⃗DI(Ĩ).
Then, we define the cumulative distribution function, such that
[

glDI cum

(

Ĩ
)]nsamples

l=1
=

[

∑

s<l g
s
DI

(

Ĩ
)]nsamples

l=1
, and finally,

the indicator function
[

g̃lDI

(

Ĩ
)]nsamples

l=1
(14) being ε ≪ 1.

g̃lDI

(

Ĩ
)

=

{

1 if glDI cum

(

Ĩ
)

< 1− ε

0 elsewhere
(14)

D. An Approach to uniquely determine per-pixel depths at

high angular rates.

The non-ambiguous range (rmax) is given by the maxi-

mum number of elements which guarantees the uniqueness

of
[

a⃗j0

]n

j=1
(µ < 1). In medium ranges rmax ≤ O

(

102 m
)

,
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Fig. 4. Empirically estimated 2D discrete probability density function.

Algorithm 1: Continuous Greedy retrieval

Data: AAA, y⃗(k), ε
Result: Φ
Initialize: s = 0; Υc1 = ∅;

Υ̂c2 = ∅;Γc1 = ∅;Γc2 = ∅
for k = 1 : MN do

β(k,s) = ∅
x⃗(k,s) = 0⃗
ε⃗(k,s) = y⃗(k)

Υ
(k,s)
c = ∅

while
(

|β(k,s)| < smax

)

and
(

∥ε⃗(k,s)∥2 < ε
)

do
s = s+ 1
for k = 1 : MN do

Ĩ(k,s) = ∥ε⃗
(k,s−1)
r ∥2

g⃗(k,s) =
[

(a⃗l)⊺ε⃗r
(k,s−1)

∥a⃗l∥2

]nsamples

l=1

⃗̂g(k,s) = g⃗(k,s) ⊙ ⃗̃gDI

(

Ĩ(k,s)
)

lmax = argmax
1≤l≤nsamples

(

ĝ
(k,s)
l

)

β(k,s) = β(k,s−1) ∪ lmax

x⃗(k,s) = Aβ(k,s)Aβ(k,s)Aβ(k,s)
† · y⃗(k)

ε⃗(k,s) = y⃗(k) −Aβ(k,s)Aβ(k,s)Aβ(k,s) · x⃗(k,s)

Υ
(k,s)
c = {r⃗i (t(lmax) + i · tr)}

⌊

texp
tr

⌋

−1

i=0
end

if ∥ε(k,1)∥2 < ε then
Γc1 = Γc1 ∪ {k}

Υc1 = Υc1 ∪
{

Υ
(k,s)
c

}

else
Γc2 = Γc2 ∪ {k}

Υ̂c2 = Υ̂c2 ∪
{

Υ
(k,s)
c

}

end

end

end

Υc2 = ∪
|Υ̂c2|
k=1

{

Υ̂k
c2 ∩

{

Υl
c1

}|Υc1|

l=1

}

Φc1 = ∪
|Γc1|
k=1

(

Γk
c1,Υ

k
c1

)

Φc2 = ∪
|Γc2|
k=1

(

Γk
c2,Υ

k
c2

)

Φ = Φc1 ∪ Φc2

and tr ≪ texp, as texp ∼ O (0.1ms). Thus, an unique solution

may not be guaranteed in a per-pixel basis, as the code may

successively be repeated nrep =
⌊

texp
tr

⌋

times during texp,

yielding an ill-posed problem. A general assumption is to

consider that the observed direction remains invariant for low

and moderate angular velocities ω1 ∼ O (1 fps), as the angular

range travelled during texp is such that yields negligible

changes in azimuth for the range considered (∆rθ ∼ O (mm)
at r ∼ O (10m)). However, this assumption may lead to

an erroneous determination of the distance at the object

boundaries [8]. As presented in Algorithm 1, we propose a

cost-effective approach to determine the depths observed by

each single pixel during texp. If the ℓ2-norm of the residual

of the measurement vector of a pixel does not exceed the

noise level ε for s = 1, all the observed depths during texp
lies on an iso-radial region, and the single depth of the target

over a limited angular range can be retrieved. Otherwise, the

problem can be tackled in most cases as a reflective multi-

path Interfence (MPI), such that the SRF can be explained by

few Dirac deltas. In this case, we account for the intersection

with the support of the SRF observed by the adjacent pixels

(redundant sampled points), the trajectories of which are fully

determined during texp.

The proposed scheme is as follows:

1) We determine for each single pixel [k]
MN
k=1 a

set of candidate 3D target points Υ
(k,s)
c =

{r⃗i(t = t(lmax) + i · tr)}

⌊

texp
tr

⌋

−1

i=0 .

2) We classify the pixel k and the corresponding target

points Υ
(k,s)
c in Γc1 and Υc1, respectively, if ∥ε(k,1)∥2 <

ε or, otherwise, in Γc2 and Υ̂c2.

3) We determine
{

Υk
c2

}|Υ̂c2|

k=1
=

{

Υ̂k
c2 ∩

{

Υl
c1

}|Υc1|

l=1

}

.

4) We obtain the observed points by all pixels during texp
Φ as the union of Φc1 = ∪

|Γc1|
k=1

(

Γk
c1,Υ

k
c1

)

, and Φc2 =

∪
|Γc2|
k=1

(

Γk
c2,Υ

k
c2

)

.

Our approach exploits the underlying low-dimension of the

union of sub-spaces where the 3D shapes live, at the time it

avoids the need for training a 3D dictionary (costly task) or

relying on parametric models.

IV. NUMERICAL SIMULATIONS

A. Preliminary Considerations and Simulation Setup

We perform a numerical validation of the proposed method-

ology for the continuous rotation during texp = 0.1ms by

making use of two testing scenes from [6]. We consider

n′
rep = 20 equispaced sequences (n′

rep × nsamples observation

directions) for each single pixel over texp for the generation

of the ground truth (GT). We generate m = 10 custom

codes via Gradient Combinatorial [1], each of them consists

of n = 128 elements. Then, we further discretize the elements

in nsteps = 6 sub-steps, yielding nsamples = 768 samples.

With regards to the cross-correlation function, a Gaussian

filter of standard deviation σ = 2ns (0.6m) is applied to

the custom sequences to obtain a realistic representation of

the measurement functions [9]. Also, we add Additive White
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TABLE I
OPERATIONAL PARAMETERS OF OUR TOF CAMERA

Operational parameter Acronym Value

Modulation frequency fm 448 MHz

Repetition frequency fr 3.5 MHz

Horizontal field of view FOV 30 ◦

Vertical distance mirror-sensor dπ0 0.3m
Angular rate ω1 0 rpm− 600 rpm
Exposure time texp 0.1ms
Number of measurements m 10

Grid resolution ∆r 0.055m
Time for 360◦ reconstruction t360◦ 1 s− 2 s

Gaussian Noise (AWGN) with various Signal-to-Noise Ratio

(SNR) levels SNR ∈ [−20 dB, 120 dB] to corrupt the m
measurements. As the field of view (FOV) of the dataset

is greater than the FOV of our camera, we define a region

of interest in the scene, by performing a translation of the

origin of the camera reference system. Table I summarizes

the operating parameters of our camera.

B. Numerical Results

Fig. 5 presents the depth reconstruction errors in terms of

Root Mean Square Error (RMSE) over nreal = 16 realizations

and the percentage of total number of recovered points with

respect to GT, for various angular rates ω1 ≤ 600 rpm. We

perform a comparison of our methodology with the results

obtained via OMP (only one iso-radial distance per pixel

during texp) to allow for comparison with other works in the

field [10], [11]. The figures corresponding to depth recon-

struction error show four differentiated regions: a first area

dominated by noise and characterized by large reconstruction

errors, followed by a plateau with RMSE ∼ O (cm), and a

decay until a residual error RMSE ≤ 2 cm for SNR ≥ 70 dB
in both scenes. This residual error is due to the presence of

target’s depths which lie in adjacent highly-correlated columns

in AAA over texp. The error would decrease if µ was further

reduced (for instance, by introducing offsets between each of

the demodulation functions [2] or increasing fm). We observe

that this residual error decreases when reducing ω1. We find

that that our methodology yields smaller reconstruction errors

than OMP for the same angular rate. Also, we observe that the

implementation of the prior yields a net improvement of the

accuracy for very noisy signals, and that its impact progres-

sively diminishes up to a noise threshold SNR0 = 10dB for

bathroom− cycles− 2 and SNR0 = 0dB for hot− living,

from which no further improvement is obtained. Finally, we

show that we are able to uniquely determine ≥ 95% of the

points observed for all pixels for ω1 ≤ 600 rpm in both scenes.

V. CONCLUSIONS AND PROSPECTIVE WORK

In this paper, we have presented an original 360◦ PB-ToF

3D camera that enables flexible trade-offs between the FOV

and the lateral resolution. Moreover, we have proposed an

original methodology which exploits the continuous rotation

of the camera to accurately reconstruct the depths observed

by each single pixel during texp. We show the adequacy
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Fig. 5. Depth reconstruction errors (top) and percentage of recovered points
(bottom) via our methodology and OMP for two scenes from [6].

of our sensing scheme, and that the inclusion of a depth

prior improves the retrieval accuracy for very noisy signals.

Prospective work includes the experimental evaluation of the

proposed schemes, the generation of benchmark datasets for

indoors and outdoors, and the exploration of strategies based

on 3D dictionaries to exploit the sparsity in the 3D space.
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