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ABSTRACT

Low-photon count imaging has been typically modeled by
Poisson statistics. This discrete probability distribution model
assumes that the mean and variance of a signal are equal.
In the presence of greater variability in a dataset than what
is expected, the negative binomial distribution is a suitable
overdispersed alternative to the Poisson distribution. In this
work, we present a framework for reconstructing sparse sig-
nals in these low-count overdispersed settings. Specifically,
we describe a gradient-based sequential quadratic optimiza-
tion approach that minimizes the negative log-likelihood cor-
responding to the negative binomial distribution coupled with
a sparsity-promoting regularization term. Numerical exper-
iments on 1D and 2D sparse/compressible signals are pre-
sented.

Index Terms— Negative binomial distribution, sparse
data recovery, nonconvex optimization, total variation

1. INTRODUCTION

Compressed sensing and sparse signal recovery are active ar-
eas of research [1, 2, 3], for which many algorithms have been
proposed (e.g., [4, 5, 6]) for efficiently solving these prob-
lems, including those in photon-limited settings (e.g., [7, 8,
9]). The discrete low-count data from a detector appears in
many settings, such as medical image processing [10], struc-
tural variations prediction [11], and network traffic analysis
[12]. Discrete low-photon data reconstruction typically use
a Poisson process model, whose application to imaging has
been well-developed (see e.g., [13, 14, 15]). The Poisson
model assumes that the mean and variance are equal. This pa-
per proposes a sparse reconstruction algorithm for low-count
settings where there is greater variability in a dataset than
what is expected.

The negative binomial distribution is a discrete distribu-
tion returning the probability that y successful events hap-
pen in a sequence of independent and identically distributed
Bernoulli trials until the rth failure event and the probability
of failure event is p. The probability mass function is given
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by

P (y|r, p) =
(
r + y − 1

r − 1

)
(1− p)ypr.

Under this negative binomial assumption, we write our obser-
vation model as

y ∼ NB(r, p).

The expectation µ and the variance σ2 are given by the fol-
lowing formulas:

µ = r
1− p

p
and σ2 = r

1− p

p2
.

These formulas give rise to the expressions

σ2 = µ+
µ2

r
and p =

µ

σ2
=

r

r + µ
.

Note that as r goes to infinity, the variance σ2 will tend to
the expectation µ, and it can be demonstrated that the Poisson
distribution is a special case of the negative binomial distri-
bution.

Let f∗ ∈ Rn
+ be the true signal of interest and A ∈ Rm×n

+

be the measurement matrix that maps f∗ to the vector of ob-
servations. Therefore, the expected measurement at the de-
tector is Af∗ ∈ Rm

+ . Thus, the mean µ is given by the vector
µ = Af∗. The observation vector y ∈ Rm

+ drawn from a
negative binomial distribution model is given by

yi ∼ NB(ri,
µi

σ2
i

) = NB
(
ri,

ri
ri + (Af∗)i

)
,

where ri is often referred to as the “dispersion parameter”
associated with the ith observation. In this work, we assume
that r is constant for each component of the measurement vec-
tor y. Our goal is to reconstruct the true sparse/compressible
signal of interest f∗ from the observed data y. For illustration,
see Fig. 1. We note that the negative binomial distribution has
been used previously in applications such as matrix factoriza-
tion [16] and data regression [17].

2. PROBLEM FORMULATION

Under the assumption that the measurements in y are inde-
pendent and are identically drawn from a negative binomial
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(a) f∗ (b) Af∗

(c) yPoisson (d) yNB

Fig. 1. Example of observation model. (a) True image f∗. (b)
The true detector intensity µ = Af∗. Here, A is a blurring
operator. (c) Observed measurement yPoisson drawn from a
Poisson distribution. (d) Observed measurement yNB drawn
from a negative binomial distribution with r = 9.

distribution, the probability of observing the data vector y is
given by

P (y|f) =
m∏
i=1

(
r+yi−1

r − 1

)(
r

r+(Af)i

)r(
(Af)i

r+(Af)i

)yi

.

Applying a maximum likelihood approach to estimate f∗

yields the following constrained optimization problem:

maximize
f∈Rn

P (y|f)

subject to f ≥ 0,

which can be formulated equivalently using a negative log-
likelihood objective function as

minimize
f∈Rn

F (f)≡
m∑
i=1

(r+yi)log(r+(Af)i)−yilog((Af)i)

subject to f ≥ 0. (1)

We impose the an additional constraint on f , namely, that f is
structured, e.g., sparse or compressible (see e.g., [1]), which
we accomplish by adding a regularization term pen(f) in the
objective function. Our negative binomial sparse reconstruc-
tion algorithm takes on the form

minimize
f∈Rn

F (f) + τpen(f)

subject to f ≥ 0, (2)

where τ > 0 is a regularization parameter that balances the
data fitting term F (f) with the sparsity-promoting regular-
ization term pen(f). In our experiment, we use three types
of penalty terms: (1) the ℓ1-norm ∥f∥1, (2) the ℓ1-norm
∥W⊤f∥1 for an orthonormal basis W , and the total variation
(TV) norm ∥f∥TV.

3. ALGORITHM

Gradient-based approaches are computationally efficient
methods for solving optimization problems. Here, the deriva-
tives of F (f) in (2) are given by

∇F (f) =

m∑
i=1

(
r + yi

r + e⊤i Af
− yi

e⊤i Af

)
A⊤ei

∇2F (f) = A⊤
m∑
i=1

[(
r + yi

(r + e⊤i Af)2
− yi

(e⊤i Af)2

)
eie

⊤
i

]
A

where ei is the ith canonical basis unit vector. To solve (2),
we generate and solve a sequence of subproblems of the form

f j+1 = arg min
f∈Rn

F j(f) + τpen(f)

subject to f ≥ 0, (3)

where F j(f) is a quadratic approximation to F (f). Specif-
ically, we use a second-order Taylor series approximation to
F (f) around the current iterate f j given by

F j(f) = F (f j) + (f − f j)⊤∇F (f j) +
αj

2
∥f − f j∥22,

where the parameter αj is chosen via Barzilai-Borwein crite-
ria [18] with αjI ≈ ∇2F (f j). This approach is similar to the
framework in [4, 9, 19]. Setting qj = f j − 1

αj
∇F (f j), then

(3) can be written equivalently as

f j+1 = arg min
f∈Rn

1

2
∥f − qj∥22 +

τ

αj
pen(f)

subject to f ≥ 0. (4)

The algorithm terminates when consecutive iterates or the
corresponding objective function F (f) values do not change
significantly.

Here we present three types of penalty terms, pen(f), for
which the solution to (4) can be computed efficiently using
the methods in [9].

1. Canonical basis. If f is sparse, then pen(f) = ∥f∥1 is
commonly used to promote sparsity [20]. Even though this
penalty is not differentiable, the minimizer in (4) is given by
the closed-form expression f j+1 =

[
qj − τ

αj
1

]
+
, where

[ · ]+ ≡ max{0, · } (component-wise) and 1 is the vector of
ones of appropriate length.
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2. Orthonormal basis. If f = Wθ, where W is an orthog-
onal matrix and θ is sparse, then we use the penalty term
pen(f) = ∥W⊤f∥1 = ∥θ∥1. Then, writing θ = u− v, where
u, v ≥ 0, we reformulate (4) as

f j+1 = arg min
u,v∈Rn

1

2
∥W (u− v)− qj∥22 +

τ

αj
1
⊤(u+ v)

subject to u ≥ 0, v ≥ 0,W (u− v) ≥ 0,

which has a differentiable objective function and can be
solved using alternating minimization [21]. In our numerical
experiments, we use the wavelet basis transform.

3. Total variation. The total variation norm measures first-
order vertical and horizontal differences in magnitude of an
image. In our experiments, we use the anisotropic total varia-
tion (TV) norm of an n× n image f , which is given by

∥f∥TV
∆
=

n−1∑
s=1

n∑
t=1

|fs,t − fs+1,t|+
n∑

s=1

n−1∑
t=1

|fs,t − fs,t+1|.

The subproblem corresponding to (4) with pen(f) = ∥f∥TV
is solved using the approach in [22].

4. EXPERIMENTS

We conduct three experiments to demonstrate the effective-
ness of our proposed approach.

• Experiment I consists of reconstructing a one-dimensional
signal of length 15,000, where the number of non-zeros is
1500. The measurement y is drawn from a negative bino-
mial distribution with r = 1.

• Experiment II consists of reconstructing a 2-dimensional
image (the modified Shepp-Logan phantom image in MAT-
LAB) with size 128 × 128, where the observation data y is
drawn from a Poisson distribution.

• Experiment III is similar to Experiment II, but the obser-
vation data y is drawn from a negative binomial distribution
with dispersion parameter r = 9.

In these experiments, we compare our proposed method to
SPIRAL-TAP [9]. We use the percentage root-mean-square
error (RMSE(%) = 100∥f̂ − f∗∥2/∥f∗∥2 ) to measure
the distance between the computed solution f̂ to the true
solution f∗. At most 100 iterations were used because no
significant improvements are observed past this limit. We
used the default parameters in [9]. We used the given dis-
person parameter r, but this value can be estimated using
cross-validation [23], method-of-moment [24], and maxi-
mum quasi-likelihood methods [25].

Experiment I: 1D data with canonical basis sparsity

(a) Problem setting

(b) Poisson reconstruction (c) NB reconstruction

Fig. 2. Results for Experiment I: 1D data with canonical basis
sparsity. (a) The true signal f∗, the true detector intensity
Af∗, and the observed photon counts y drawn from a negative
binomial (NB) distribution with r = 1. (b) Reconstruction
using a Poisson model with 5015 non-zero components and
RMSE = 47.0% (c) Reconstruction using a NB model with
1527 non-zero components and RMSE = 15.2%.

For this experiment, the one-dimensional signal f∗ is sparse
in the canonical basis. Consequently, we choose the ℓ1-norm
as the penalty term. The measurement data is drawn from a
negative binomial distribution with dispersion parameter r =
1, which represents a highly overdispersed dataset. The true
signal f∗, the true detector intensity Af∗, and the observed
photon counts y are shown in Fig. 2(a). The reconstruction us-
ing SPIRAL-TAP is shown in Fig. 2(b), which has 5015 non-
zero components and an RMSE of 47.0%. The reconstruction
using our proposed method is shown in Fig. 2(c), which, in
contrast, has 1527 non-zero components and a lower RMSE
of 27.2%.

Experiment II: 2D data drawn from a Poisson distribution

For this experiment, we use the 128 × 128 modified Shepp-
Logan phantom image in MATLAB. The observation data y
is drawn from a Poisson distribution. We consider both spar-
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Fig. 3. Results for Experiment II: 2D data drawn from a Pois-
son distribution. (a) The Poisson reconstruction using the or-
thonormal basis (ONB) penalty with RMSE = 24.7%. (b) The
negative binomial (NB) reconstruction using the ONB penalty
with RMSE = 24.6%. (c) The Poisson reconstruction using a
total variation (TV) penalty with RMSE = 24.6%. (d) The NB
reconstruction using a TV penalty with RMSE = 22.9%.

sifying orthonormal basis (ONB) and the total variation (TV)
to promote sparsity in the reconstruction. The reconstructions
using the Poisson and negative binomial models are presented
in Fig. 3. The RMSE for the Poisson reconstructions using
the ONB and TV penalties are similar (24.7% and 24.6%, re-
spectively). These values are comparable to the RMSE for the
NB reconstruction using the ONB penalty (24.6%). However,
the RMSE for the NB reconstruction using the TV penalty is
significantly lower (22.9%). For the NB reconstructions, we
used a dispersion parameter value of r = 1, 000 to mimic the
Poisson model used to generate the data.

Experiment III: 2D data drawn from an NB distribution

This experiment is similar to Experiment II, but here, the ob-
servations are drawn from a negative binomial distribution
(with dispersion parameter r = 9) instead of a Poisson dis-
tribution. The reconstructions using the Poisson and nega-
tive binomial models are presented in Fig. 4. Because the
measurement data are much noisier (see Fig. 1), we expect
the reconstruction RMSEs for both models to be higher than
those in Experiment II. However, unlike the results for Ex-
periment II, the RMSE for the Poisson reconstructions using
the ONB and TV penalties are not similar (37.7% and 34.8%,
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Fig. 4. Results for Experiment III: 2D data drawn from a neg-
ative binomial distribution with dispersion parameter r = 9.
(a) The Poisson reconstruction using the ONB penalty with
RMSE = 37.7%. (b) The NB reconstruction using the ONB
penalty with RMSE = 34.9%. (c) The Poisson reconstruction
using a TV penalty with RMSE = 34.8%. (d) The NB recon-
struction using a TV penalty with RMSE = 32.7%.

respectively). The TV penalty RMSE value is comparable to
the RMSE for the NB reconstruction using the ONB penalty
(34.9%). However, the RMSE for the NB reconstruction us-
ing the TV penalty is significantly lower (32.7%).

5. CONCLUSION

Low-count observations arise in many practical applications
of interest, including medical imaging and night imaging. In
this work, we presented an alternative to Poisson statistics for
modeling low-photon count measurements in the presence of
greater variability in a dataset than what is expected. For
sparse signal recovery, we proposed a sequential quadratic
optimization approach that uses the negative binomial log-
likelihood with a sparsifying penalty term to promote sparsity
in the reconstruction. We considered three types of penalties
(the widely used ℓ1-norm, the ℓ1-norm in conjunction with a
sparsifying basis, and the total variation norm), whose cor-
responding quadratic subproblems are efficiently solved. We
conducted numerical experiments in 1D and 2D where the
measurements are drawn from both Poisson and negative bi-
nomial distributions, and in all cases, using a negative bino-
mial model improve the accuracy of the reconstructed signals.
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