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Abstract—The aim of this paper is to introduce a novel
dictionary learning algorithm for sparse representation of signals
defined over regular cell complexes. Leveraging tools from Hodge
theory, we inject the underlying topology in the dictionary struc-
ture by parametrizing it as a concatenation of sub-dictionaries
that are polynomial of Hodge Laplacians. The learning problem
is cast as the joint optimization of the topological dictionary co-
efficients and the sparse signal representation, which is efficiently
solved via an iterative alternating algorithm. Numerical results on
synthetic data show the effectiveness of the proposed procedure
in learning sparse representations of topological signals.

I. INTRODUCTION

In the last few years, many processing and learning tech-
niques have been proposed for signals defined over irregular,
not necessarily metric, domains. As an example, graph signal
processing (GSP) introduced several methods for analyze and
process signals defined over the vertices of a graph. The
definition of various graph (shift) operators lead to a variety
of filters on graphs and graph Fourier transforms [1]. The
main feature of these processing tools is that they intrinsically
depend on the connectivity of the graph, which is encoded into
the structure of the adopted graph shift operator. However,
despite their overwhelming popularity, graph representations
can only take into account pairwise relationships among data.
In many situations, the interactions cannot be reduced to
simple pairwise relationships, making graphs an inefficient
object to model them [2], [3]. Prototypical examples are
biological networks, in which multi-way interactions among
complex substances (such as genes, proteins, or metabolites)
[2] happen, or brain networks, in which groups of neurons
typically activate at the same time [3]. These applications
require processing tools that go beyond GSP, thus leading to
the emergent field of topological signal processing (TSP) [4].
Motivation and Related Works. Pioneering works in TSP
showed the benefits obtained by processing signals defined
over simplicial or cell complexes, here referred as topological
signals, which are specific examples of hyper-graphs with a
rigorous algebraic description [4], [5]. Then, a series of papers
have given important contributions to TSP, spanning from the
introduction of FIR filters for simplicial and cell complex
signals [6], [7], to the definition of a generalized Laplacian
for embedding simplicial complexes into traditional graphs
[8]. TSP also encouraged the development of deep neural

architectures able to learn from data defined over topological
spaces, see, e.g., [9]–[15].

A fundamental problem in signal processing is sparse signal
representation [16], whose aim is designing overcomplete
dictionaries of atoms that can represent signals as linear com-
binations of only a few atoms in the dictionary. Two main ap-
proaches have been proven successful for Euclidean and graph
signals: i) analitycal dictionaries, i.e. structured dictionaries
based on mathematical modelling that can be designed starting
from the given domain and assuming a certain signal class
(e.g. Fourier transforms, wavelets, curvelets, etc.); ii) learnable
dictionaries, i.e. unstructured dictionaries that are learned from
a set of training signals [17], [18]. An important tradeoff has
to be taken into account in the choice of a specific approach:
analytic dictionaries are usually faster to implement but are not
resilient to model mismatching, while learnable dictionaries
are usually robust to different signal classes but have larger
complexity due to the required training phase. Regarding
analytical approaches for topological dictionaries, generalizing
what has been done for graph signals, a natural basis for signal
representation is given by the topological Fourier modes [19].
Then, since Fourier modes are generally non-sparse and thus
inefficient for representing localized signals, the work in [20]
proposed a family of wavelets for simplicial signals, respecting
the Hodge decomposition, whereas the work in [21] introduced
topological Slepians, i.e., a class of signals that are maximally
concentrated on the topological domain and perfectly localized
on the spectral domain. However, to the best of our knowledge,
strategies to learn dictionaries for sparse topological signal
representation are missing in the current literature.
Contributions. In this work, hinging on formal arguments
from algebraic topology [22], we generalize the work in
[23] for graphs to regular cell complexes, thus introducing
a novel class of learnable dictionaries for topological signals
that are computational efficient and incorporate the topological
structure. We exploit Hodge theory for regular cell complexes
to inject the underlying structure into the dictionary, and we
build the dictionaries to be a concatenation of sub-dictionaries
parametrized as polynomials of the Hodge Laplacians. We
propose two different parametrizations of topological dictio-
naries that lead to the same (non-convex) problem formulation.
An efficient iterative alternating procedure then jointly learns
the topological dictionary coefficients and the sparse signal
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representation. Finally, we illustrate the advantages of the
proposed topological dictionary learning strategies on a sparse
signal representation task.

II. BACKGROUND

In this section, we review some basics of topological signal
processing over cell complexes.
Definition 1 (Regular Cell Complex). A regular cell complex
is a topological space X together with a partition {Xσ}σ∈PX

of subspaces Xσ of X called cells, where PX is the indexing
set of X , such that [22]:

1) For each c ∈ X , every sufficient small neighborhood of
c intersects finitely many Xσ;

2) For all τ ,σ we have that Xτ ∩ X σ ̸= ∅ iff Xτ ⊆ X σ ,
where X σ is the closure of the cell;

3) Every Xσ is homeomorphic to Rk for some k;
4) For every σ ∈ PX there is a homeomorphism ϕ of a

closed ball in Rk to X σ such that the restriction of ϕ to
the interior of the ball is a homeomorphism onto Xσ .

Condition 2 implies that the indexing set PX has a poset
structure, given by τ ≤ σ iff Xτ ⊆ Xσ , and we say that τ
bounds σ. This is known as the face poset of X . The regularity
condition 4 implies that all of the topological information
about X is encoded in the poset structure of PX . Then, a
regular cell complex can be identified with its face poset. For
this reason, from now on we will indicate the cell Xσ with its
corresponding face poset element σ. The dimension dim(σ)
of a cell σ is k, we call it a k−cell and denote it with σk to
make this explicit. Regular cell complexes can be described
via an incidence relation (boundary relation) with a reflexive
and transitive closure that is consistent with the partial order
introduced in Definition 1.
Definition 2 (Boundary Relation). We have the boundary
relation σ ≺ τ iff dim(σ) ≤ dim(τ) and there is no cell
δ such that σ ≤ δ ≤ τ .

In other words, Definition 2 states that the boundary of a
cell σk of dimension k is the set of all cells of dimension
less than k bounding σk. The dimension or order of a cell
complex is the largest dimension of any of its cells and we
denote an order K regular cell complex with XK . A graph is
a particular case of a cell complex of order 1, containing only
cells of order 0 (nodes) and 1 (edges). An example of a cell
complex of order 2 is a graph with order 2 cells being some
of its induced cycles that we refer to as polygons. In general,
there is little interest with dimensions above two.

Let us denote the set of k-cells in XK as Dk := {σk
i : σk

i ∈
XK}, with |Dk| = Nk.
Definition 3 (Topological Signals). A k-topological signal sk
over a regular cell complex XK is defined as a collection of
mappings from the set of all k-cells contained in the complex
to real numbers:

sk = [sk(σ
k
1 ), . . . , sk(σ

k
i ), . . . , sk(σ

k
Nk

)] ∈ RNk , (1)

where sk : Dk → R.
It is possible to give a combinatorial description of regular

cell complexes. To do so, it is essential to introduce an

orientation of the cells. Orienting cells is not mathematically
trivial but, in the end, it is only a ”bookkeeping matter” [7];
for this reasons, here we assume that a reference orientation
of the complex is given, detailed explanations can be found in
[7], [24]. At this point, there are two ways in which two cells
can be considered to be adjacent: lower and upper adjacent.
Two k−cells are lower adjacent if they share a common face
of order k−1 and upper adjacent if both are faces of a cell of
order k + 1. The structure of a oriented regular cell complex
of order K is then fully captured by the set of its incidence
(or boundary) matrices Bk ∈ RNk−1×Nk , k = 1, . . . ,K,
with entries Bk(i, j) = 0 if σk−1

i is not a face of σk
j , and

Bk(i, j) = 1 (or −1), if σk−1
i is a face of σk

j and its orientation
is coherent (or not) with the orientation of σk

j . From the
incidence information, we build the Hodge (or combinatorial)
Laplacian matrices of order k = 0, . . . ,K as [25]:

L0 = B1B
T
1 , (2)

Lk = BT
kBk︸ ︷︷ ︸
L

(d)
k

+Bk+1B
T
k+1︸ ︷︷ ︸

L
(u)
k

, k = 1, . . . ,K − 1, (3)

LK = BT
KBK . (4)

All Laplacian matrices of intermediate orders, i.e., k =

1, . . . ,K − 1, contain two terms: The first term L
(d)
k , also

known as lower Laplacian, encodes the lower connectivity
among k-order cells; the second term L

(u)
k , also known as

upper Laplacian, encodes the upper connectivity among k-
order cells. For example, two edges are lower adjacent if they
share a common vertex, whereas they are upper adjacent if
they are faces of a common polygon. High order Laplacians
admit the following Hodge decomposition [26].
Proposition 1 (Hodge Decomposition). The k-topological
signal space Ck(R) can be decomposed as [22]:

Ck(R) = im
(
BT

k

)⊕
im

(
Bk+1

)⊕
ker

(
Lk

)
, (5)

where
⊕

is the direct sum of vector spaces, and ker(·) and
im(·) are the kernel and image spaces of a matrix, respectively.

Therefore, any topological signal sk ∈ Ck(R) admits the
following orthogonal decomposition:

sk = BT
k sk−1 +Bk+1 sk+1 + sk. (6)

An interesting interpretation of (6) about the decomposition
of edge flow signals s1 can be found in [4], [27].

Topological signals of various orders can be represented
over the bases of the eigenvectors of the corresponding Hodge
Laplacian matrices. Hence, using the eigendecomposition
Lk = UkΛkU

T
k , the Cell Complex Fourier Transform (CFT)

of order k is defined as the projection of a k-order signal sk
onto the eigenvectors of Lk [27]:

ŝk ≜ UT
k xk. (7)

We refer to the eigenvalue domain of the CFT as the fre-
quency domain (or spectrum). A consequence of the Hodge
decomposition in (6) is that the eigenvectors belonging to
im

(
L
(d)
k

)
are orthogonal to those belonging to im

(
L
(u)
k

)
,
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for all k = 1, . . . ,K − 1. Therefore, the eigenvectors (and
eigenvalues) of Lk are given by the union of the eigenvectors
(and eigenvalues) of L

(u)
k that we collect in a set F (u)

k , the
eigenvectors (and eigenvalues) of L(d)

k that we collect in a set
F (d)

k , and the kernel of Lk.

III. CELL COMPLEX CONVOLUTIONAL FILTERS

In this section, we briefly review the cell complex FIR
filters introduced in [27] and [7], that represent the fundamen-
tal block of the topological parametric dictionaries we will
introduce in the next section.
Definition 4 (Cell Complex FIR Filters). Given the k-th
Hodge Laplacian Lk as in (3), a cell complex FIR filter acting
on k−topological signals is defined as a polynomial of the
Laplacian as:

Sk =

J∑
i=1

h
(u)
i

(
L
(u)
k

)i
+

J∑
i=1

h
(d)
i

(
L
(d)
k

)i
+ hI, (8)

where J is a positive integer and h
(u)
i , h(d)

i , h ∈ R. Assigning
two different sets of coefficients to the lower and upper Lapla-
cians gives more flexibility. Setting h

(u)
i = h

(d)
i , i = 1, . . . , J

leads to filters of the form:

Sk =

J∑
i=0

hiL
i
k, (9)

which is the FIR filter proposed [7]. However, the filter in
(9) cannot differentiate between the two types of adjacencies,
resulting in a limited expressive power. In the sequel we focus
on the case k = 1, neglecting the order subscript k for the sake
of exposition (e.g., we indicate L1 with L, s1 with s, S1 with
S , F (u)

1 with F (u), F (d)
1 with F (d), and N1 with N ).

IV. TOPOLOGICAL DICTIONARY LEARNING

Generalizing the approach proposed in [23] for parametric
graph dictionary learning, we build a novel class of overcom-
plete topological dictionaries of the following form:

D = [S1, ...,SP ] ∈ RN×PN , (10)

where each Sp, p = 1, . . . , P is defined as in (8) and has a
different set of coefficients. We collect the coefficients of the
p-th sub-dictionary in a vector hp ∈ R2J+1 and the overall
coefficients in a vector h = [h1, . . . ,hP ] ∈ R(2J+1)P . The
chosen polynomial structure gives localization guarantees. In
particular, the v−th atom of the p−th sub-dictionary will have
a component localized on the J-hop lower neighborhood of
the v−th cell, and a component localized on the J-hop upper
neighborhood of the v−th cell. Moreover, from (7) and (8), it
is easy to see that the j− th atom of the p−th sub-dictionary
(the j-th column of Sp) has the following spectrum:

ŝp,j(n) =

( J∑
i=1

h
(u)
p,i λ

i
n I(λn ∈ F (u))

+

J∑
i=1

h
(d)
p,iλ

i
n I(λn ∈ F (d)) + hp

)
un(j), (11)

where I(·) is the indicator function, λn is the n−th eigenvalue
of L, and un(j) is the j-th component of the n-th column of
U (the n-th eigenvector of L). We refer to the coefficient in
brackets in (11) as kernel and we denote it with ŝp(·) since,
fixed a frequency, it is the same for all the atoms belonging to
the same sub-dictionary. For this reason, to control the atoms
frequency behavior, we can impose constraints on the kernels
ŝp(·) [23]. We first impose that the spectra are non-negative
and bounded in each sub-dictionary, i.e.:

0 ≤ ŝp(n) ≤ d, p = 1, . . . , P, n = 1, . . . , N, (12)

where d > 0. Equivalently, this constraint is requiring that each
sub-dictionary has to be positive semi-definite with maximum
eigenvalue bounded by d, i.e.,

0 ≼ Sp ≼ dI, p = 1, . . . , P. (13)

Moreover, we need to ensure that the whole spectrum is
covered by the dictionary D. Thus, we impose the constraint:

d− ϵ ≤
P∑

p=1

ŝp(n) ≤ d+ ϵ, n = 1, . . . , N, (14)

where ϵ is a small positive constant. This constraint is equiva-
lent to requiring that that the sum of all of the sub-dictionaries
Dp has the minimum eigenvalue lower-bounded by d− ϵ and
the maximum eigenvalue upper-bounded by d+ ϵ, i.e.,

(d− ϵ)I ≼
P∑

p=1

Sp ≼ (d+ ϵ)I. (15)

We are now in the condition of formulating the dictionary
learning problem. Given a training set of M order k topo-
logical signals Y = [y1, . . . ,yM ] ∈ RN×M , we aim to
learn a dictionary as in (10), which can represent the training
signals as a sparse linear combination of the atoms. Clearly,
this is equivalent to learn the filters coefficients h. Thus,
we formulate the dictionary learning problem as the joint
optimization of the dictionary coefficients and the sparse signal
representation in the following way:

(h∗,X∗) = argmin
h,X

∥Y −DX∥2F + γ ∥h∥22

subject to:
a) ∥xi∥0 ≤ K0, i = 1, . . . ,M

b) 0 ≼ Sp ≼ dI, p = 1, . . . , P (16)

c) (d− ϵ)I ≼
P∑

p=1

Sp ≼ (d+ ϵ)I

d) Sp as in (8), p = 1, . . . , P,

where xi is the i−th column of X ∈ RPN×M , i.e. the sparse
signal representation of the i−th training signal, ∥ · ∥F is
the Frobenius norm, ∥ · ∥0 is the l0 norm (i.e., the number
of non-zero components of its vector argument), K0 is an
integer between 1 and N , and γ > 0. The l2 penalty
on the coefficients h is useful to ensure numerical stability
and mitigate overfitting. Problem (16) is clearly non-convex,
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Algorithm 1 : Topological Dictionary Learning
Inputs:
Y ∈ RN×M : Training signals.
X[0] ∈ RPN×M : Initialization of sparse representation
Tmax: number of iterations (or stopping criterion)

Outputs:
h∗,X∗: Learned dictionary and sparse representations

1: function DICTIONARY LEARNING (Inputs)
2: for t ∈ [1, Tmax] do
3: Dictionary Update Step. Set:

h[t] = argmin
h

∥Y −DX[t− 1]∥2F + γ ∥h∥22

subject to:
b) 0 ≼ Sp ≼ dI, p = 1, . . . , P

c) (d− ϵ)I ≼
P∑

p=1

Sp ≼ (d+ ϵ)I (17)

d) Sp as in (8), p = 1, . . . , P

4: Sparse Coding Step. Set:

X[t] = argmin
X

∥Y −D[t]X∥2F + γ ∥h∥22

subject to:
a) ∥xi∥0 ≤ K0, i = 1, . . . ,M (18)

return :
5: h∗ = h[Tmax]
6: X∗ = X[Tmax]

however it reduces to a semidefinite program (SDP) if the
signal representation X is hold fixed, and to a sparse coding
problem if the dictionary D is hold fixed. This fact suggests
to approximate its solution with an iterative alternating proce-
dure, which we list in Algorithm 1. As it is, Problem (17) is an
SDP that can be solved with off the shelf numerical tools for
convex optimization with a polynomial complexity. However,
it is possibile to show that Problem (17) can be recast as a
quadratic program, which can be solved even more efficiently.
Instead, Problem (18) is still NP-hard, but its solution can
be approximated via the orthogonal matching pursuit (OMP)
algorithm [28], i.e. a versatile tool for sparse coding problems
having linear complexity in PN [29].

V. NUMERICAL RESULTS

We asses the performance of the proposed dictionary learn-
ing algorithm on a sparse edge flow signal representation
task. In particular, we consider a simplicial complex, i.e. a
regular cell complex X 2 including nodes (40), edges (100)
and triangles (62) [4], and we process edge flow signals
(k = 1 from (1)) defined on it. We generate 3 different sets of
synthetic training and test (denoted with Ỹ = [ỹ1, . . . , ỹMT

] ∈
RN×MT ) signals consisting of localized patterns on the com-
plex, with each training set computed using a different gener-
ating dictionary. In particular we generate a training set and
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Fig. 1. NMSE versus sparsity, for different parametrization strategies. True
dictionary generated from edge Laplacian.
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Fig. 2. NMSE versus sparsity, for different parametrization strategies. True
dictionary generated from Hodge Laplacian.

a test set using: i) sub-dictionaries as in (9) (referred to as
Hodge Laplacian); ii) a parametrization with polynomials of
the Edge Laplacian [30], corresponding to (9) with only L(d)

in place of L (referred to as Edge Laplacian); iii) the proposed
sub-dictionaries as in (8) (referred to as Separated Hodge
Laplacian). The Edge Laplacian parametrization represents a
fair comparison, because it is the naivest generalization to
cell complexes of the work [23] for graphs, since it does not
exploit Hodge theory. Per each dictionary type, we concatenate
3 subdictionaries, each of them being an order 3 polynomial
(P = 3, J = 3); training and test sets are generated by
linearly combining random atoms (at maximum 20) from the
dictionaries with random coefficients; hyperparameters d and
ϵ are chosen in agreement with the underlying generating
dictionaries. In Figs. 1-2-3, we illustrate the behavior of
the test NMSE = 1

MT

∑MT

m=1
∥ỹm−Dx̃m∥2

2

∥ỹm∥2
2

(where D is the
learned dictionary and x̃m is the sparse signal representation
of the m−th test signal obtained via OMP) versus ℓ0-norm of
the sparse signal representations (i.e., K0). We compare the
aforementioned parametrizations per each type of generating
dictionary (Fig. 1 for case i), Fig. 2 for case ii), Fig. 3 for
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Fig. 3. NMSE versus sparsity, for different parametrization strategies. True
dictionary generated from Separated Hodge Laplacian.

case iii)), and the results are averaged on 20 realizations of
the dictionaries (thus, of the training and test sets). We also
report the Fourier baseline to better enhance the advantages
obtained by the dictionary learning strategies. As the reader
can notice from Figs. 1-2-3, the parametrization corresponding
to the true underlying generating dictionary always perform
well but, notably, the proposed Separated Hodge Laplacian
parametrization is able to mitigate the model mismatching in
all the cases, showing the best performance and generalization
capabilities with respect to all the considered strategies.

VI. CONCLUSIONS

In this work, we introduced a novel topological dictionary
learning algorithm for sparse representation of signals defined
over regular cell complexes. The proposed strategy is efficient
thanks to a light parametrization of the dictionary structure
driven by Hodge theory and topological signal filtering. We
assessed its effectiveness and robustness on a synthetic sparse
representation task. We plan to extend this work by refining
the procedure to make it even more efficient, generalize it to
exploit the interplay among multiple signals orders, provide
theoretical guarantees in terms of frame bounds, and exten-
sively test it on real world applications.
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