
A Unified View Between Tensor Hypergraph Neural
Networks And Signal Denoising

Fuli Wang, Karelia Pena-Pena, Wei Qian, and Gonzalo R. Arce
University of Delaware, Newark, DE, USA

Email: {fuliwang, kareliap, weiqian, arce}@udel.edu

Abstract—Hypergraph Neural networks (HyperGNNs) and
hypergraph signal denoising (HyperGSD) are two fundamental
topics in higher-order network modeling. Understanding the
connection between these two domains is particularly useful for
designing novel HyperGNNs from a HyperGSD perspective, and
vice versa. In particular, the tensor-hypergraph convolutional
network (T-HGCN) has emerged as a powerful architecture
for preserving higher-order interactions on hypergraphs, and
this work shows an equivalence relation between a HyperGSD
problem and the T-HGCN. Inspired by this intriguing result, we
further design a tensor-hypergraph iterative network (T-HGIN)
based on the HyperGSD problem, which takes advantage of
a multi-step updating scheme in every single layer. Numerical
experiments are conducted to show the promising applications
of the proposed T-HGIN approach.

Index Terms—Hypergraph Neural Network, Hypergraph Sig-
nal Denoising, Hypergraph Tensor.

I. INTRODUCTION

Hypergraphs are ubiquitous in real-world applications for
representing interacting entities. Potential examples include
biochemical reactions that often involve more than two in-
teractive proteins [1], recommendation systems that contain
more than two items in a shopping activity [2], and traffic
flows that can be determined by more than two locations [3].
In a hypergraph, entities are described as vertices/nodes, and
multiple connected nodes form a hyperedge as shown in Fig. 1
(b, c) of a hypergraph example.

A hypergraph G is defined as a pair of two sets G = (V, E),
where V = {v1, v2, ..., vN} denotes the set of N nodes
and E = {e1, e2, ..., eK} is the set of K hyperedges whose
elements ek (k = 1, 2, ...,K) are nonempty subsets of V .
The maximum cardinality of edges, or m.c.e(G), is denoted
by M , which defines the order of a hypergraph. Apart from
the hypergraph structure, there are also features xv ∈ RD

associated with each node v ∈ V , which are used as row
vectors to construct the feature matrix X ∈ RN×D of a
hypergraph. From a hypergraph signal processing perspective,
since the feature matrix X can be viewed as a D-dimensional
signal over each node, we use the words “feature” and “signal”
interchangeably throughout the paper.

Given the hypergraph structure G and the associated feature
matrix X, hypergraph neural networks (HyperGNNs) are built
through two operations: 1) signal transformation and 2) signal
shifting to leverage higher-order information. Specifically, if a
HyperGNN is defined in a matrix setting, these two steps can

Fig. 1. Robot collaboration network represented by (a) a simple graph and
(b) a hypergraph G1 and (c) another hypergraph G2. In (a), each cooperation
relationship is denoted by a line connecting exactly two entities; whereas in
(b) and (c), each hyperedge denoted by a colored ellipse represents multi-robot
cooperation.

be written as follows:{
Signal transformation: X′ = ϕtrans(X;W);

Signal shifting: Y = ϕshift(X
′,G);

(1)

where X′ is the transformed signal in a desired hidden dimen-
sion D′ and Y represents the linear combination of signals
at the neighbors of each node according to the hypergraph
structure G. While here the variables are denoted by matrices,
in fact, a tensor paradigm provides significant advantages [4]
as will be introduced later, and thus will be at the core of
this paper context. The signal transformation function ϕtrans,
is parameterized by a learnable weight W and is generally
constructed by multi-layer perceptrons (MLPs). As a result,
the variation of HyperGNNs mainly lies in the signal-shifting
step. To make use of the hypergraph structure in the signal-
shifting step, an appropriate hypergraph algebraic descriptor is
required. Prior efforts on HyperGNNs primarily focus on ma-
trix representations of hypergraphs with possible information
loss [4], [5]. Consider one of the most common hypergraph
matrix representations, the adjacency matrix of the clique-
expanded hypergraph used in [6], [7], which constructs pair-
wise connections between any two nodes that are within the
same hyperedge, thus only providing a non-injective mapping.
As shown in Fig 1, hypergraphs (b) G1 and (c) G2 have the
same pairwise connections as the simple graph of Fig. 1 (a).

Recently, a tensor-based HyperGNN framework T-
HyperGNN [8] has been proposed to address potential
information loss in matrix-based HyperGNNs. Specifically,
the T-HyperGNN formulates tensor-hypergraph convolutional
network (T-HGCN) via tensor-tensor multiplications (t-
products) [9], which fully exploits higher-order features
carried by a hypergraph. Interestingly, we find that the
hypergraph signal shifting in T-HGCN is equivalent to a one-
step gradient descent of solving a hypergraph signal denoising

1968ISBN: 978-9-4645-9360-0 EUSIPCO 2023

(HyperGSD) problem (to be shown in Sec. III). Nevertheless,
updating the gradient in one step per HyperGNN layer might
be sub-optimal: For the two steps of HyperGNNs, only
the signal shifting step corresponds to the gradient descent
update. If we simply stack many layers of T-HGCN to
perform multi-step gradient descent as shown in Fig. 2(a), the
number of learnable parameters will unnecessarily increase.
More importantly, numerous sequential transformations
of the hypergraph signals could cause indistinguishable
features across all nodes, leading to the well-known over-
smoothing problem [10]. To overcome these issues, we
propose an iterative K-step gradient descent procedure to
solve the underlying HyperGSD problem, and further cast
this procedure to formulate the novel Tensor-hypergraph
iterative network (T-HGIN), which combines the K-step
updating process (signal shifting) in just a single layer as
shown in Fig. 2(b). Additionally, T-HGIN leverages the initial
input (with weight α) and the current output (with weight
1 − α) at each shifting step, performing a skip-connection
operation that avoids over-smoothing.

Fig. 2. To perform K-step gradient descent for the underlying hypergraph
signal denoising problem, we need (a) K-layer T-HGCN or alternatively (b)
1-layer T-HGIN.

II. PRELIMINARIES

A. Hypergraph tensor representations and signal shifting

While a hypergraph can be represented in either a matrix
or a tensor form, in this work, we use tensorial descriptors to
represent hypergraphs as they preserve intrinsic higher-order
characteristics of hypergraphs [11]. Given a hypergraph G =
(V, E) containing N nodes with order M (that is, m.c.e(G) =
M), we define its normalized adjacency tensor as an M -
order N -dimensional tensor A ∈ RNM

. Specifically, for any
hyperedge ek = {vk1

, vk2
, ..., vkc

} ∈ E with c = |ek| ≤ M ,
the tensor’s corresponding entries are given by

ap1p2...pM
=

1

d(vp1
)

c

α
, (2)

with

α =
∑

r1,r2,...,rc≥1,
∑c

i=1 ri=M

(
M

r1, r2, · · · , rc

)
, (3)

and d(vp1
) being the degree of node vp1

(or the total number
of hyperedges containing vp1). The indices p1, p2, ..., pM

for adjacency entries are chosen from all possible ways of
{k1, k2, ..., kc}’s permutations with at least one appearance
for each element of the hyperedge set, and α is the sum
of multinomial coefficients with the additional constraint
r1, r2, ..., rc ̸= 0. In addition, other entries not associated with
any hyperedge are all zeros. Note that for any node vp1

∈ V ,
we have

∑N
p2,...,pM=1 ap1p2...pM

= 1.
The hypergraph signal tensor, on the other hand, is

designed as the (M − 1)-time outer product of features along
each feature dimension. Given the feature (or signal) matrix
X ∈ RN×D as the input, with D being the dimension of
features for each node, the d-th dimensional hypergraph signal
(d = 1, · · · , D) is given by

[X]d = [x]d ◦ [x]d ◦ · · · ◦ [x]d︸ ︷︷ ︸
(M-1) times

∈ RN×1×N(M−2)

, (4)

where ◦ denotes the outer (elementary tensor) product, and
[x]d ∈ RN represents the d-th dimensional feature vector of
all N nodes. For example, given M = 3, [X]d = [x]d[x]

T
d ∈

RN×1×N , where we unsqueeze the outer-product tensor to
generate the additional second mode for the dimension in-
dex of different features. Then by computing [X]d for all
D features and stacking them together along the second-
order dimension, we obtain an M th-order interaction tensor
X ∈ RN×D×N(M−2)

. The resulting interaction tensor can
be viewed as a collection of D tensors, each depicting node
interactions at one feature dimension.

Analogous to the simple graph signal shifting, hypergraph
signal shifting is defined as the product of a hypergraph
representation tensor A and a hypergraph signal tensor X ,
offering the notion of information flow over a hypergraph.
The tensor-tensor multiplications (known as t-products), in
particular, preserve the intrinsic higher-order properties and
are utilized to operate hypergraph signal shifting [11]. Take
M = 3 as a convenient example of the t-product. To provide
an appropriate alignment in the t-product signal shifting (to
be introduced in Eq. (7)), we first symmetrize the adjacency
tensor A ∈ RN×N×N to be As ∈ RN×N×(2N+1) by adding a
zero matrix 0N as the first frontal slice, reflecting the frontal
slice of the underlying tensor, and then dividing by 2: As =
1
2 fold([0,A(1),A(2), ...,A(N),A(N), ...,A(2),A(1)]),
where the k-th frontal slice is A(k) = A(:, :, k) ∈ RN×N×1.
After applying the same operation to the hypergraph tensor X
and obtain Xs, the hypergraph signal shifting is then defined
through the t-product ∗ as

As ∗ Xs (5)
= fold(bcirc(As) · unfold(Xs)) (6)

= fold

0 A(1) A(2) · · · A(2) A(1)

A(1) 0 A(1) · · · A(3) A(2)

A(2) A(1) 0 · · · A(4) A(3)

...
...

...
. . .

...
...

A(2) A(3) A(4) · · · 0 A(1)

A(1) A(2) A(3) · · · A(1) 0

0
X(1)

X(2)

...
X(2)

X(1)

,

(7)

1969

where bcirc(As) converts the set of Ns frontal slice ma-
trices (in RN×N) of the tensor As into a block circulant
matrix. The unfold(Xs) stacks vertically the set of Ns frontal
slice matrices (in RN×D) of Xs into a NsN × D matrix.
The fold() is the reverse of the unfold() process so that
fold(unfold(As)) = As. The t-product of higher order
tensors is more involved with recursive computation with 3rd

order base cases. To maintain presentation brevity here, a
reader may refer to literature [9] for full technical details of
the t-product ∗.

B. Tensor-Hypergraph Convolutional Neural Network

With the defined hypergraph signal shifting operation, a
single T-HGCN [8] layer is given by Ys = As ∗ Xs ∗ Ws,
whereWs ∈ RD×D′×N(M−2)

s is a learnable weight tensor with
DD′ weights parameterized in the first frontal slice and all
the remaining frontal slices being zeros. Since the t-product is
commutable [9], we rewrite the T-HGCN into the following
two steps:{

Signal transformation: X ′
s = Xs ∗Ws;

Signal shifting: Ys = As ∗ X ′
s,

(8)

where Xs ∈ RN×D×N(M−2)
s and Ys ∈ RN×D′×N(M−2)

s are the
input and output of a T-HGCN layer. To perform downstream
tasks, non-linear activation functions can be applied to Ys
accordingly.

III. EQUIVALENCE BETWEEN T-HGCN AND TENSOR
HYPERGRAPH SIGNAL DENOISING

Recall that the signal-shifting function ϕshift aggregates
neighboring signals to infer the target signal of each node. The
intuition behind the architecture of HyperGNNs (especially the
signal shifting) is that connected nodes tend to share similar
properties, that is, signals over a hypergraph are smooth.
With this intuition, we introduce the tensor Hypergraph signal
denoising (HyperGSD) problem with the smoothness regular-
ization term and prove its equivalency to T-HGCN in this
section.

A. Tensor Hypergraph Signal Denoising

Problem (Hypergraph Signal Denoising). Suppose Xs ∈
RN×D×N(M−2)

s is the hypergraph signal of an observed noisy
hypergraph signal on an M th order hypergraph G. Without
loss of generality, we assume D = 1 (if D > 1, we can
simply take summation over all feature dimensions and obtain
the same result). Motivated by a smoothness assumption of
hypergraph signals, we formulate the HyperGSD problem
with the Laplacian-based total variation regularization term
as follows:

argmin
Ys

J = (Ys −Xs)
T ∗ (Ys −Xs) + bYT

s ∗ Ls ∗ Ys, (9)

where Ys ∈ RN×1×N(M−2)
s is the desired hypergraph sig-

nal that we aim to recover, b > 0 is a scalar for the
regularization term, and the last M − 2 orders of all the
tensors are flattened as frontal slice indices to simplify the

t-product. Here, Ls = Is − As is the normalized symmetric
Laplacian tensor, and Is is an identity tensor (with the first
frontal slice being identity matrix and the other entries being
zero). The tensor transpose of Ys ∈ RN×1×N(M−2)

s , under
the t-algebra, is defined as YT

s ∈ R1×N×N(M−2)
s , which is

obtained by recursively transposing each sub-order tensor and
then reversing the order of these sub-order tensors [9]. The
first term encourages the recovered signal Ys to be close to
the observed signal Xs, while the second term encodes the
regularization as neighboring hypergraph signals tend to be
similar. Notice that the cost function J (Ys) is not a scalar,
but a tensor in 1× 1×N

(M−2)
s .

B. T-HGCN as Hypergraph Signal Denoising

Next, we show the key insight that the hypergraph signal
shifting operation in the T-HGCN is directly connected to the
HyperGSD problem, which is given in the following theorem.

Theorem 3.1: The hypergraph signal shifting Ys = As ∗
Xs is equivalent to a one-step gradient descent of solving the
leading function of the HyperGSD problem Eq. (9) with c =
1
2b , where c is the learning rate of the gradient descent step.
Proof. First take the derivative of the cost function J (Ys) w.r.t
Ys:

∂J
∂Ys

= 2 · bcirc(Ys −Xs) + 2b · bcirc(Ls ∗ Ys). (10)

Recall from Eq. (7) that the bcirc(·) operation has the first
column being the unfolded 2N + 1 frontal slices, and the
other columns being the cyclic shifting of the first column.
When updating Ys using one-step gradient descent, the first
column of a block circulant tensor is sufficient, as it contains
all information of updating Ys, and the remaining columns
differ from the first column in order only. Using the leading
function J1 for Eq. (10), which gives the first block column
of the circulant tensor ∂J

∂Ys
, we can simply drop the bcirc(·)

operation so that the one-step gradient descent to update Ys
from Xs is

Ys ← Xs − c
∂J1
∂Ys

∣∣∣
Y=Xs

(11)

= Xs − 2bc(Ls ∗ Xs) (12)
= (1− 2bc)Xs + 2bcAs ∗ Xs. (13)

Given learning rate c = 1
2b , we obtain Ys ← As ∗ Xs, which

is the same form as the shifting operation in Eq. (8). □
This theorem implies that a single layer of T-HGCN [8]

is essentially equivalent to solving the HyperGSD problem
by one-step gradient descent. Correspondingly, performing
a K-step gradient descent would require K layers of T-
HGCN, which could much increase the number of learnable
parameters. As a result, a question naturally arises: Can we
perform multi-step gradient descent toward the HyperGSD
problem with just a single layer of HyperGNNs? We provide
an affirmative answer by proposing the T-HGIN approach in
the next section.

1970

IV. TENSOR-HYPERGRAPH ITERATIVE NETWORK

With the goal of merging multi-step gradient descent into
a single HyperGNN, we first propose the K-step iterative
gradient descent for the HyperGSD problem in Eq. (9). Then
we adopt the iteration process to design the Tensor-Hypergraph
Iterative Network (T-HGIN).

Iterative Gradient Descent for Signal Denoising. Given
the gradient of the HyperGSD problem in Eq. (10), we now
update the gradient iteratively to obtain the sequence of hyper-
graph signals (Y(0)

s ,Y(1)
s ,Y(2)

s , ...,Y(K)
s) with the following

iterative process:

Y(k)
s ← Y(k−1)

s − c
∂J1
∂Ys

∣∣∣
Ys=Y(k−1)

s

=(1− 2b− 2bc)Y(k−1)
s + 2bXs + 2bcAs ∗ Y(k−1)

s , (14)

where Y(k)
s with k = 1, ...,K are iteratively updated clean

hypergraph signals and the starting point is Y(0)
s = Xs.

From Iterative Signal Denoising To T-HGIN. From the
updating rule above, we then formulate T-HGIN by a slight
variation to Eq. (14). Setting the regularization parameter b =

1
2(1+c) , we then obtain that

Y(k)
s ← 2bXs + 2bcAs ∗ Y(k−1)

s . (15)

Since 2b+ 2bc = 1, setting 2b = α implies that 2bc = 1− α.
Consequently, a single layer of the T-HGIN is formulated as{

Signal transformation: X ′
s = MLP(Xs);

Signal shifting: Y(k)
s = αX ′

s + (1− α)As ∗ Y(k−1)
s ,

(16)

with k = 1, ...,K, Y(0)
s = X ′

s and α ∈ [0, 1]. The signal
transformation is constructed by a MLP. The signal shifting of
the T-HGIN can be roughly viewed as an iterative personalized
PageRank [10], where α is the probability that a node will
teleport back to the original node and 1−α is the probability
of taking a random walk on the hypergraph through the
hypergraph signal shifting. In fact, when α = 0 and K = 1,
the T-HGIN is the same as the T-HGCN, indicating that
the T-HGCN could be subsumed in the proposed T-HGIN
framework. In addition, T-HGIN has three major advantages
compared to T-HGCN:

1) As shown in Fig. 2, a K-layer T-HGCN is required to
perform K steps of hypergraph signal shifting, but in
contrast, the T-HGIN breaks this required equivalence
between the depth of neural networks and the steps of
signal shifting, allowing any steps of signal shifting in
just one layer.

2) The T-HGIN leverages the information contained in the
original hypergraph signal Xs, which performs a “skip-
connection” analogous to ResNet [12] and mitigates the
potential over-smoothing problem [10] as the neural net-
work is going deep to aggregate broader neighborhood.

3) Although the K-step hypergraph signal shifting is some-
what involved, the number of learnable parameters re-
mains the same as only one layer of the T-HGCN. As
shown in the following experiment, the T-HGIN can often

achieve better performance than other alternative Hyper-
GNNs that would require more learnable parameters.

V. EXPERIMENTS

We evaluate the proposed T-HGIN approach on three real-
world academic networks and compare it to four state-of-
the-art benchmarks. The experiment aims to conduct a semi-
supervised node classification task, in which each node is an
academic paper and each class is a research category. We
use the accuracy rate to be the metric of model performance.
For each reported accuracy rate, 10 random data splits and 5
different parameter initialization (a total of 50 repetitions) are
performed to compute the mean and the standard deviation of
the accuracy rates. We use the Adam optimizer with a learning
rate and the weight decay choosing from {0.01, 0.001} and
{0.005, 0.0005} respectively, and tune the hidden dimensions
over {64, 128, 256, 512} for all the methods.

Datasets. The hypergraph datasets we used are the co-
citation datasets (Cora, CiteSeer, and PubMed) in the academic
network. The hypergraph structure is obtained by viewing each
co-citation relationship as a hyperedge. The node features as-
sociated with each paper are the bag-of-words representations
summarized from the abstract of each paper, and the node
labels are research categories (e.g., algorithm, computing, etc).
For expedited proof of concept, the raw datasets from [13] are
downsampled to smaller hypergraphs. The descriptive statistics
of these hypergraphs are summarized in Table I.

TABLE I
SUMMARY STATISTICS OF THE ACADEMIC NETWORK DATASETS

Statistics Cora Citeseer PubMed
|V| 83 87 89
|E| 42 50 40

Feature Dimension D 1433 3703 500
Number of Classes 7 6 3

Maximum Shortest Path 2 4 3
Connected Components 6 6 10

Experiment Setup and Benchmarks. To classify the labels
of testing nodes, we feed the whole hypergraph structure and
node features to the model. The training, validation, and testing
data are set to be 50%, 25%, and 25% for each complete
dataset, respectively. We choose regular multi-layer perceptron
(MLP), HGNN [6], HyperGCN [13], and HNHN [14] as the
benchmarks. In particular, the HGNN and the HyperGCN uti-
lize hypergraph reduction approaches to define the hypergraph
adjacency matrix and Laplacian matrix, which may result in
higher-order structural distortion [5]. The HNHN formulates a
two-stage propagation rule using the incidence matrix, which
does not use higher-order interactions of the hypergraph signal
tensor [8]. Following the convention of HyperGNNs, we set
the number of layers for all HyperGNNs to be 2 to avoid over-
smoothing except for the T-HGCN and the proposed T-HGIN.
For the T-HGCN and the T-HGIN, we use only one layer:
the T-HGCN’s accuracy decreases when the number of layers
is greater than one, while the T-HGIN can achieve a deeper
HyperGNN architecture by varying the times of iteration K
within one layer as shown in Fig. 2 (b). The grid search is

1971

TABLE II
AVERAGED TESTING ACCURACY (%, ± STANDARD DEVIATION) ON FIVE
ACADEMIC NETWORKS FOR SEMI-SUPERVISED NODE CLASSIFICATION.

THE TOP RESULT FOR EACH DATASET IS HIGHLIGHTED.

Method Cora Citeseer PubMed

MLP 48.23± 7.35 65.56± 1.48 73.89± 5.60

HGNN [6] 70.59± 1.22 73.89± 8.98 82.22± 1.33

HyperGCN [13] 35.29± 1.24 61.11± 1.53 76.11± 1.40

HNHN [14] 69.41± 9.04 74.44± 9.69 77.22± 4.08

T-HGCN [8] 71.59± 3.43 78.33± 8.03 86.67± 1.18

T-HGIN (ours) 73.64± 2.47 79.56± 3.52 90.31± 2.85

used to tune the two hyperparameters K and α through four
evenly spaced intervals in both K ∈ [1, 5] and α ∈ [0.1, 0.5].

Results and Discussion. The averaged accuracy rates are
summarized in Table II, which shows that our proposed K-step
shifting entailed T-HGIN achieves the best performance among
the state-of-the-art HyperGNNs on the three hypergraphs.
While high variances of the results often occur to other existing
HyperGNNs in these data examples, the proposed T-HGIN
desirably shows only relatively moderate variance.

The effect of the number of iterations. Interestingly, the
optimal values selected for K coincide with the maximum
shortest path on the underlying hypergraphs, the observation
of which is consistent with that of [10]. To some extent, this
phenomenon supports the advantage of the proposed T-HGIN
over other “shallow” HyperGNNs that perform only one or two
steps of signal shifting. Equipped with the multi-step iteration
and the skip-connection mechanism, the T-HGIN is able to
fully propagate across the whole hypergraph, and importantly,
avoid the over-smoothing issue at the same time.

The effect of the teleport probability. Regarding the
teleport parameter α, the optimal selected values for the
three datasets are {0.1, 0.1, 0.3}, respectively. Empirically, the
selection of α’s could depend on the connectivity of nodes. For
example, the PubMed hypergraph has more isolated connected
components and tends to require a higher value of α. A
direct visualization for the PubMed network is also shown
in Fig. 3 using one representative run of the experiment,
which shows that the tensor-based approaches appear to give
more satisfactory performance than the classic matrix-based
HyperGNN; the proposed T-HGIN further improves upon the
T-HGCN, confirming the effectiveness of the proposed multi-
step iteration scheme.

Fig. 3. Comparison of label prediction on the PubMed dataset between (a)
HyperGCN [13], (b) T-HGCN [8], and (c) T-HGIN. Red and green dots
represent incorrectly and correctly classified nodes respectively.

VI. CONCLUSION

In the context of Tensor-HyperGraph Neural Networks (T-
HyperGNNs), this work demonstrates that the hypergraph
signal shifting of T-HGCN is equivalent to a one-step gradient
descent of solving the hypergraph signal denoising problem.
Based on this equivalency, we propose a K-step gradient
descent rule and formulate a new hypergraph neural network –
Tensor-Hypergraph Iterative Network (T-HGIN). Compared to
the T-HGCN, the T-HGIN benefits from the construction of K-
step propagation in one single layer, offering an efficient way
to perform propagation that spreads out to a larger-sized neigh-
borhood. Satisfactorily, the proposed T-HGIN achieves com-
petitive performance on multiple hypergraph data examples,
showing its promising potential in real-world applications. We
have demonstrated the potential use of the connection between
T-HyperGNNs and T-HyperGSD by formulating the novel T-
HGIN from the denoising problem in this paper. We also note
that the equivalency between HyperGNNs and HyperGSDs
can also be utilized to design neural networks for denoising
like in [15], [16], and we will leave this as an interesting
extension for future studies.

ACKNOWLEDGMENT

This work was partially supported by the NSF under grants
CCF-2230161 and DMS-1916376, the AFOSR award FA9550-
22-1-0362, and by the Institute of Financial Services Analyt-
ics, sponsored by JP Morgan Chase & Co.

REFERENCES

[1] X. Yue, Z. Wang, and et al., “Graph embedding on biomedical networks:
methods, applications and evaluations,” Bioinformatics, 2020.

[2] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee, “Next-item
recommendation with sequential hypergraphs,” SIGIR, 2020.

[3] F. X. Zheng, Chuanpan, C. Wang, and J. Qi, “Gman: A graph multi-
attention network for traffic prediction,” the AAAI conference, 2020.

[4] M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’on the edge... and
beyond,” Signal Processing, 2021.

[5] C. Wan, M. Zhang, and et al., “Principled hyperedge prediction with
structural spectral features and neural networks,” arXiv, 2021.

[6] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” AAAI, 2019.

[7] S. Bai, F. Zhang, and P. H. Torr, “Hypergraph convolution and hyper-
graph attention,” Pattern Recognition, vol. 110, p. 107637, 2021.

[8] F. Wang, K. Pena-Pena, W. Qian, and G. Arce, R., “T-HyperGNNs:
Hypergraph neural networks via tensor representations,” TechRxiv, 2023.

[9] C. D. Martin, R. Shafer, and B. LaRue, “An order-p tensor factorization
with applications in imaging,” SIAM on Scientific Computing, 2013.

[10] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” ICLR, 2018.

[11] K. Pena-Pena, D. Lau, and G. Arce, “T-HGSP: Hypergraph signal
processing using t-product tensor decompositions,” IEEE Transactions
on Signal and Information Processing over Networks, 2023.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CVPR, 2016.

[13] N. Yadati, M. Nimishakavi, and et al., “HyperGCN: A new method for
training graph convolutional networks on hypergraphs,” NIPS, 2019.

[14] Y. Dong, W. Sawin, and Y. Bengio, “HNHN: Hypergraph networks with
hyperedge neurons,” arXiv, 2020.

[15] S. Rey, S. Segarra, R. Heckel, and A. G. Marques, “Untrained graph
neural networks for denoising,” IEEE Transactions on Signal Processing,
2022.

[16] S. Rey, V. Tenorio, S. Rozada, L. Martino, and A. G. Marques,
“Overparametrized deep encoder-decoder schemes for inputs and outputs
defined over graphs,” EUSIPCO, 2021.

1972

