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Abstract—Periodic autoregressive (PAR) time series with finite
variance is considered one of the most known second-order
cyclostationary models. However, in the real applications, the
signals with the periodic structure very often are disturbed by
additional noise (called additive noise, AN) that may be related
to measurement device disturbances or other external sources.
Thus, the known estimation techniques dedicated to pure PAR
models may be inefficient for such cases. In this paper, the
problem of parameters estimation for PAR models with AN is
considered. Several known Yule-Walker-based methods dedicated
to noise-corrupted PAR time series are discussed and compared
using Monte Carlo simulations. The efficiency of all methods is
verified for selected distributions of AN. Most of all, we consider
the model with infinite-variance (alpha-stable) additive noise,
which was not analyzed in the literature before. For such a
model, a novel estimation method based on fractional lower-order
covariance and high-order Yule-Walker equations is proposed.

Index Terms—periodic autoregressive model, additive noise,
α-stable distribution, estimation, Monte Carlo simulations

I. INTRODUCTION

Periodic autoregressive (PAR) model is one of the most
known cyclostationary processes. It can be considered as
a generalization of classical autoregressive model, having
periodic coefficients. In the literature, one can find numerous
applications of this time series for the analysis of data describ-
ing a phenomenon with periodic characteristics, see e.g., [1],
[2].

Although the classical (finite-variance distributed, especially
Gaussian) PAR model by itself is a useful tool, it might be not
suitable for some non-standard cases. For example, when the
observed behavior is not only periodic but also impulsive (e.g.,
many outliers occur), the PAR model based on the Gaussian
distribution could be an inappropriate choice. Instead, one can
consider its modification, where the classical distribution is
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replaced with a heavy-tailed distribution which would be able
to capture the aforementioned impulsiveness, see e.g. [3]–[5].

Another possible modification of the standard PAR model
refers to the presence of additive noise. This is the case
considered in this paper. In reality, the observed behavior may
not correspond to the pure periodic autoregression, but rather
might be additionally disturbed by some external sources, e.g.,
related to measurement error or specific processes occurring
in described phenomenon. In that case we consider the model
being a noise-corrupted PAR time series and thus we are deal-
ing with the so-called hidden periodicity, [6], [7]. Depending
on applications, one can analyze different distributions (or
even models) of the disturbances. In this paper, we consider
the additive noise from continuous distribution and separately
analyze the finite- and infinite-variance cases. In both cases,
the α-stable distribution is proposed [8], [9]. We note this dis-
tribution in finite-variance scenario (i.e. when α = 2) reduces
to the Gaussian one. The α-stable distribution is selected as
the general one that may capture specific characteristics of real
data, such as heavy-tailed and non-symmetric behavior.

In the applications of the mentioned noise-corrupted models,
one of the crucial steps is the estimation of parameters,
[10]. Hence, it is of huge importance to develop algorithms
dedicated to the considered case. There are several classes
of methods suitable for different models, in a more or less
general way. In this paper, the main attention is paid to
the Yule-Walker-based techniques, i.e. the methods utilizing
the sample autocovariance function (ACVF) or correspond-
ing alternative dependence measures. For the classical finite-
variance pure PAR model (i.e., without any additive noise), one
can mention the classical Yule-Walker algorithm [11], [12].
For the PAR model with the so-called additive outliers (i.e.
additive noise with discrete distribution with a finite number
of possible values), the classical Yule-Walker method has its
robust versions [13]. For the PAR model with general finite-
variance additive noise (hence, also for additive outliers), there
are considered four Yule-Walker equations-based methods
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dedicated to such cases [14], [15]. In the most extreme case,
when the additive noise has infinite-variance distribution, the
autocovariance-based algorithms cannot be applied, since in
this case the theoretical ACVF is not defined. Thus, a new
approach needs to be proposed. Similar as for the PAR model
with heavy-tailed innovations [3], [5], one may analyze the
modified Yule-Walker methods that are based on alternative
dependence measures. In this paper, we propose to modify
the classical methodology by including the fractional lower-
order covariance (FLOC) and introduce the modified Yule-
Walker algorithm for PAR model with additive noise with
a heavy-tailed infinite-variance distribution. The efficiency
of the mentioned above algorithms for finite- and infinite-
variance distributed additive noise is verified by Monte Carlo
simulations.

The paper is structured as follows. In Section II, the PAR
model with additive noise is recalled. In Section III, the
estimation methods for considered cases of additive noise are
briefly discussed. In Section IV, the comparison of estimators
and its results are presented. The paper is concluded in Section
V. Because of a shorter form of this work, not all technical
details are described; however, all necessary references are
provided. In Appendix A, we present the new estimation
algorithm for PAR model with infinite-variance distributed
additive noise.

II. PERIODIC AUTOREGRESSIVE MODEL WITH ADDITIVE
NOISE

The sequence {Xt} is called a PAR(p) process with period
T (with t ∈ Z and p, T ∈ N) when it satisfies the following
equation [1]:

Xt − ϕ1(t)Xt−1 − · · · − ϕp(t)Xt−p = ξt, (1)

where {ξt} is called innovation sequence and in finite-variance
case is assumed to be white noise with mean 0 and vari-
ance σ2

ξ . The coefficients {ϕi(t), i = 1, · · · , p} are periodic
in t with the same period T . We assume the considered
PAR model is causal. The sequence given in model (1) is
second-order cyclostationary with period T , which means
its mean µ(t) = E(Xt) and its autocovariance function
γ(t, h) = cov(Xt, Xt+h) are T -periodic with respect to t.
For simplicity, in this paper, we assume the innovations are
Gaussian distributed. However, as was mentioned, one may
also consider a more general case of model (1), and replace the
Gaussian distribution with other ones, i.e. α-stable distribution
[3]. In this case, the cyclostationarity is expressed by means
of alternative dependence measures, see e.g. [4].

The periodic autoregressive model with additive noise {Yt}
(called also noise-disturbed PAR model), which is the main
model under consideration here, is constructed as follows [14],
[15]:

Yt = Xt + Zt, (2)

where {Xt} is a PAR(p) model defined above and {Zt} is an
additive noise sequence of independent identically distributed
(i.i.d.) random variables, independent of {Xt} series. In this

paper, we distinguish here between two scenarios of additive
noise distribution, finite- and infinite-variance cases. As a
general distribution of the noise {Zt} we consider symmetric
α-stable one [8], [9]. We remind, the random variable has
symmetric α-stable distribution S(α, σ) if its characteristic
function is given by

Φ(s) = exp (−σα|s|α), s ∈ R, (3)

where 0 < α ≤ 2 is the stability index and σ > 0 is the
scale parameter. For α = 2, the α-stable distribution reduces
to the Gaussian one (N ), and thus it can be considered as
a generalization of this classical distribution. The symmetric
α-stable distribution has no closed-form probability density
function and cumulative distribution function. The only excep-
tion is the Gaussian distribution (that is, for α = 2) and the
Cauchy distribution (that is, for α = 1). The stability index is
responsible for the heaviness of this distribution’s tail, i.e. for
the smaller α, the probability of large values is much higher.
For α < 2, the variance of α-stable distribution is infinite.

One can show that the sequence {Yt} given in (2) satisfies
the following equation:

Yt − ϕ1(t)Yt−1 − · · · − ϕp(t)Yt−p =

= ξt + Zt − ϕ1(t)Zt−1 − · · · − ϕp(t)Zt−p, (4)

which indicates it is no longer a PAR model (1), however as it
was mentioned in [15], it is still second-order cyclostationary
in case the additive noise {Zt} is finite-variance distributed.

Let us note that (4) is useful for designing estimation
algorithms — it is a base for discussed estimators, also in the
most extreme case, namely for the PAR model with α-stable
additive noise with α < 2.

III. ESTIMATION METHODS FOR PERIODIC
AUTOREGRESSIVE MODEL WITH ADDITIVE NOISE

As mentioned, the estimation methods analyzed in this paper
can be grouped into classes depending on the distribution of
the additive noise. In the following subsections, the methods
of all classes are listed and briefly discussed. Technical details
of the known algorithms are not presented in this paper.
However, the appropriate references are given. We remind, in
the presented approaches we assume the order p and period T
of the model (4) are known. We refer the readers to [10] for the
new approach useful for the identification of such parameters
for noise-corrupted PAR model.

A. Pure PAR model

• Yule-Walker (YW) method (also known as low-order Yule-
Walker method) [11], [12]
The YW algorithm is one of the most common estimation
methods for finite-variance PAR (or AR) models, widely
used because of its simplicity and high efficiency. In
this method, we construct systems of equations with
autocovariance-based terms, replace them with empiri-
cal counterparts using classical autocovariance estimator
(sample autocovariance function) and solve the system
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of equations to obtain estimates of the coefficients. This
method is also a base for several other approaches pre-
sented further in this paper.

B. PAR model with finite-variance distributed additive noise

• High-order Yule-Walker (hYW) method [14], [15]
The derivation of this method is very similar to the
classical low-order Yule-Walker algorithm recalled above.
However, in this case, to construct autocovariance terms
present in designed systems of equations, we use more
”lagged” values of the now noise-corrupted process.
Such an approach was earlier widely considered also
for autoregressive models with additive noise, see e.g.
[16]. This algorithm allows to overcome the bias in the
estimation which is present in the standard YW method
for models with additive noise. However, as presented
in [15], in some cases this method may return some
extremely large variance of the estimators.

• Errors-in-variables (EIV) method [14]
This approach is a generalization of the method presented
in [17] (from AR model with additive noise to PAR with
additive noise). The general idea is to combine low- and
high-order Yule-Walker methods to achieve their advan-
tages (respectively, low variance and bias) and negate
their drawbacks (respectively, large bias and variance).
First, using high-order Yule-Walker equations, we find
an estimate of additive noise variance (for each season
v = 1, · · · , T separately) which is then put into low-
order Yule-Walker equations (derived for noise-corrupted
process) for estimation. In this paper, for this method (as
well as for modified errors-in-variables and constrained
least squares optimization methods described below) we
set s = 2, where s is the number of high-order Yule-
Walker equations used in the method.

• Modified errors-in-variables (mEIV) method [14]
This method is only a slight modification of the EIV
approach. Let us remind that previously the estimate of
additive noise variance was found separately for each
season. However, as we consider the constant variance
of additive noise for each season, we can modify this
method to include this assumption. Here, we first find a
single estimate of additive noise variance and then use it
in the estimation of coefficients for each season.

• Constrained least squares optimization (CLSO) method
[14]
The last method from this class is a generalization of one
of the techniques presented in [18] for AR models with
additive noise. Similarly to EIV and mEIV approaches,
it also can be considered as a combination of low- and
high-order Yule-Walker methods. First, using low-order
and first high-order equations, the estimate of additive
noise variance is found in an iterative procedure. Then,
the estimated coefficients are obtained as least-squares
solutions of the systems of low- and high-order Yule-
Walker equations.

C. PAR model with infinite-variance distributed additive noise

• Fractional lower-order covariance-based high-order
Yule-Walker (hFLOC) method – novel method
This method can be considered as a novel approach de-
signed for the PAR model with α-stable additive noise. Its
derivation is presented in Appendix A. For simulations,
we set B = 0.65. In practice, initially we calculate α̂
from the data and assume B < α̂ − 1 [5]. Here, we
modify the hYW method by replacing autocovariance
with fractional lower-order covariance (called FLOC),
an alternative dependence measure defined for infinite-
variance distributions. The same idea is considered in [5]
for the YW method. We remind, the fractional lower-
order moments-based approaches are widely applied in
signal processing techniques, i.e. for the estimation of the
parameters of α-stable distribution, see e.g. [19], [20].

• Robust Yule-Walker (rYW) method [13]
In case when the additive noise has impulsive behavior,
one may also consider the approaches being straight
modifications of the classical Yule-Walker method by
replacing the sample ACVF with its robust versions.
The only difference between the YW method and the
rYW approach is the utilized estimator of autocovariance
function terms. The robust version of the YW method
was widely discussed in the case of the PAR model with
additive outliers, see e.g. [21].

IV. SIMULATION STUDY

In this section, we present the Monte Carlo simulation study
for the comparison of analyzed methods. For simplicity, they
will be assessed for the noise-corrupted PAR(1) model with
T = 2, ϕ1(1) = 0.7, ϕ1(2) = −1.1, and {ξt} ∼ N (0, σ2

ξ =
1), for different types of additive noise. We consider the three
following cases:

• Model 1: {Zt} = 0 (pure PAR model)
• Model 2: {Zt} ∼ N (0, σ2

Z = 1)
• Model 3: {Zt} ∼ S(α = 1.7, σ = 1)

In Fig. 1, the sample trajectories of the considered models are
presented. The underlying pure PAR model sample is the same
on each plot. In the case of Gaussian additive noise (Model
2), the difference between clean and corrupted samples does
not seem to be significant; however, as will be shown, the
additive noise presence strongly influences the estimation of
the parameters. The case of α-stable additive noise (Model 3),
with relatively low α = 1.7, is clearly the most challenging
one – because of the present outliers, the underlying PAR
trajectory becomes even more hidden.

For each model, the simulation procedure is as follows. We
simulate M = 1000 trajectories of length N = 3000 from a
given model. For each sample, we estimate values of ϕ1(1)
and ϕ1(2) using all analyzed methods. In the end, for each
method and each coefficient, we create a boxplot of obtained
values. Moreover, for each method, we calculate the average
mean absolute error (MAE) in order to compare the results.

The boxplots of the estimators obtained for Model 1 are
presented in Fig. 2. One can see that all analyzed methods
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Fig. 1. Sample trajectories of models considered in the simulation study. The
red trajectories correspond to the pure PAR model while the blue ones - to
the noise-corrupted PAR model.
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Fig. 2. Boxplots of estimated values for Model 1 (pure PAR).

(including those devoted to cases with additive noise) produce
estimates around the true value of a given coefficient. As
can be seen in Tab. I, the classical YW method has the
lowest MAE, which could be expected for a pure PAR model.
However, its advantage over the other approaches is relatively
small. These results indicate that the analyzed non-standard
methods preserve an acceptable efficiency also for undisturbed
PAR models.

In Fig. 3, one can see the illustrated estimation results for
Model 2. Here, due to a significant presence of additive noise,
the observed behavior is different than in the previous case.
One can easily distinguish between methods that take into
account the general additive noise presence (hYW, EIV, mEIV,
CLSO, hFLOC) and other algorithms (i.e. YW, rYW). The
former are able to maintain their efficiency and still produce
reliable results, whereas the latter do not, due to a significant

TABLE I
AVERAGE MAE VALUES OBTAINED FOR EACH CONSIDERED MODEL

(WITH THE BEST RESULT HIGHLIGHTED).

model YW hYW EIV mEIV CLSO hFLOC rYW

1 0.0095 0.0110 0.0102 0.0098 0.0111 0.0112 0.0115
2 0.1729 0.0214 0.0211 0.0192 0.0209 0.0218 0.1719
3 0.5420 0.0727 0.1697 0.2153 0.0656 0.0653 0.3076
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Fig. 3. Boxplots of estimated values for Model 2 (Gaussian additive noise
with σ2

Z = 1).
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bias. This is also confirmed by MAE results presented in Tab. I
and their difference between both groups. Among all analyzed
methods, the lowest error was obtained for the mEIV method.

For Model 3, the estimation results are illustrated in Fig. 4.
As expected, this case was the most challenging one. One can
compare the observed behavior to the case of Model 2 — only
methods designed for cases with general additive noise seem to
be unbiased. However, here all methods produce more outliers
(in contrast to the previous models), which is caused by the
heavy-tailed distribution of the additive noise. As presented in
Tab. I, the best result was obtained for the hFLOC method
which is designed particularly for such case. However, let us
note that CLSO and hYW methods performed only slightly
worse, even though they are not defined for an infinite-variance
case. Let us also comment on the performance of the rYW
approach. Although it is again biased because of the general
corruption of a PAR signal, its variance is very low.

V. CONCLUSIONS

We have discussed the noise-corrupted PAR model. We have
recalled estimation techniques for the analyzed model in cases
when the additive noise has finite-variance distribution. The
main motivation for the current research comes from condition
monitoring, where the models of real vibration might be used
to develop an inverse filter to remove components related
to mesh frequencies in gearbox vibrations. The presence of
additive noise is very intuitive in such a case, and the additive
noise might be related to electromagnetic disturbances in
measurement systems, specific technological processes carried
out by machines or any rapid, transient phenomena. The
novelty of this paper is the introduction of a new estimation
technique for the PAR model with heavy-tailed (infinite-
variance) distributed additive noise. The new algorithm is
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confronted with other Yule-Walker approaches dedicated to
finite-variance distributed disturbances. The presented simu-
lation study indicates that the new approach outperforms the
known algorithms in most extreme cases.
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APPENDIX A
ESTIMATION ALGORITHM FOR PAR MODEL WITH

INFINITE-VARIANCE DISTRIBUTED ADDITIVE NOISE

Let us consider the periodic version of (4), setting t = nT+
v for v = 1, · · · , T and n ∈ Z:

YnT+v − ϕ1(v)YnT+v−1 − · · · − ϕp(v)YnT+v−p =

= ξnT+v + ZnT+v − ϕ1(v)ZnT+v−1 − · · ·
· · · − ϕp(v)ZnT+v−p. (5)

We assume that {ξt} is white noise and {Zt} ∼ S(α, σ). We
define the periodic version of fractional lower-order covariance
(FLOC) for a process {Yt} as:

ψY (w, k,A,B) = E[Y <A>
nT+wY

<B>
nT+w−k], (6)

where x<a> = |x|a sgn(x) is a signed power.
First, for each v = 1, · · · , T , we multiply (5) by

Y <B>
nT+v−(p+1), · · · , Y

<B>
nT+v−2p and take the expected value of

both sides. Using the fact that x = x<1>, we obtain the
following system of p equations:

E[Y <1>
nT+vY

<B>
nT+v−(p+1)]− ϕ1(v)E[Y <1>

nT+v−1Y
<B>
nT+v−(p+1)]

− · · · − ϕp(v)E[Y <1>
nT+v−pY

<B>
nT+v−(p+1)] = 0,

...
E[Y <1>

nT+vY
<B>
nT+v−2p]− ϕ1(v)E[Y <1>

nT+v−1Y
<B>
nT+v−2p]

− · · · − ϕp(v)E[Y <1>
nT+v−pY

<B>
nT+v−2p] = 0.

Let us note that all right-hand sides can be set to zero, as both
ξt and Zt are zero-mean and independent of Ys for s < t.
Hence, by rewriting expressions above in a FLOC form, we
obtain:

ψY (v, p+ 1, 1, B) = ϕ1(v)ψ
Y (v − 1, p, 1, B)

+ · · ·+ ϕp(v)ψ
Y (v − p, 1, 1, B),

...
ψY (v, 2p, 1, B) = ϕ1(v)ψ

Y (v − 1, 2p− 1, 1, B)
+ · · ·+ ϕp(v)ψ

Y (v − p, p, 1, B),

and, in the matrix form:

ψY
v = ΨY

v ϕv, (7)

where:

ψY
v = [ψY (v, p+ 1, 1, B), · · · , ψY (v, 2p, 1, B)]′, (8)

(ΨY
v )ij = ψY (v − j, p+ i− j, 1, B), i, j = 1, · · · , p, (9)

ϕv = [ϕ1(v), · · · , ϕp(v)]′. (10)

The estimator of the FLOC for sample y1, · · · , yNT is:

ψ̂(w, k,A,B) =
1

N

r∑
n=l

y<A>
nT+wy

<B>
nT+w−k, (11)

l = max

(⌈
1− w

T

⌉
,

⌈
1− (w − k)

T

⌉)
, (12)

r = min

(⌊
NT − w

T

⌋
,

⌊
NT − (w − k)

T

⌋)
. (13)

The hFLOC method is well-defined if B < α− 1.
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