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ABSTRACT

Cyclo-stationary processes induce cross-frequency correla-
tion (CFC) into the raw spectrum of sensor signals. These
stem from carrier-sideband combinations whose generating
mechanism is the circular convolution of modulator and car-
rier. This paper proposes a deconvolution of cyclo-stationary
processes in full spectral resolution to meaningfully investi-
gate these CFC. Therefore relative phase dependencies are
evaluated using fourth-order spectral analysis, which relates
this deconvolution closely to trispectral analysis but also to
the modulated signal bispectrum. This paper defines three
spectra for analyzing cyclo-stationary processes: (i) a modu-
lating spectrum with inherent elimination of stationary signal
components, (ii) a modulating-raw frequency spectrum for
designing optimal filter bands for envelope analysis, and (iii)
a modulating-carrier spectrum accompanying peaks of the
modulating spectrum with its fully-resolved carrier-frequency
signature. These features are demonstrated using a real-world
signal from condition monitoring.

Index Terms— amplitude modulation, cross-frequency
correlation, trispectrum, condition monitoring, modulated
signal bispectrum, relative phase

1. INTRODUCTION

Vibration-based condition monitoring is a widely used tech-
nique for identifying faulty components in machinery, with
acceleration sensors being the preferred choice for recording
its structure-borne vibration. Among the major challenges is
that these signals are often composed of multiple components
that superimpose at the sensor. Therefore, a central goal of
vibration-based monitoring is to extract the signal compo-
nents that indicate faulty components as clearly as possible
from other signal components in the recordings. For criti-
cal machine elements such as rolling-element bearings and
gears, band-limited envelope analysis is the most commonly
used method. Envelope analysis distinguishes vibration of
damaged components by its cyclo-stationary nature, charac-
terized by a cyclic modulating function. For damaged rolling
bearings or gears, these deterministic components of the en-
velope arise from the regular traversal of the damaged zone

by load paths. The presence of these signal components not
only indicates a damage but also allows for the identification
of the specific component. Commonly, damaged components
leave further traces in the form of their unique resonance char-
acteristic, which provides the carrier of the cyclic modula-
tion. This results from broadband local excitation of the dam-
aged components. For local defects these tend to be impul-
sive, while for propagated damaged surfaces the excitation
becomes broadband noisy. Summarized using common ter-
minology, a damaged component typically emits a raw signal
(schematically in Fig. 1) that is composed of high-frequency
carriers that are modulated by a low-frequency envelope of
deterministic components. These cyclic components carrying
the desired information are influenced by a set of factors such
as the machine’s speed, kinematics, and slippage. To differ-
entiate between the different spectra involved, the frequency
variable is named f for raw-, f∗ for carrier-, and f ′ for mod-
ulating frequencies throughout this paper.
The narrow carrier frequency band(s) with its cyclo-stationary
characteristic led to the use of band-limited envelope analy-
sis. By focusing on relevant frequency bands, the extraction
of damage signatures is enhanced, resulting in an envelope
spectrum of improved signal-to-noise ratio (SNR). Hence, re-
cent research activities concentrate on the algorithmic iden-
tification of relevant frequency bands, known as frequency

𝑓

𝐴 𝑓′

𝑓′ 𝑓∗

𝑋av 𝑓∗
= *𝑋 𝑓

Fig. 1. Nomenclature and schematic configuration of modu-
lated signal common in condition monitoring
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band selection. Popular methods include autogram [1], info-
gram [2] and the use of higher-order spectral characteristics,
such as spectral kurtosis analysis [3, 4], kurtogram [5] and the
modulated signal bispectrum (MSB) [6]. Of these methods,
the MSB differs in two significant ways, relevant for this pa-
per. Firstly, it evaluates carrier frequencies f∗ instead of raw
frequencies f (’carrier frequencies and sidebands’), and sec-
ondly, it provides these in full spectral resolution, while the
others operate on bands. The remainder of this paper proposes
a deconvolution of the modulating mechanism by processing
its cross-frequency correlation (CFC) terms. This affects all
previously discussed aspects: (i) We introduce a modulating
spectrum (MS), akin to the envelope spectrum but with less
interference from additive stationary signal components and
noise, due to compensation from higher-order principles; (ii)
A modulating vs. raw frequency decomposition (MRD) re-
solving each peak of the MS for the raw frequencies engaged
with these CFC, providing a path for defining optimal fil-
ters; (iii) Decomposition modulating vs. carrier frequencies
(MCD) to identify a damaged component not only by its peak
in the MS, but also by its unique carrier frequency signature.
This signature may be shared by a set of modulating frequen-
cies, such as higher harmonics, floating the idea of a unified
damage signature; (iv) Normalizing these decompositions to
detect weakly modulated defects.

2. FUNDAMENTALS

In order to extract meaningful information from physical
measurements, such as analyzing the structure-borne vibra-
tion on a rotating machine with defective components, we
face the challenge that signals xr(t) typically comprise mul-
tiple components from different sources. These can include
a series of I components from regular machinery operation
xo,i(t); i = 0, ..., I; a defective component xdam(t), and noise
n(t) from inherent randomness and sensors,

xr(t) = xo,1(t) + ...+ xo,I(t) + xdam(t) + n(t) (1)

A set of challenges arise when evaluating and processing such
data in the frequency domain X(f) =

∫∞
−∞ x(t) e−i2πft dt,

two of which stand out in particular. Firstly, the unambigu-
ous interpretability of the Fourier transform X(f) is bound
to stationarity of all components in the signal model (Eq. 1).
Non-stationarity introduces spectral components — known as
sidebands — representing artifacts. Secondly, source sepa-
ration becomes difficult as the signal components also addi-
tively superimpose in the complex-valued frequency domain.
In vibration-based condition monitoring, envelope analysis
is applied to exploit that signals of a defective component
xdam(t) can usually be distinguished by their modulated char-
acteristic. The modulation of the carrier xav(t) by an envelope
a(t) can be expressed as x(t) = a(t)xav(t), where x(t) could
be a single-component process or any individual component

of Eq. (1). The frequency-domain pendant of the modulation
is the circular convolution

X(f) =

∫ ∞

−∞
A(f ′)Xav(f

∗ = f − f ′) df ′ (2)

When defining the expected value by E[a(t)] = 1, which
translates to the frequency domain as A(f ′ = 0) = 1,
raw X(f) and carrier spectrum Xav(f

∗) only differentiate if
A(f ′ > 0) ̸= 0; I.e. in case x(t) is non-stationary. A well-
known but essential observation emerges from Eq. (2): When
xav(t) is modulated, artifactual sidebands are induced into
the raw spectrum f at frequencies different from f∗ and f ′,
whose location is determined by sum and difference frequen-
cies f = f∗ ± f ′. These sidebands contribute by the product
of modulation- and carrier components A(f ′)Xav(f − f ′).
In other words, each raw frequency X(f) consist of the cor-
responding carrier Xav(f

∗ = f) and potentially a large sum
of sideband contributions where a distant carrier frequency
f∗ = f ± f ′ is modulated by an envelope with relevant com-
ponents at f ′ (Eq. 2). Clearly, this introduces interdependen-
cies between frequencies of the resulting raw signal, referred
to as ’cross-frequency correlation’ (CFC). The challenge in
deconvolving the raw spectrum of a modulated processes is
that these CFC additively superimpose not only with one
another (Eq. 2), but also with other signal components and
noise (Eq. 1). So that in a raw spectrum, a set of signal
components share a single frequency axis f , of which non-
stationary components contribute with a substantial amount
of superimposed sidebands, resulting from the convolution.
The central challenge is to meaningfully unwind these.

3. DECONVOLUTION USING HIGHER-ORDER
CROSS-FREQUENCY CORRELATION

The herein presented approach to deconvolve modulated pro-
cesses is based on the relative phase dependencies of CFC
terms induced by modulated signal components (Eq. 2). This
section explores how these can be meaningfully processed,
which interestingly leads to the definition of the fourth-order
spectrum — the trispectrum.
If we approach real phenomenon from a ’microscopic’ stand-
point, we often find that the information carried by single
Fourier coefficient limits to its amplitude |X(f)| [7]. In fact,
commonly to derive the information sought it requires the
combination of frequencies — so that relative phase relation-
ships come into play. Intuitively, a rationale for why fre-
quency selection methods search for bands. To elaborate on
this, consider the amplitude’s companion, the phase φ[X(f)],
and a circular time shift as a demonstration for its limited ex-
planatory value. Such a shift changes e−i2πfτ all the individ-
ual phases differently in accordance to lag τ and individual
frequency f . However, even though this rearranges a signal,
its fundamental statistical characteristics remain unchanged.
As such a circular shift will serve here as a simple test for
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time-invariant — i.e. meaningful — descriptors. The follow-
ing investigation begins by evaluating the phase relation be-
tween two raw frequencies extractable by

X(f1)X
∗(f2) = |X(f1)| |X(f2)| ei(φ[X(f1)]−φ[X(f2)]) (3)

To evaluate the phase difference using Eq. (3) it is necessary
to take the complex conjugate of one Fourier coefficient (the
choice of which to conjugate only changes the sign of the
phase difference). Inserting a modulated process (Eq. 2) re-
sults in a large (equal to square of the samples) number of
terms, that potentially contribute to the product of Eq. (3)
(f∗ = f − f ′)

X(f1)X
∗(f2) =

∑
f ′
1

A(f ′
1)Xav(f

∗
1 )

∑
f ′
2

A(f ′
2)Xav(f

∗
2 ) (4)

To reasonable limit the scope of this paper [8], it is assumed
that the carrier Xav(f

∗) is subjected to distinct randomness.
Specifically that its phase φ[Xav(f

∗)] is statistically indepen-
dent. Consequently, the expected value of Eq. (4) is zero
as E[Xav(f

∗
1 )Xav(f

∗
2 )] = 0, except for complex-conjugated

pairs associated to f∗
1 + f∗

2 = 0. As such, the expected value
of Eq. (4) becomes a single sum

E[X(f1)X
∗(f2)] =

∑
f∗

|Xav(f
∗)|2 A(f1 − f∗)A(f∗ − f2) (5)

Meaningful contributions condition mutual relevant ampli-
tudes in Xav(f

∗), A(f1 − f∗), and A(f∗ − f2), where the
arguments f1 and f2 distinctively relate the latter two by
an offset f12 =̂ f1 + f2 = ∆f ′ = (f1 − f∗) − (f∗ − f2).
There are three key observations to note: (i) Eq. (5) is ex-
clusively determined by the phase of the modulating process
φ[A(f1 − f∗)A(f∗ − f2)], (ii) the corresponding modulating
frequencies are fixed to an offset ∆f ′ = f12, and (iii) for
a low-frequency modulator A(f ′), |f1| , |f2| cannot deviate
too much from |f∗|. The first observation is best illustrated
when considering either {f1 − f∗ = 0, f∗ − f2 = 0},
where the resulting CFC |Xav(f

∗)|2 A(f ′ = f12) specifically
equals the phase of the modulating function at f ′ = f12.
This, in principle, suggests to relate the expected value of
Eq. (5) with the presence of carrier-sideband combinations
(f1, f2) → (f, f ± f12). Yet, echoing the beginning of this
section, the expected value of Eq. (5) is not a time-invariant
property, i.e. it is not resistant to a circular shift.
To proceed, we complete the approach by matching Eq. (5)
with pairing CFC terms of inverted sign ∆f ′ = −f12,
i.e. terms with opposing sidebands. Denoting the pairing
frequency argument fp, leads to the following expression:

X(f)X∗(f + f12)X(fp)X
∗(fp − f12) (6)

Now, the expected value of Eq. (6) is substantially driven
by the following real-valued terms, extending the concept of
complex conjugated pairs from the carrier to the modulator:∑

f∗
|Xav(f

∗)|2 |Xav(f
∗ + f1p)|2

∣∣A(f ′)
∣∣2 ∣∣A(f12 − f ′)

∣∣2 (7)

Fig. 2. Comparison of MRD and MBS in trispectral set

To piece things together, the expected value of expression
(6) is zero for stationary, statistically-independent processes.
However, if a modulator A(f ′) exists composed of relevant
components with frequency offset ∆f ′ = f12, its expected
value gains real-valued contributions from Eq. (7) for the car-
riers f∗ and f∗ + f1p. Under the condition of statistical sta-
bility, these contributions will stand out from those of the
other signal components, which in contrast tend to an ex-
pected value of zero (e.g. signal components of Eq. 1). More-
over, these contributions indicating the presence of CFC re-
lated to f , fp and ∆f ′ = f12 remain unaffected by any circu-
lar shift. Interestingly, the number of frequency arguments
and their frequency sum in (6) corresponds to the trispec-
trum, providing the spectral decomposition of the kurtosis,
specifically the fourth-order moment µ4 [9]. The trispectrum
S4(f1, f2, f3) = E[X(f1)X(f2)X(f3)X

∗(f1 + f2 + f3)]
encompasses all products of four Fourier coefficients with a
frequency sum of zero. Thus, term (6) can be interpreted as
a rewritten form of decomposing the kurtosis of a modulated
process into contributions of carrier-modulating CFC.
A few additional remarks are: (i) An offset of ∆f ′ = f12 is
not only satisfied by A(f ′ = 0) and A(f ′ = f12), but also
by the presence of higher harmonics in the modulator, such
as A(f ′ = f12) and A(f ′ = 2f12). (ii) From a combina-
torial perspective, modulating frequencies ∆f ′ = {f1p, f2p}
can also affect Eq. (6). (iii) When f1p = 0, the definition
of the modulated signal bispectrum [6] is obtained. Note that
this reduces the dimension by one (Fig. 2), drastically limiting
statistical stability.

3.1. Deconvolution

The prior section demonstrated that fourth-order spectral
analysis can statistically assess CFC resulting from circular
convolution — the expected value of (6) indicates their con-
tribution to the fourth-order moment µ4 as cross-terms of raw
frequencies f and fp and modulator offset ∆f ′ = f12. The
latter will now serve for deconvolving modulating frequen-
cies f ′=̂f12. However, defining a meaningful deconvolution
requires additional thoughts, to ensure statistical stability and
unambiguousness. Regarding unambiguousness, we must
differentiate between f and fp as raw frequency. And in
case of the former, whether f or f + f ′ is the actual carrier
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resp. sideband. Therefore, firstly

µ+
4 (f

′, f, fp) = X(f)X∗(f + f ′)X(fp)X
∗(fp − f ′)

µ−
4 (f

′, f, fp) = X(f)X∗(f − f ′)X(fp)X
∗(fp + f ′)

(8)

differentiates between upper µ+
4 (·) and lower µ−

4 (·) carrier-
sideband combinations. And secondly, to include the raw
frequency controversy and — at least as important — to en-
sure statistical stability, we define the modulating vs. raw fre-
quency decomposition (MRD) by

µ4(f
′, f) =

∑
fp

µ+
4 (f

′, f, fp) + µ−
4 (f

′, f, fp) (9)

which averages combinations of modulating f ′ and raw f fre-
quency over a substantial amount of pairing frequencies fp.
Analogous to averaging for achieving statistically robust val-
ues, this simple yet effective step also eliminates fp from (8).
Further, a carrier frequency differs from a sideband in that it
is centered between two complex conjugate sidebands, i.e. for
a carrier µ+

4 (·) and µ−
4 (·) only differ in their sign. Funding on

this idea, the modulating vs. carrier frequency decomposition
(MCD) is defined by

µ4(f
′, f∗) =

∑
fp

µ̃+
4 (f

′, f, fp) · µ̃−
4 (f

′, f, fp) (10)

where µ̃4(·) corresponds to Eq. (8), but its amplitude is nor-
malized as the square root, so that MRD and MCD remain of
the same unit. Finally, the modulating spectrum is defined by
summation of MRD resp. MCD along the second axis f, f∗.

µ4(f
′) =

∑
f
µ4(f

′, f) (11)

For defining a normalized MRD we specify another modifi-
cation of Eq. (8) as µ|4|(f

′, f), replacing the complex-valued
Fourier coefficients with their amplitude |X(f)|. The normal-
ized MRD is then defined by η(f ′, f) = µ4(f

′, f)/µ|4|(f
′, f).

4. EXAMPLE

A few of the features of the herein proposed deconvolution are
demonstrated using a dataset from the popular Case Western
Reserve University (CWRU) bearing database [10]. Here, we
found set X305DE interesting as not only the mechanically
seeded outer race damage at f ′ ≈ 90.5 Hz (fan end) is gen-
erally hard to detect, but it becomes even more difficult when
applying band-limited envelope analysis on the bearings com-
mon carrier around f ≈ 3000 Hz (benchmark [11] mostly
classifies it as non detectable). Yet, the fault frequency f ′

appears dominant in the herein proposed non-parametric MS
(Figure 3). Not only does the distinct peak hint at the dam-
aged component, also the MRD for this frequency indicates
the characteristic resonant frequencies at around f ≈ 3000
Hz, providing a comprehensive damage indicator. The more
accentuated components of the MRD at f = [800, 1200] are

Fig. 3. Comparative analysis of dataset with seeded outer race
damage f ′ ≈ 90.5 Hz (CWRU database — X305DE)

then used for a band-limited envelope spectrum, giving the
best result for the latter’s technique. Lastly, Figure 3 includes
the MSB, which apparently suffers statistically stability. In
contrast, this has been achieved for the MS/MRD by sum-
ming for fp = [f − f ′ +∆f, f + f ′ −∆f ] (Eq. 9).

5. CONCLUSION

Modulated processes inherent a cross-frequency structure
that requires the examination of products of four Fourier
coefficients for meaningful analysis. This leads to fourth-
order spectral analysis, which is known as the trispectrum
and involves decomposing kurtosis. In this paper, we propose
a deconvolution approach for cyclo-stationary processes by
associating trispectral entries with carrier-sideband combina-
tions. The approach defines a modulating spectrum (MS) of
full spectral resolution that inherently eliminates stationary
signal components. It also includes decompositions of mod-
ulating vs. raw (MRD) and modulating vs. carrier frequency
(MCD). These spectra eliminate the need for pre-filtering
and offer additional insight into underlying signal compo-
nents. While similar to the modulated signal bispectrum, the
proposed deconvolution makes better use of the multidimen-
sional trispectral set to define additional and more effective
descriptors. This approach contributes to relevant subjects
in vibration-based monitoring, such as improved detectabil-
ity for low signal-to-noise settings, the provision of carrier
frequency signatures, and optimal filter design. Overall, the
proposed deconvolution provides a more effective and com-
prehensive analysis of cyclo-stationary processes.
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