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Abstract—In this paper, we describe a method for estimating
the joint probability density from data samples by assuming that
the underlying distribution can be decomposed as a mixture of
product densities with few mixture components. Prior works
have used such a decomposition to estimate the joint density
from lower-dimensional marginals, which can be estimated more
reliably with the same number of samples. We combine two
key ideas: dictionaries to represent 1-D densities, and random
projections to estimate the joint distribution from 1-D marginals,
explored separately in prior work. Our algorithm benefits from
improved sample complexity over the previous dictionary-based
approach by using 1-D marginals for reconstruction. We evaluate
the performance of our method on estimating synthetic probabil-
ity densities and compare it with the previous dictionary-based
approach and Gaussian Mixture Models (GMMs). Our algorithm
outperforms these other approaches in all the experimental
settings.

Index Terms—Density estimation, dictionaries, random projec-
tions, statistical learning, tensor decomposition

I. INTRODUCTION

Joint probability density estimation is an important problem
in several machine learning and statistical signal processing
tasks [1] [2]. However, estimating the joint density from
high dimensional data samples is challenging. Structure-free
methods like histogramming and Kernel Density Estimation
suffer from poor sample complexity. For instance, N random
variables (RVs), each taking I distinct values, can take on
IN distinct values of N -tuples. Reliable histogramming will
need S ≫ Ω(IN ) samples since the probability of most
N -tuples is usually quite small. Another approach is using
graphical models assuming some conditional independence
of RVs. However, such assumptions are problem specific
and significantly restrict the kinds of densities that can be
represented.

Kargas et al. [3] proposed a framework to estimate the joint
probability mass function of N discrete RVs which represents
the PMF (probability mass function) as a low-rank tensor
using the Canonical Polyadic Decmposition (CPD). Following
this work, many others [4] [5] [10] [9] have tried to perform
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joint PMF and continuous PDF (probability density function)
estimation. This entire line of work is connected by the idea
that the CPD of the joint density shares factors with the
CPD of its marginals. These low-dimensional marginals can
be estimated reliably with much fewer samples and then used
to obtain factors of the joint density.

In this paper we present a novel approach which combines
the idea of dictionaries in [9] with the use of Radon projections
of 2D marginals to get 1D marginals in [10]. As a result, our
work is the first one which can use the CPD framework to
estimate continuous densities from 1D marginals. Dictionaries
help us overcome restrictive assumptions like band-limitedness
of the density used in [5]. Moreover, sample complexity for
obtaining 1D marginals of Radon projections is lower than
that of 2D histogramming used in [9].

II. BACKGROUND

A. Canonical Polyadic Decomposition (CPD) of Tensors

An N -dimensional tensor X ∈ RI1×I2×...×IN admits a
‘Canonical Polyadic Decomposition’ as a sum of F rank-1
tensors as follows:

X =

F∑
r=1

λ(r)A1(:, r) ◦A2(:, r) ◦ ...AN (:, r),

where F is the smallest number for which such a decom-
position exists and is called the rank of the tensor. Here ◦
denotes the outer product of two vectors. For each n ∈ [N ] :=
{1, 2, ..., N}, An ∈ RIn×F

+ is called a mode factor and λ ∈
RF

+. We also impose the constraint that ∀n ∈ [N ], ∀r ∈ [F ],
∥An(:, r)∥1 = 1.
If X represents an N dimensional PMF, then we have the
constraint that ∥λ∥1 = 1. We can recover the PMF by
estimating the mode factors and λ [3].

We can extend the idea of CPD to a Naive-Bayes model
for the PDF of an N-dimensional random vector X =
(X1, X2, ..., XN ), where the random variables {Xn}Nn=1 are
independent conditioned on a hidden variable H:

fX(x1, x2, ..., xN ) =

F∑
r=1

fH(r)

N∏
n=1

fXn|H(xn|H = r)
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Here fX denotes the PDF of a random variable X .

B. Joint PMF estimation from 2-way marginals

In [6], Non-negative Matrix Factorisation (NMF) techniques
are employed to estimate the mode factors of the CPD of
the PMF tensor from its 2D marginals. The 2D marginals
Zj,k are estimated using histogramming and we have the
relation Zj,k = AjΛAk

T , where Λ = diag(λ). However
NMF techniques cannot be used if the tensor rank F ≫
min(Ij , Ik) since the mode factors will not be identifiable
[8]. One can work around this by partitioning the set of
indices of N variables into two sets S1 = {l1, l2, ..., lM}
and S2 = {lM+1, lM+2, ..., lN}. Then a matrix Z̃ is con-
structed by concatenating blocks Zj,k with j ∈ S1 (row-
wise), k ∈ S2 (column-wise). We can then factorise Z̃ as
WHT , where W ,H can be obtained using the successive
projection algorithm (SPA) [7] for NMF. The mode factors are
obtained from the relations W T = [AT

l1 ,A
T
l2 , ...,A

T
lM ] and

HT = Λ[AT
lM+1

,AT
lM+2

, ...,AT
lN ].

C. Dictionaries: Joint PDF estimation from 2-way marginals

The work in [9] extends the above technique to continu-
ous densities. Each column of the continuous mode factors
fXn|H(xn|H = r) is approximated by a convex combination
of various 1D densities from a dictionary Dn. Thus we have
the rth column

fXn|H(xn|H = r) = An[:, r] = DnBn[:, r]

where 1 ≤ r ≤ F , Dn is a dictionary of various continuous
or discrete densities and Bn[:, r] ∈ RLn

+ is a non-negative
weight vector which sums to one. Ln is the number of density
functions in the dictionary Dn.

Then 1D marginals can be represented as fXn
(xn) =

Dn[xn, :]Bnλ, where Dn[xn, :] represent each of the density
functions in Dn evaluated at xn to yield a row vector.
Since the 1D marginals are also convex combinations of
the dictionary functions, the dictionary can be ‘guessed’ by
observing the histograms of 1D marginals of data.

The 2D marginals Zj,k = DjBjΛBk
TDk

T , where calli-
graphic symbols represent continuous functions. The intervals
{∆in

n }
In
in=1 are used to bin the feature Xn. Discretised 2D

marginals Zj,k(ij , ik) = P (Xj ∈ ∆
ij
j , Xk ∈ ∆ik

k ) =

DjBjΛBk
TDk

T are estimated by histogramming the data.
Here the set of bins {∆in

n }
In
in=1, also determines the discreti-

sation used for columns of dictionary Dn.
They estimate the mode factors by minimising the objective:∑

j<k

∥Ẑj,k −DjBjΛBk
TDk

T ∥2F

s.t. ∀j, r ∥Bj [:, r]∥1 = ∥diag(Λ)∥1 = 1,Bj ≥ 0,Λ ≥ 0.

In the above equation, the ≥ sign acts element-wise. The use of
dictionaries allows the representation of a larger variety of 1D
marginals than is allowed by the bandlimitedness assumption
in [5]. The use of 2D marginal histograms lowers the sample
complexity over using 3D marginals as in [4] [5].

D. Radon Transform: PMF estimation from 1-way marginals

The work in [10] uses 1D marginals of the random pro-
jections of pairs of attributes values obtained from the high-
D data. This is equivalent to computing Radon transforms
of 2D marginal PMFs Zj,k to get 1D marginals. The 1D
marginals are estimated by histogramming data with lower
sample complexity than 2D marginals.

For a pair of random variables Xj,k = (Xj , Xk), j < k,
and M projection directions {ϕm ∈ R2 |m ∈ [M ]}, we can
estimate the 1D PMFs of the data projections ⟨ϕm,Xj,k⟩
by histogramming into I bins. Stacking the M 1D PMFs
row-wise yields matrix Yj,k ∈ RM×I . They minimise the
following objective:∑

j<k

∥Yj,k −R(AjΛAk
T )∥2F

s.t. ∀n, r ∥An(:, r)∥1 = ∥diag(Λ)∥1 = 1,An ≥ 0,Λ ≥ 0,

where R represents the Radon operator. As discussed in [6],
this objective can not be minimised directly since the mode
factors will not be identifiable from 2D marginals. Thus,
an auxiliary variable Zj,k is introduced and the following
unconstrained intermediate objective is optimised:∑

j<k

∥Yj,k −R(Zj,k)∥2F + ρ∥Zjk −AjΛAk
T ∥2F .

The following procedure is followed: First Zj,k is estimated
by inverse Radon filtering Yj,k. Then Z̃ is assembled and
SPA is used to estimate the mode factors as in [6]. Then the
above intermediate objective is minimised with respect to Zj,k

followed by the SPA step to update mode factors, and this
update is carried out multiple times. The mode factors obtained
from the last step are used as the initialization to optimise the
main objective.

III. PROBLEM STATEMENT AND ALGORITHM

Given samples of an N -dimensional random vector X :=
(X1, X2, ..., XN ), we wish to estimate its probability density
function fX(x). We assume that each component Xn may be
continuous, discrete or mixed. We assume that the PDF admits
a Canonical Polyadic Decomposition with some rank F , which
is not known apriori. Similar to [9], we use dictionaries of
densities Dn. We also utilise the Radon transform R(.) from
[10] to project 2D marginals to obtain 1D marginals. We define
the Radon projection operation as follows. For a given pair of
features (Xj , Xk) : j, k ∈ [N ], j < k we generate projections
in M directions, with angles sampled uniformly from [0, π).
For a particular random projection vector ϕm, we evaluate
projections of all samples ϕm(xj , xk)

T and then histogram
the projected values with a suitable bin size bm. The obtained
histogram density vectors for all directions are concatenated
in a tall vector of size b := b1 + b2 + ...+ bM , denoted yj,k.

For a chosen set of projection directions, the Radon operator
R(.) is linear. We have the following relationship:

yj,k = R(Zj,k) = R(DjBjΛBT
k DT

k ).
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Here, we introduce a new operator Rj,k(.) defined as

Rj,k(X) = R(DjXDT
k )∀X ∈ RLj×Lk ,

where Lj denotes the number of columns in dictionary Dj .
Thus we have

yj,k = Rj,k(BjΛBT
k ).

By linearity of R(.), even Rj,k is linear and thus the
operator can be replaced by a matrix multiplication as
Rj,k(X) = Rj,k · vec(X). Here vec(X) denotes vertical
concatenation of the columns of the input 2D matrix X to
yield a tall vector. These matrices Rj,k can be pre-computed
once the dictionaries have been chosen. The exact method
of computing these matrices is discussed later in this paper.
This is in contrast to [10] where the Radon transform is
applied repeatedly rather than pre-computing the projection
matrix once. While this does speed up the algorithm, a
possible shortcoming of this approach is the large storage
requirement of

(
N
2

)
pairs of projection matrices. The storage

requirement can be considerably reduced by assuming
identical dictionaries for all features and using the same
projection directions.
In order to estimate {Bn : n ∈ [N ]} and Λ = diag(λ) we
optimise the following objective:

J1(Bn : n ∈ [N ],Λ) =
∑
j<k

∥yj,k −Rj,k(BjΛBk
T )∥22

s.t. ,∀n, r ∥Bn(:, r)∥1 = ∥diag(Λ)∥1 = 1,Bn ≥ 0,Λ ≥ 0.

To handle identifiability issues, we introduce an auxiliary
variable Tj,k and an intermediate objective similar to that in
[10], as follows:

J2(Tj,k : j, k > j ∈ [N ],Bn : n ∈ [N ],Λ) =∑
j<k

∥yj,k −Rj,k.vec(Tj,k)∥22 + ρ∥Tj,k −BjΛBk
T ∥2F

s.t. ,∀n, r ∥Bn(:, r)∥1 = ∥diag(Λ)∥1 = 1, ∥vec(Tj,k)∥1 = 1

Bn ≥ 0,Λ ≥ 0, vec(Tj,k) ≥ 0.

The algorithm proceeds as follows:
First Tj,k is initialised using yj,k by minimising J2 with ρ = 0
(simplex constrained least squares estimate).
Then T̃ is assembled and SPA is used to estimate the mode
factors {Bn : n ∈ [N ]} and Λ as discussed in [6].
Next, the following alternating minimisation is carried out for
several iterations: J2 is minimised with respect to Tj,k keeping
{Bn : n ∈ [N ]} and Λ fixed, followed by the SPA step to
update {Bn : n ∈ [N ]} and Λ from the assembled T̃ matrix.
The mode factors obtained from the alternating minimisa-
tion are used as an initialisation in the minimisation of
the main objective J1, which is carried out using projected
gradient descent. We name our algorithm RAD (Radons And
Dictionaries). The pseudocode for RAD is given below.

Algorithm 1 RAD: Estimating Mode Factors from 1D Ran-
dom Projections Using Dictionaries

Initialise dictionaries by hand based on the 1D marginal
histograms
for each pair (j, k), j < k do

Generate M random projection directions
yj,k ← histograms of projected samples
Compute Rj,k matrix
Initialise Tj,k ← argmin ∥yj,k − Rj,k.vec(Tj,k)∥2

under simplex constraint
end for
converged ← False, q ← 1
while not converged do

Assemble T̃ from {Tj,k}
{Bn},λ ← SPA(T̃ )
for each pair (j, k), j < k do

Tj,k ← argmin ∥(Rj,k
Tyj,k + vec(BjΛBk

T )−
(Rj,k

TRj,k + ρI).vec(Tj,k)∥2 under simplex constraint
end for
Jq ← J2(.), q ← q + 1
if |Jq − Jq−1| < ϵ OR q == max iterations then

converged ← True
end if

end while
converged ← False, q ← 1
while not converged do ▷ choose η using Armijo Rule

for n ∈ [N ] do
Bn ← ProjectOntoSimplex(Bn − η ∂J1

∂Bn
)

end for
λ← ProjectOntoSimplex(λ− η ∂J1

∂λ )
Jq ← J1(.), q ← q + 1
if |Jq − Jq−1| < ϵ OR q == max iterations then

converged ← True
end if

end while
Return {Bn},λ

A. Computation of Rj,k matrices

For given j, k ∈ [N ] and X ∈ RLj×Lk we argued

Rj,kvec(X) = R(DjXDT
k )

for a suitable Rj,k ∈ Rb×LjLk , which we wish to compute.
We will assume that we can generate samples from each
column in Dn ∀n ∈ [N ]. We define the outer product of
functions f1 : R → R and f2 : R → R as f1 ◦ f2 : R2 → R2

with (f1 ◦ f2)(x1, x2) = f1(x1)f2(x2) ∀x1, x2 ∈ R. Recall
that each column of our dictionaries is a 1D PDF and the
operator R(.) takes a 2D density as its input. Thus we have

DjXDT
k =

∑
lj∈[Lj ],lk∈[Lk]

(Dj(:, lj) ◦Dk(:, lk))X(lj , lk)

Since R(.) is linear, we have:

R(DjXDk
T ) =

∑
lj∈[Lj ],lk∈[Lk]

R(Dj(:, lj)◦Dk(:, lk))X(lj , lk)

1990



=
∑

lj∈[Lj ],lk∈[Lk]

Rj,k(:, (lj , lk))X(lj , lk).

In the above summation, each column of Rj,k is indexed with
an ordered pair (lj , lk), lj ∈ [Lj ], lk ∈ [Lk] corresponding
to the (lj , lk)th position in X . Thus the (lj , lk)th column
of Rj,k is given by Rj,k(:, (lj , lk)) = R(Dj(:, lj)◦Dk(:, lk)).

Given two 1D PDFs f1(.) and f2(.) from which we can
generate samples, we can stochastically approximate R(f1 ◦
f2) by generating a large number of i.i.d. samples of (X1, X2)
with X1 ∼ f1(.) and X2 ∼ f2(.) where X1 and X2 are
independent. This generates i.i.d samples of the 2D density
f1 ◦ f2. We can then project these samples along the given
M projection directions. We use the same binning as yj,k

and count the number of projected samples in each bin. We
normalise this count by the total number of samples to obtain
an approximation of the Radon transform of the 2D density.

IV. NUMERICAL RESULTS

In this section we present several probability density es-
timation results on synthetic data and compare performance
with previous algorithms. To generate artificial data, we first
initialised a set of dictionaries with randomly chosen parame-
ters and random mode factors to construct our CPD model. We
sampled from this synthetic density by first choosing a random
value f ∈ [F ] from the PMF given by λ. Then for each feature
Xn, we sampled from the dictionary column Dn(:, ln) where
ln ∈ [Ln] was randomly sampled using the PMF given by
Bn(:, f).

In order to evaluate algorithm performance, we computed
the Jensen-Shannon Divergence (JSD) between the estimate
and the true density. The JSD between two probability distri-
butions P , Q defined on Rd is defined as

JSD(P ||Q) =
1

2
(D(P ||M) +D(Q||M)),

where M = 1
2 (P +Q) and D(P ||Q) is the Kullback-Leibler

Divergence (KLD) between P and Q. To compute the KL
Divergence (KLD) we generate S = 7000 i.i.d. samples {xi :
i ∈ [S]} of X ∼ P (.). We then approximate D(P ||Q) as:

D(P ||Q) = EX∼P (.)[log
P (X)

Q(X)
] ≈ 1

S

∑
i∈[S]

log
P (xi)

Q(xi)
.

We compared the performance of our algorithm against JUPAD
[9], which uses dictionaries for continuous density estimation.
The key advantage of our algorithm over JUPAD was the use of
1D marginals instead of 2D, which greatly lowers sample com-
plexity. We also compared performance with the Expectation
Maximisation algorithm for Gaussian Mixture Models with
full covariance matrices (referred to as GMM) and diagonal
covariance matrices (referred to as GMM-DIAG).

We do not present comparisons against the sinc-
interpolation technique in [5] because: (1) sinc-iterpolation
to obtain the CDF does not guarantee a valid PDF as the
resulting PDF may take negative values, (2) JUPAD [9] is able

to outperform it on synthetic density estimation when averaged
absolute log likelihood ratio is used as the performance metric.

We created multiple synthetic datasets and trained each
algorithm on a random subset of K data samples for 4 trials,
and calculated the average JSD over these trials. We varied K
from 500 to 40000 samples.

We evaluated RAD under two settings: (1) RAD*: The
true dictionaries used for generating the synthetic density
were used by the algorithm, (2) RAD: The dictionaries were
unknown and chosen by observing the histograms of 1D
marginals of the generated samples (as described in [9]).
Results for JUPAD are only presented for the case where
true dictionaries were used. Knowledge of the true dictionar-
ies improved performance for both RAD and JUPAD. While
computing marginals via histogramming we used K

1
3 bins

for RAD, where K is the size of training data. For JUPAD,
we kept the number of bins fixed (50-100 depending on the
dataset) with K as it produced best results. We choose the
number of components in both GMM (full covariance) and
GMM-DIAG (diagonal covariance) from 20 to 300 in steps of
20 by cross validation using negative log-likelihood. We used
a 10% subset of the training data for validation and fit the
GMM on the remaining 90%.

We experimented with the following families of densities.
1) Gaussian Dictionaries: We have N = 8 features, and

the tensor rank is F = 25. For each feature the dictionary
Dn contains Ln = 10 Gaussians, each with mean µn,i ∼
U(−1, 1) and standard deviation σn,i ∼ U(0.05, 0.2), chosen
randomly. Here U(a, b) represents a uniform distribution with
range (a, b). In this and following experiments, all features
share the same dictionary for simplicity, but they can also be
chosen to be distinct.

2) Laplacian Dictionaries: Similar to the above experi-
ment, we have N = 6 features, and the tensor rank is
F = 7. For each feature, the dictionary Dn contains Ln = 10
Laplacians, each with mean µn,i ∼ U(−1, 1) and standard
deviation σn,i ∼ U(0.05, 0.2).

3) Mixture of Laplacians and Gaussians in each Dictio-
nary: In this experiment, we have N = 5 features, and the
tensor rank is F = 9. For each feature, the dictionary Dn

contains Ln = 12 distributions of which 6 are Laplacians
and 6 are Gaussians, each with mean µn,i ∼ U(−1, 1) and
standard deviation σn,i ∼ U(0.05, 0.2).

4) Mixture of Continuous and Discrete Features: This
experiment aims to capture the structure of most real-world
datasets, which typically have mixed features. We have N = 7
features, and the tensor rank is F = 13. The first 4 features
are continuous and are a mixture of Ln = 8 densities
of which 4 are Laplacians and 4 are Gaussians, each with
mean and standard deviation chosen as above. The last 3
features are discrete. Each one can take 4 distinct values
in S = {−1.5,−0.5, 0.5, 1.5}. The dictionary for a discrete
feature consists of distributions of constant random variables,
each assuming one of the constant value in S. We do not
compare with GMMs for this case as they cannot represent
discrete features.
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(a) Gaussian dictionaries (b) Laplacian dictionaries

(c) Mixture of Gaussian and Laplacian dictionaries (d) RV with continuous and discrete features

Fig. 1: Jensen-Shannon Divergence versus Number of Training Samples K for RAD (dictionaries constructed by observing 1D
histograms), RAD*, JUPAD, GMM and GMM-DIAG (with diagonal covariance)

In Fig. 1 we plot the JSD vs K for each algorithm,
for various density families. We see that RAD* achieves
the lowest JSD in both low and high sample regimes. The
performance of RAD* is expected to be better than RAD,
as the former makes use of true dictionaries. However, even
when we construct dictionaries by observing the 1D marginal
histograms in RAD, it outperforms JUPAD which also uses
true dictionaries. RAD also results in lower values of the
JSD compared to GMM and GMM-DIAG for almost all
sample complexity, across all the families of densities. Thus,
our experiments demonstrate the superior sample complexity
of joint density estimation for RAD over other algorithms.

CONCLUSION AND FUTURE WORK

We extend the work on learning a low-rank tensor rep-
resentation of probability densities by combining the ideas
of dictionaries and Radon transforms to develop a novel
algorithm. Our model has minimal structural assumptions on
the density and dictionaries enable us to represent various
families of densities. We are able to achieve lower sample
complexity than previous approaches using 1D marginals.
Among structure-free methods our method performs well in
the low sample regime as seen by experimental results. Future
work may extend to adaptively learning dictionaries from data
instead of selecting them through observation.
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