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Abstract—Coherence is a useful measure in many engineering
applications. Here, we focus on the case where the input signal
to a linear system can be measured free from noise, but the
output signal is perturbed by noise. A novel expression for
the expectation of a multitaper magnitude squared coherence
estimate for this case is presented and verified through numerical
evaluation. Additionally, the expression is used to optimise a
multitaper coherence estimation method, which gives improved
coherence estimation in detection. A clever combination of two
weighted magnitude squared coherence multitaper estimators
yields a new method, called Combined Weighted Multitaper
Coherence (CWMC). The method is evaluated and compared
to the Thomson multitaper method for simulated data and on
real visual evoked potential electroencephalogram data, showing
consistent improvement using CWMC.

Index Terms—coherence, magnitude squared coherence, multi-
taper, spectral analysis, signal detection

I. INTRODUCTION

To identify a linear single-input single-output system, a
useful measure to inspect is the magnitude squared coherence
(MSC) between the input and output signals. MSC shows the
frequencies where spectral components are present and phase-
locked in a pair of signals. This has been proven useful in
multiple areas of system identification and is contemporarily
used in engineering and science applications ranging from
mechanical engineering [1] to neuroscience applications [2]–
[4].

The coherence has been studied for many years with the
statistics given in [5]–[8] where the Welch method is the com-
monly applied spectral estimator, [9]. Thomson has proposed
the use of multitapers, [10], [11], which have been shown
to outperform the Welch method in many applications. The
multitaper method is specifically applied for robust coherence
estimation in adaptive estimation and in various noise envi-
ronments [12]–[16].

Although the Thomson method utilises the Slepian set of
windows, they are not necessarily optimal specifically for
coherence estimation. Broadening the options for tapers, one
option is the Peak Matched Multiple Windows (PMMW) [17],
which are designed for peak shaped spectra. A model spectrum
is used and the multitapers are estimated as the eigenvectors
from the corresponding model covariance matrix.
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A specific case of linear systems where an application of
MSC is useful is the case where the input signals are clean
measurements, and only the output signals are disturbed by
noise. We denote this class of linear systems as clean input
noisy output (CINO) systems. Many applications with clean
steering input signals fit into this class, and we especially
mention neural auditory tracking where the noise level of
outputs is high. Noisy electroencephalography (EEG) signals
showing electric potentials in the brain of a listener are to
some extent correlated to the speech features of the attended
speech, and this correlation is what is of interest to track. If
attended speech signals are known then coherence measure
can show to what extent and at which frequencies the EEG
signals are linearly correlated to the speech. This can then be
used to track the attention of the listener in a multi-speaker
scenario [4], [18].

Primarily in this paper, an expression for the expected value
of a multitaper MSC estimate using a set of windows is
presented, for the case when the input signal is clean. The
expression is subsequently evaluated numerically to ensure
validity. Opening the possibility to statistically detect and
estimate coherence, the expression can be useful for MSC
method design in many application areas.

One application of the resulting MSC expectation expres-
sion is combating the problem of unevenly weighted multitaper
spectral estimates. This causes mock-component peaks in
spectral regions where there is signal in one of the channels but
not the other and thus should ideally not show any coherence.
The average of two weighted coherence estimates is used to
reduce the effects of this problem and also reduce the overall
standard deviation. This consequently increases the ability of
the MSC to detect a correlated signal in the noise in the output
channel.

In section II, the paper starts with a presentation of relevant
theory and the derivation of the expectation expression of
multitaper MSC estimation for a CINO system, which is
then evaluated numerically. Secondly, in section III, the given
application of the expression is presented, where a coherence
estimator using the average of two weighted multitaper MSC
estimates is developed. Simulations along with a real data
application example are given in section IV and V respectively.
Our work is concluded in section VI.
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II. COHERENCE AND EXPECTATION EXPRESSION

A signal vector of length N, input signal x and output y ∈
RN , can be viewed in the light of a linear system, of which the
MSC identifies the spectral signature of the transform function.
An estimate of the MSC is made as

Ĉxy(f) =
∥Ŝxy(f)∥2

Ŝxx(f)Ŝyy(f)
(1)

where Ŝxy(f) is the cross-spectral estimate calculated by

Ŝxy(f) =

K∑
k=1

αkXk(f)Yk(f)
H (2)

with analogue expressions for the auto-spectra Ŝxx(f) and
Ŝyy(f). Subscript H denotes complex conjugate transpose.
The αk-weighted sum entails the product of discrete Fourier
transforms (DFT) using K number of data windows (also
called tapers). The windowed DFT at spectral frequency f
is defined as

Xk(f) =

N−1∑
n=0

x(n)hk(n)e
−i2πfn (3)

Yk(f) =

N−1∑
n=0

y(n)hk(n)e
−i2πfn (4)

or equivalently as

Xk(f) = hkϕ(f)x
T

Yk(f) = hkϕ(f)y
T

for a chosen window vector hk to taper the data, where
ϕ = diag[1 e−i2πf . . . e−i2π(N−1)f ] is the Fourier transform
matrix. Often, the set of chosen tapers are the Slepian windows
and equal weights, used in the Thomson method for spectral
estimation [10]. Another set of windows, developed for mean
squared error optimal estimation of spectral peaks, is the Peak
Matched Multiple Windows (PMMW) [17]. These taper have
declining weights associated with them, which can be seen in
Figure 2.

A. Expectation of MSC

The true expected value of the coherence of a linear system,

E
[
Ĉxy(f)

]
= E

[
|Ŝxy(f)|2

Ŝxx(f)Ŝyy(f)

]
, (5)

with input x and output y, will not be possible to calculate
giving some very cumbersome expressions. However, using a
zeroth order Taylor expansion an approximation is found as

E
[
Ĉxy(f)

]
≈

E
[
ŜxyŜ

H
xy

]
E
[
ŜxxŜyy

] , (6)

where the (f) has been dropped for compactness. The numer-
ator and denominator is evaluated as

E
[
ŜxyŜ

H
xy

]
= E

( K∑
k=1

αkXkY
H
k

)(
K∑
l=1

αlXlY
H
l

)H
 =

K∑
k=1

K∑
l=1

αkαlE
[(
XkY

H
k

)
XH

l Yl

]
=

K∑
k=1

K∑
l=1

αkαl ∆n, (7)

and

E [SxxSyy] =

K∑
k=1

K∑
l=1

αkαlE
[
XkX

H
k YlY

H
l

]
=

K∑
k=1

K∑
l=1

αkαl ∆d (8)

respectively. We define a CINO system with a known input
signal x = s and output y = s + e, for some noise e.
The output y could also be a linear filtering of s, but this
is excluded here. Denoting tapered DFT of noise as Nk, we
can expand ∆n and ∆d to

∆n = E[XkX
H
k XlX

H
l +XkX

H
k NlX

H
l +

XkN
H
k XlX

H
l +XkN

H
k NlX

H
l ] = E[a+ b+ c+ d]

∆d = E[XkX
H
k XlX

H
l +XkX

H
k XlN

H
l +

XkX
H
k NlX

H
l +XkX

H
k NlN

H
l ] = E[a+ e+ b+ g]

Isserlis theorem is used, stating E[ABCD] =
E[AB]E[CD] + E[AC]E[BD] + E[AD]E[BC] [19].
The expectation E[a] found as the first term in ∆n as well as
∆d is calculated as,

E[a] =E
[
XkX

H
k

]
E
[
XlX

H
l

]
+ E [XkXl]E

[
XH

k XH
l

]
+ E

[
XkX

H
l

]
E
[
XH

k Xl

]
= hH

k ϕHE[xxH ]ϕhkh
H
l ϕHE[xxH ]ϕhl

+ hH
k ϕHE[xxH ]ϕhlh

H
k ϕHE[xxH ]ϕhl

+ E[hH
k ϕHxhH

l ϕHx]E[hH
k ϕHxhH

l ϕHx]H

The expectation of the last term is zero except close to f = 0
and 1

2 [11]. Applying the same calculations, along with the
fact that E[xyH ] = 0, gives an expression for each term in
the double sums in the MSC ratio. We find E[b], E[c] and E[e]
to be close to zero. The expectation of coherence becomes

E
[
Ĉxy

]
≈
∑K

k

∑K
l αkαl (E[a] + E[d])∑K

k

∑K
l αkαl (E[a] + E[g])

=
αHUα

αHLα
(9)

where α is the vector of taper weights, while U and L are
conjugate symmetric matrices in CK,K with elements

Uk,l = T 1
k,l + T 2

k,l + TN
k,l =

hH
k ϕHRxϕhkh

H
l ϕHRxϕhl+

hH
k ϕHRxϕhlh

H
k ϕHRxϕhl+

hH
k ϕHRxϕhlh

H
k ϕHRnϕhl (10)

Lk,l = T 1
k,l + T 2

k,l + TD
k,l =

hH
k ϕHRxϕhkh

H
l ϕHRxϕhl+

hH
k ϕHRxϕhlh

H
k ϕHRxϕhl+

hH
k ϕHRxϕhkh

H
l ϕHRnϕhl (11)
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where Rx and Rn are the Toeplitz covariance matrices for
the signal and noise processes.

For the CINO system, as the signal-to-noise level becomes
decreasingly small, the first two terms of the sums in Eqs.
(10) and (11) become zero and a lowest possible expectation
of the coherence measure is obtained for any combination
of signals with certain noise characteristics. With evenly
weighted subspectra and white noise assumption the lowest
expectation is easily identified in the expression as 1/K.

B. Evaluation of Expectation Expression

To validate the expression derived in Eq. (9) a simulation is
made, where the derived expectation expression is compared to
the average of M = 10000 multitaper estimates using the same
even weights and tapers, (K = 10). A known AR2 process of
length N = 512 with a peak in 1

4 , damping factor 0.9 and
unit innovation variance, is simulated as channel x and with
added white noise as channel y. Simulations are repeated for
added noise variances 1

2 , 2 and 10.
The results of the analytic calculations from Eq. (9) com-

pared to the average of simulations are presented in Figure 1.
One can see that the analytic expression follows the simulated
coherence well for all three noise levels. The deviations are
due to the order-zero Taylor expansion.

Fig. 1. The expectation of evenly weighted multitaper MSC estimation of
an AR2 process as input signal, comparing the analytic expression of Eq. (9)
to the average multitaper MSC estimates for simulations of the AR2 process
in x and the same process with added white noise disturbance in y for the
CINO model. Although deviations due to approximations are observable, the
expression holds well.

III. APPLICATION OF EXPECTATION EXPRESSION TO
IMPROVING COHERENCE ESTIMATION

As an application where the expression derived in Eq. (9)
proves useful, the expression can be reexamined as an objec-
tive function to optimise over weights α in order to choose
how to weigh the tapered spectral estimates in the MSC
estimator.

A. Minimising Expectation Towards True Coherence

In a CINO system, the true MSC, given the true spectra of
input and output processes, can be put as

|Sxy|2

SxxSyy
=

|Sxx + Sxe|2

S2
xx + SxxSee

=
S2
xx

S2
xx + SxxSee

(12)

To create an estimate close to the true value in Eq. (12), we
aim to minimise the last two terms of the three terms in the
numerator U divided by L,

min
α

αH(T 2 + TN)α

αHLα
, (13)

where T 2, TN are matrices with elements given in Eq. 10.
Although ideally the middle term of the three elements of L
should be zero as well, this goal suffices. Especially when
noise is significant, since elements of T 2 will be small in
comparison to the other two terms.

We constrain the minimisation to only positive weights, by
asserting 1Tα ≥ 0, to ensure stability of final coherence
estimates. Minimisation on this form is done by attaching the
constraint αHLα = 1 to the reduced problem

min
α

αH(T 2 + TN)α. (14)

A numerical solution can be found using numerous optimisa-
tion solvers to obtain a set of weights for coherence estimation
that minimises the expected coherence value in centre of the
modelled spectral components.

As an example, utilising fmincon() in Matlab, an optimisa-
tion of Eq. (14) is done, in the centre frequency of a signal
consisting of the peaked spectra

Sx(f) =

{
e

−2C|f|
10Blog10(e) |f | ≤ B/2

0 |f | > B/2
(15)

matching the PMMW use. Parameters were C = 20, K = 8
N = 512 and B = (K + 1)/N , and the applied matching
multitapers of the PMMW method are computed according to
[17]. The additive white noise has standard deviation σe =
0.4 in channel y. The resulting weights are shown in Figure
2 together with the given associated weights of the PMMW
method.

Fig. 2. The set of taper weights for coherence estimation, through optimisation
described in section III-A (blue), and the PMMW associated weights (red) as
calculated in [17].

B. Improving Performance of Coherence Estimation

Detecting the coherent case (C case), y = x+e, compared
to the non-coherent (NC case), y = e, is as previously
stated an interesting and important problem. The detection
problem constitutes multiple aspects, firstly identifying the
spectral band of the correlated or non-correlated component in
question. Secondly, statistically inferring the existence of the
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phase-locked signal must be made by differing the y-signal
samples from the NC case. Separating these cases depends on
the overlap of the distributions of coherence estimates Ĉxy(f)
in both cases. We want to distinguish the two distributions
from each other by separating expectations and minimising
standard deviation in coherent and non-coherent cases.

To improve detection ability of correlated y-signals the es-
timates of two weighted multitaper coherence methods are av-
eraged, ĈD

xy(f) =
(
Ĉw1

xy (f) + Ĉw2
xy (f)

)
/2. Suitable choices

of weights cause less correlated coherence estimates which
yields two main improvements. Firstly, matching the weights
to the optimised and flipped optimised weights in Figure 2 will
significantly reduce the unwanted spectral peaks that exist in
the weighted coherence estimates of non-coherent signal cases,
which can be seen in Figure 3 for the individual coherence
estimates. Additionally and perhaps more important in an
application, the averaging of two estimates reduces variance of
the final coherence estimate and improves detection ability of a
coherence estimation algorithm. The proposed combination of
coherence estimates is called Combined Weighted Multitaper
Coherence (CWMC). As the same tapers are used in each
coherence estimate, no DFTs have to be calculated twice, only
the weighted sums and division operations.

IV. SIMULATIONS

A simulation of a linear system, for both the C case and
NC case, is made to evaluate the CWMC method developed
in the previous section. A clean signal x is simulated by
filtering unitary-powered white noise of length N = 128 with
peaked spectrum process (centre frequency f0 = 0.125) filter
by the spectra as defined in Eq. (15). The output signal is
then defined as in section III-B, with additive simulated white
noise (σe = 0.4), for both the C case and the NC case. The
noise level is set so coherence detection is not trivial, but
also not so difficult that difference between methods are not
shown. Coherence estimates using Thomson method equal-
weighted, using PMMW with the two different sets of weights
derived in Section III-B, as well as the CWMC are calculated.
By repeating simulations 10000 times numerical estimates
of expectation as well as variation coefficient (defined as
standard deviation divided by expected value) are made at each
frequency for all four methods. These are shown in Figure 3.
The C case is shown to the right and NC case is to the left.

In the same simulations, we extract the empirical distribu-
tion of the average of estimated coherence in the frequency
band [f0−0.03, f0+0.03], using the Thomson method and the
CWMC. The distributions in the C and NC cases are shown
in the left top and bottom part of Figure 4 for the CWMC
and and Thomson method respectively. A receiver operating
characteristic (ROC) curve is estimated from these distribution
as well, shown in Figure 4. One can see that the CWMC
has a consistent improvement to the detection of coherence
for this signal model. Future work could entail finding better
combinations of weights specifically for certain tasks such as
detection.

Fig. 3. A simulation of a peaked spectrum process illustrating the problem of
weighted multitaper coherence estimates. Expectation and variation coefficient
of coherence estimates of the Thomson method, the PMMW with two different
sets of weights (Optimised and Flipped) and the CWMC method.

Fig. 4. A comparison of the performance of CWMC method and Thomson
method for classification of the C and NC case of a peaked spectrum process
in the input signal. Histogram of methods in both cases are shown for the
methods; a) the CWMC method and; b) the Thomson method. In c), the
resulting ROC curves for both methods are shown.

V. REAL DATA

We illustrate the benefits of the CWMC method with a
classification example of EEG data with and without flickering
light visual stimulation. Data was recorded with a final sample
frequency of Fs = 256 Hz for a total duration of 15 seconds
using a Neuroscan system with a digital amplifier (SYNAMP
5080, Neuro Scan, Inc.). Amplifier band-pass settings were
0.3 and 50 Hz. The subject had their eyes closed and was
presented with flickering light for a duration of 5 seconds, 5
seconds into the recording. Four trials were made, all with
different frequencies of the flickering light; 12, 15, 17 and 20
Hz. In all trials data was collected from 19 EEG channels.

Each original recording was further divided into eleven
segments with 50% overlap such that all segments had a
duration of 2.5 seconds (N = 640 samples). Six of these
contained data recorded without visual stimulation, which
we from heron will call class 0. Three segments contained
data recorded during visual stimulation, which we denote
belonging to class 1. The other two segments contained data
that was recorded both with and without flashing light and
were discarded. This gave a total of 456 samples belonging to
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Fig. 5. Classification example of EEG signals with and without visual
stimulation, denoted class 1 and 0 respectively. The normalised histograms
of the average coherence CXY around the correct frequency are illustrated
using; a) the CWMC method and; b) the Thomson method. In c), the resulting
ROC curves for both methods are shown.

class 0 and 228 samples belonging to class 1.
Furthermore, we assume that the system input signal x

during visual stimulation is given by a pure sine wave with
the same frequency as the presented flickering light. The
CWMC and Thomson coherence spectra were calculated for
each sample with a sine wave of correct frequency. As before,
K = 8 tapers were used in the calculations. In the CWMC
method, the same weights as in the simulation were used. The
parameters for both methods were chosen such that the spectral
bandwidth became B = Fs(K + 1)/N = 3.6 Hz.

Finally, the average coherence within ±1.3 Hz of the true
frequency was calculated for each sample. The width was cho-
sen to be slightly smaller than the average width of the CWMC
coherence peak in class 1. The sample distributions for each
class using the CWMC and Thomson coherence are shown in
Figure 5(a) and (b) respectively. We note that the Thomson
coherence in (b) is able to make lower estimates for class 0,
and higher estimates for class 1. However, it is clearly seen
that the variance of the CWMC coherence is lower for class
1 in comparison to the Thomson coherence. This makes the
two classes more easy to separate using the CWMC coherence,
resulting in slightly better classification performance. In Figure
5(c) the ROC, calculated using the empirical distribution of
data, for the two methods are plotted and the CWMC is shown
to outperform the Thomson multitaper coherence.

VI. CONCLUSION

We have presented an expectation expression for multitaper
coherence for any signal, along with an application where
the expression proves useful, in minimising the expression for
choosing taper weights in a coherence estimate. Additionally,
a novel coherence estimator is presented, which averages esti-
mates from two weighted multitaper coherence estimates, one
being the optimised weights and the other the flipped weight
vector. The new coherence estimator outperforms coherence

estimation with even weighted subspectras using Thomsons
method. Improvement is shown, both in simulated peaked-
spectrum signal data as well as in a real data example,
detecting visually evoked potential frequencies in electroen-
cephalography data. The derived expectation expression and
the proposed novel Combined Weighted Multitaper Coherence
method show possible paths for future improvement of coher-
ence estimation of noisy signals with limited data lengths.
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