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Abstract—Permutation entropy (PE) and its variants are or-
dinal pattern-based techniques that have become widely used
as complexity measures to quantify the degree of disorder or
randomness in a time series. Despite their popularity, these
techniques have several limitations, such as sensitivity to the
embedding dimension, the sampling frequency, and their specific
preprocessing strategies. The information captured by these
techniques is difficult to interpret and may not fully reflect the
complexity of time series.

We propose an alternative PE variant to overcome these
limitations. We first divide the signal into short segments of a
fixed length sufficient enough to allow for a local polynomial
modelling of this signal. We use a discrete orthonormal polyno-
mial basis of a limited degree to ensure that for each segment,
the model parameters obtained are uncoupled and have similar
value ranges. By ranking these parameters, we construct an
ordinal pattern (OP) for each segment. The proposed PE variant
is then defined as the Shannon entropy applied to the probability
distribution of these OPs.

The proposed local polynomial fitting-based preprocessing
helps improve the PE interpretation. The advantages of the
proposed PE method over some existing PE variants are demon-
strated using simulated signals and real data.

Index Terms—Legendre polynomial modelling, multiscale per-
mutation entropy, stationary process.

I. INTRODUCTION

Measuring the complexity of time series is an important
signal processing task that is useful in a variety of applications,
including prediction, anomaly detection, classification, and
signal processing analysis [1]-[6]. The complexity measure
helps provide valuable insights into the structure and dynamics
of the systems that generate the data.

In particular, the permutation entropy (PE) was introduced
in [7] as a natural complexity measure of time series. The
basic idea behind the PE is to convert the time series into a
symbolic sequence, the symbols are the relative ranks of d
consecutive sample values and they are called ordinal patterns
(OP) of order d. The PE is then defined as the Shannon entropy
applied to the probability distribution of these OPs.

PE has gained increasing attention over the last two decades,
and several PE variants have been proposed in the literature
to address specific challenges and requirements in various
applications. One such example is the multiscale permutation
entropy (MPE). Some of MPE based-methods can be consid-
ered as linear preprocessing-based techniques that combine, on
the one hand, delay operators, linear filtering, and subsampling
to uncover hidden signal structures and, on the other hand,
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different estimation strategy of PE [8]-[15]. However, these
MPE are very sensitive to the sampling frequency and they
are prone to aliasing phenomenon at large scales [16]-[18].

Other MPE methods are nonlinear preprocessing techniques
that combine data-driven signal decomposition and PE estima-
tors. It has been demonstrated in [19] that these MPE methods
primarily reflect the shift in the mean frequency of the signal
spectra. Both linear and nonlinear preprocessing-based MPE
methods do not take into account the growth rate of the signal.
As a result, a unique symbol is assigned to different sample
sequences with varying growth rates. Unlike the previously
cited MPE methods, the amplitude-aware PE proposed in [20],
[21] takes into account the growth rate of the signal, while
the phase PE proposed in [22] considers the phase patterns
obtained using the Hilbert transform of the signal. However,
the latter two MPE methods are very sensitive to noise.

Developing alternative PE measures is still necessary to

overcome the limitations of PE and MPE. In this paper, we
propose a new variant of MPE, named the local Legendre
polynomial modeling-based permutation entropy (LPPE). The
main concept is to locally model the signal using an orthonor-
mal polynomial basis of limited degree d—1. To this end, the
signal is first divided into short segments of fixed length L,
where L>d. For each segment, we estimate d parameters of
the local signal model using a least-squares approach. These
parameters are then ranked to form the OP of length d. The
Shannon entropy is finally calculated using the probability
distribution of the obtained OPs.
We use the well-known Legendre polynomials to create an
orthonormal polynomial basis. The orthonormality property
ensures uncoupled parameters with similar value ranges and
allows for a reliable ranking procedure. These parameters im-
plicitly provide information about the growth rate, concavity,
etc., which helps better characterize and interpret the PE mea-
sure of the signal. The proposed LPPE method outperforms
classical MPE in terms of robustness to noise thanks to the
use of L samples to produce the OP of length d.

The paper is organized as follows. Section II recalls the PE
and MPE concepts and their limitations. The proposed LPPE
is detailed in Section III. Section IV presents simulations and
real data processing to illustrate the potential of the proposed
method. Finally, Section V concludes this work.
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II. THEORETICAL BACKGROUND

This section provides an overview of the PE and MPE and
highlights their limitations through illustrative examples.

A. PE and MPE concepts

Let us consider a discrete-time signal x; and use an ordinal
methodology to convert it into a sequence of symbols called
OPs. For example, an OP of order d can be obtained by ranking
d adjacent values xy, 441, ..., Tt+q4—1 in ascending order. For
instance, the unique OP ’2413’ of length d=4 is assigned to
the four consecutive samples 1.1,2.3, —0.3, 1.2, whereas two
consecutive OPs 231’ and 312’ of length d=3 are assigned
to these same samples. And for d=2, these samples are coded
by 3 consecutive OPs *12’, 21’ and’12’.

Note that this ordinal methodology does not consider the
growth rate of the signal, which can result in different sample
sequences with varying growth rates being assigned the same
OP. For instance, when d = 3, the OP 123’ would be assigned
to both the sequences 0.01,0.02,0.03 and 0.01,4.02,40.03.

The occurrence of OP of type II; can be estimated, subject
to a sample number N very high compared to d, as follows:

_ #t | {xs, 441, .-, Terd—1 ) of type II; 0
P, N—d+1 ’

where # denotes the cardinal. The PE of order d, as introduced
in [7] for weakly stationary signals, is defined as the Shannon
entropy applied to the probability distribution of OPs (1):

H==>"pu,log(pm,). 2)

In theory, there are d! possible distinct OPs of order d
regardless of the ordering methodology. This assumes that
equal values are infrequent. As a result, the normalized PE
can be utilized instead of (2):

. Zl b, IOg(pHi)
log(d!)

Several MPEs have been proposed in the literature to examine
multi-scale aspects. Most of MPE are variants of PE in which
the input signal is modified through preprocessing techniques
such as linear filtering, delay operators, subsampling, or data-
driven decomposition. Due to lack of space, readers may refer
to [8]-[15] for more details. For comparison purposes, we
only remind that the coarse-grained MPE method [8] uses a
moving average filter of order M, followed by subsampling
with a factor M. The value of M is referred to as the scale.

H= 3)

B. PE and MPE limitations

The main limitations of PE and MPE can be succinctly
stated as follows. Sensitivity to the embedding dimension
(OP order) d: Small values of d may not adequately capture
the signal complexity, leading to misinterpretation of the
analysis results. On the opposite, large values of d increase
the computational cost, especially when dealing with large
or high-dimensional signal. Bias estimation for finite-length
time series: According to [13], [23], a large sample size is

necessary to reduce bias in the estimation process. In addition,
the constraint % > d should be satisfied in order to ensure
accurate results. Impact of noise and sampling frequency:
Both PE and MPE are sensitive to noise and the sampling
frequency, as reported in [16], [18]. The sampling frequency
can significantly alter the OP distribution, particularly when
it is close to Nyquist rate [24]. At high sampling frequencies,
even low-level noise can have a significant impact on the
OP distribution. Additionally, at larger scales, MPEs are
susceptible to the aliasing caused by subsampling step.

The limitations of PE and MPE can be illustrated by examining
two examples of well-structured signals.

a) 1% signal: xy=sin(2mvyt + ¢) where ¢ is a random
phase that follows an iid uniform distribution on [—, 7[ and
1 is the reduced frequency. Figure 1 displays the mean PE
(3) using 100 Monte Carlo realizations of z; for each vy €
10.25,0.5[. The sample size is N=[10%v;"].
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Fig. 1: Mean PE (3) of z; = sin(271gt + ¢) where ¢ is an iid
uniform random variable distributed on [—m,7[. 100 Monte
Carlo realizations of 1000 periods of z; were generated for
each vy €]0.25,0.5].

For example, for 1p=0.41 and d=3, the mean PE is found
to be 0.967. This value is comparable to that of a slightly
correlated random Gaussian process [25], making it difficult
for PE to differentiate between the two processes. The mean
PE decreases to 0.722 when the OP order is set to d=4, and
further decreases to 0.529 when the order is increased to d=5.
However, a higher order d>6 results in a poor estimation of the
OP occurrence (1), we remind that d!>720 OPs are possible
in this case and the sample size is N=2439. Furthermore, all
linear preprocessing-based MPEs [8]-[15] cannot be used as
no scale can avoid aliasing induced by subsampling. Similarly,
data-driven decomposition-based MPEs are ineffective as only
one component can be identified. In addition, if z; is degraded
by high-level noise, MPE methods described in [20]-[22] fail
to distinguish between uncorrelated random noise and this
sinusoidal process for d=3. These observations remain valid
for deterministic sinusoidal signals [18].

b) 2" signal: y, = sin(2m0.41t) + sin(270.31¢) +
sin(270.21¢) with a sample size N=2439; the PEs of order
d=3 and d=4 are found to be 0.993 and 0.973, respectively.
The PE decreased to 0.870 for d=5. Higher order OPs still
have poor significance and previously published MPEs are still
not suitable for measuring this signal complexity.
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In the following, we propose a new variant of MPE that
aims to better capture the complexity of time series.

III. PROPOSED MPE: LPPE

Let’s consider a discrete time series z; with t=0,1,... , N—1.
We divide this signal into short segments of fixed length
L: the i'" segment is [z, 2;41,...,2i41_1]. According to
Weierstrass’s theorem, a polynomial approximation of the
signal can be locally performed on each segment :

d—1
T, = Zai,nPn(tfi)+et fort =i,i+1,...,i+L—1, (4)
n=0

where P, (t) is a polynomial of degree n and ¢ is the
approximation error. The segment length L is chosen to ensure
local stationarity and is kept small enough to allow for a
limited degree of polynomial modeling d—1 with (d < L).
We use a discrete orthonormal polynomial basis, P, (t) with
n=20,1,...,d — 1, created using the well-known Legendre

polynomials.
The d model parameters on segment ¢ are denoted by a; 5,
and are estimated using a local least squares (LS) strategy:

2

i+L—1 d—1
G3,0, Q4,15 -,05,d—1 = arg min E Ty — E i Pn(t—1)| .
@i,00%,10 0%, d—1  ¢=4 n=0

®)
The LS estimation strategy is equivalent to the maximum
likelihood one if assuming €; to be a white Gaussian with
unknown variance o.2. The Fisher information matrix can be
then calculated to be o.~2I, with I being the identity matrix
of size d x d. This guarantees uncoupled model parameters.
These estimated parameters (5) are then ranked to build the
ordinal pattern II. This ordinal methodology ensures that the
signal growth rate and concavity are taken into account. The
proposed LPPE is then defined using equation (3) and:

pr, = #t | {at,Ovat,h oo 7at,d—1}0f type II; . ©
N—-L+1

By varying L and d under the constraint L<</N and d<L,
we explore the multiscale aspect of the proposed LPPE. The
orthonormality property ensures uncoupled parameters with
similar value ranges and thus a reliable ranking procedure. The
model parameters (4) are implicitly linked to the first d higher-
order derivatives of the signal, such as the local growth rate
(first derivative), local convexity/concavity (second derivative),
and so on. This helps to better characterize and interpret the
PE-based complexity measure of the signal. Furthermore, the
proposed LPPE takes advantage of L consecutive samples
to generate the OP of order d, unlike classical MPEs which
use only d samples. This enhances robustness to fluctuations
and noise. Additionally, the proposed LPPE does not require
subsampling, thereby avoiding aliasing problems.

IV. RESULTS

This section focuses on the performance study of the
proposed LPPE. Simulated signals and real data are processed
using the proposed LPPE and compared to the classical PE
and MPE [7].

A. Uncorrelated versus correlated Gaussian processes

Consider three Gaussian processes: white Gaussian noise
(WGN) with zero mean and unit variance, and two autore-
gressive processes (AR1 and AR2) of orders 51 and 26, re-
spectively. The frequency responses of these two AR processes
(with 3 dB bandwidths of 0.035 and 0.08) are depicted in fig.2a
and 2c, respectively. Both AR processes are centered at the
same reduced frequency of 0.225. The mean of the proposed
LPPE (6) (3) of orders d = 3,4, and 5 is shown in fig.2b, 2d,
and 2f, based on 100 Monte Carlo simulations, the sample size
being N = 10*. Only the mean of the classical PE (1) (3) is
shown with a solid circle marker, as classical MPEs with scale
M > 2 lead to aliasing in the case of AR2.
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Fig. 2: LPPE of Gaussian processes: (a) and (c) frequency
responses of AR1 and AR2 filters, respectively. (e) power
spectral density (PSD) of WGN. Mean LPPE (6) (3) (solid
line) of orders d= 3, 4, and 5 as a function of L for (b) AR1
process, (d) AR2 process and (f) WGN. (Solid circle marker)
classical PE (1) (3) with same d values. All curves are based
on 100 Monte Carlo simulations and N=10%.

045 05 10 20 30 40 50 60 70 80 90 100

Segment Length (L)

Figure 2f shows that for WGN, the proposed LPPE is
consistently higher than 0.9, regardless of the value of d, and
it is free of oscillations regardless of the segment length L.
As L increases above 11, the LPPE converges towards stable
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and close values of 0.984, 0.974, and 0.967 for d = 3,4, and
5, respectively. On the other hand, for correlated processes
AR1 and AR?2 (fig.2b and 2d), the LPPE falls below 0.90 and
decreases as L increases above 11, reaching a low but distinct
values of 0.683 and 0.55 for d = 4 and 5, respectively. For
both AR processes, the LPPE with L > 30 and d > 4 is better
at distinguishing these models from WGN, compared to the
classical PE represented by a solid circle marker. Moreover,
ARI1 process exhibits more noticeable oscillations than AR2,
primarily due to its smaller bandwidth size. This point will be
clarified in the next paragraph on narrower bandwidth signals.

B. Sinusoidal signals

Single and multicomponent sinusoidal signals with iid ran-
dom phases uniformly distributed on [—m, 7r[ are considered.
All curves are based on 100 Monte Carlo simulations.

We first analyze the stationary random process x; =
sin(2nvgt + ¢) from section III. Figures 3a, 3b, and 3c
display the proposed LPPE for 1y = 0.205, 0.41, and 0.33,
respectively. The sample size for each figure is IV :{103 7 1J.
Remind that the classical PE for 1y = 0.41 can be equivalent
to some MPE variants [8], [10], [15] for vy = 0.205 obtained
with a scale of M = 2.
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Fig. 3: LPPE of z; =sin(2mvpt + ¢) evaluated using 100
Monte Carlo simulations of random phase ¢. 1000 periods are
generated. (a), (b) and (c) Mean LPPE using d=3, 4 and 5 for
19=0.205,0.41 and 0.33, respectively. (Solid circle marker)
classical PE with same d values. (d) PSD of mean LPPE for
1p=0.33.

As can be seen from Fig.3, the LPPE for a pure tone signal
is an oscillating function of L > v ! and it appears to
reach very low values, below 0.5, when Lvy € N. Similar
observations (see fig.4) can be made when considering a mul-
ticomponent signal with random phases: y; = sin(270.41¢ +

¢0) + sin(270.31¢ 4+ ¢1) + sin(270.21¢ + ¢2) and a sample
size N=[10%0.217" .
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Fig. 4: LPPE applied to an example of multicomponent
sinusoidal signals: (a) PSD of the signal and (b) Mean LPPE
using d=3,4 and 5.
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C. Sinusoidal signals embedded in noise

We here consider a sinusoidal signal z;=sin(27vgt) with
19 = 0.205 embedded in additive WGN, the sample size is
N=|10%vy"|. Figure 5 shows the LPPE obtained at different
signal to noise ratios (SNR). As can be seen from fig.5, the
LPPE increases but still oscillating even for low level noise
which distinguishes it from the LPPE of WGN.
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Fig. 5: Mean LPPE of a pure tone sinusoidal (v = 0.205)
embedded in an additive WGN obtained using d=3,4 and 5.
All curves are based 100 Monte Carlo simulations of noise.

D. Real data

We here consider the sunspot data [3] used with OP in [25]
as an illustrative example. Figure 6a shows the sunspot number
N =3271 of the months between year 1749 and 2021. Figure
6b shows obtained results using LPPE and classical PE applied
to the full data samples. The LPPE oscillates between 0.39
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and 0.82 and it reaches its maximum at L=79 months and its
minimum at 273 months. We also divide the time series in 2
parts: years 1749-1900 and years 1901-2021, and we notice
from fig.6c, 6d and 6e a difference in the complexity between
both parts.

[
1750 1800 1850 1900 1950 2000 50 100 150 200 250 300 350
Time

Segment Length (L)

(b)

d=5

50 100 150 200 50 100 150 200 50 100 150 200

Segment Length (L) Segment Length (L) Segment Length (L)
(© (d) (e)

Fig. 6: LPPE applied to sunspot data. (a) Sunspot numbers
from years 1749-2021 and (b) LPPE using d=3,4 and 5. (Solid
circle) classical PE obtained using the same d. (c), (d) and (e)
(-) LPPE of sunspot data for years 1479-1900 superimposed
to (:) that of years 1901-2021.

V. CONCLUSIONS

In this paper, we introduce a new variant of MPE, named
local Legendre polynomial modeling-based Permutation En-
tropy (LPPE). The aim is to benefit from the practical and
theoretical relevance of polynomial approximation to form
ordinal patterns of low order, using more sample data for a
more accurate representation. This not only reduces computa-
tional costs but also overcomes the limitations of previously
published MPEs. The proposed MPE benefits from the un-
coupled model parameters due to the orthonormality property
of Legendre polynomials. Furthermore, it is able to capture
the growth rate of signals that were previously ignored in
most traditional MPEs. The results obtained show that this
new MPE is more robust against noise and less sensitive
to sampling frequency than traditional MPE. Additionally, it
facilitates the interpretation of PE-based complexity measures
of real-data signals.
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