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Abstract—We propose the Complex Seasonal Circular Block
Bootstrap (XSCBB), a variation of seasonal (circular) block
bootstrap that caters for multiple seasonality components in a
time series. Electricity consumption (load) prediction is important
to balance the supply and load demand, to plan facilities construc-
tion and maintenance, to plan distribution, and avoid outages
or excess loss. We apply the XSCBB method parametrically to
calculate the prediction interval of future electricity consumption
given a relatively small amount of historical sample points using
the composite ARMA(p, q) – GARCH(r, s) model.

Index Terms—ARMA, GARCH, time series, seasonality, sea-
sonality, forecasting, parameter estimation, prediction interval,
bootstrap

I. INTRODUCTION

Short term and long term forecasting of electricity con-
sumption (load) are essential for planning the infrastructure
of an electrical power system. However, the electricity load
data can be non-linear, non-stationary, and have a time-varying
variance. Such characteristics can be attributed to the variation
in the climate as well as the unpredictable shifts in consumer
behaviors. However, there are also expected consistencies in
the fluctuation of consumption such as during days versus
nights or weekdays versus weekends. Such an effect is called
seasonality and causes the data to be non-stationary.

Many existing forecasting methods do not only assume
that the data to be stationary, but also that the variance to
be constant over time. These two assumptions cannot be
reasonably applied to the electricity consumption data for the
reasons mentioned above. Therefore, we consider a model that
may explain the time-varying volatility in the residuals, i.e. the
Autoregressive Conditional Heteroskedasticity (ARCH) model
[9] and its generalised version, Generalised ARCH (GARCH)
model [2]. Some related applications include forecasting en-
ergy [23], sea surface temperature anomalies [17], electricity
price [22], and wind power [5].

Electricity load forecasting had been performed with some
variations of Autoregressive (AR) and Moving Average (MA)
models that take seasonalities into account, such as the Sea-
sonal Autoregressive Integrated Moving Average (SARIMA)
model, with some degree of success [1], [14], [16]. One
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method to estimate the SARIMA parameters is by maximum
likelihood estimation.

To construct a likelihood function, the probability distribu-
tion of the random observations need to be specified. However,
often such distribution is not available. A quasi-likelihood
function is the likelihood function constructed to infer about a
parameter with insufficient information. The Quasi Maximum
Likelihood (QML) can jointly parameterise conditional means,
conditional variances, and conditional covariances [13].

The bootstrap method replaces an unknown distribution
function by its empirical estimator [25], [26]. Bootstrapping
for a GARCH model had been studied in [3], [4], [6], [12],
[15], [18], [21], [24].

The Seasonal Block Bootstrap (SBB) was proposed for
bootstrapping a time series where a seasonality effect is
present [19]. Consider observations X1, . . . , XN arising from
a time series {Xt, t ∈ Z}, with

Xt = µt + Yt and µt = µt−d, ∀t ∈ Z, (1)

where d is an integer denoting the period of the deterministic,
unknown µt. Usually d is known or obvious from the data and
{Yt, t ∈ Z} a strictly stationary sequence with mean zero. If
µt is not a constant and not stationary, the Block Bootstrap
(BB) and its variations [11] is not directly applicable.

The SBB process can be summarised as follows:
• Assume the sample size N = nd for some integer n
• Choose a positive integer b < n
• Draw i.i.d i0, i1, . . . , ik−1 with uniform distribution on

the set {1, 2, . . . , n− b+ 1}
• We may take k = [n/b] (different choices are also

possible)
• The SBB constructs a bootstrap pseudo-series

X∗
1 , X

∗
2 , . . . , X

∗
l where l = kbd: X∗

mbd+j := Ximd+j−1

for m = 0, 1, . . . , k − 1 and j = 1, 2, . . . , bd.
• SBB is a version of the BB with blocks size bd

and starting points integer multiples of the period d:
i0d, i1, . . . , ik−1d.

The SBB poses a restriction on the relative size of the period
and block size, where the blocks’ size and starting points are
restricted to be integer multiples of the period d. To resolve this
restriction, Dudek et al. proposed the Generalised Seasonal
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Block Bootstrap (GSBB) and its circular version, GSCBB,
[8], and the Generalised Seasonal Tapered Block Bootstrap
(GSTBB).

The GSCBB can be summarised as follows:

• Choose a positive integer block size b < N , let l = [N/b].
• For t = 1, b+ 1, 2b+ 1, . . . , lb+ 1, let(

X∗
t , X

∗
t+1, . . . , X

∗
t+b−1

)
= (Xkt

, Xkt+1, . . . , Xkt+b−1)

where kt is a discrete uniform random variable taking
values in the set

St,N = {t− dR1,N , t− d (R1,N − 1) , . . . , t− d, t,

t+ d, . . . , t+ d (R2,N − 1) , t+ dR2,N}

with R1,N = [(t− 1) /d] and R2,N = [(N − b− t) /d]
• Join the l + 1 blocks (Xkt , Xkt+1, . . . , Xkt+b−1) to

obtain a new series of bootstrap pseudo-observations
X∗

1 , X
∗
2 , . . . , X

∗
N , . . . , X∗

(l+1)b from which only the first
N points X∗

1 , X
∗
2 , . . . , X

∗
N are retained.

The illustrations of the SBB and the GSCBB are shown in
Figures 1a and 1b, respectively.
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Fig. 1: (a)The illustrations of the Seasonal Block Bootstrap
(SBB) [19] and (b) the Generalised Seasonal Circular Boot-
strap (GSCBB) [8]

The aforementioned methods deal with the assumption of a
single known seasonality. We propose the Complex Seasonal
Circular Block Bootstrap (XSCBB), that may take a signal
with multiple seasonalities. Section II elaborates the proposed
method and its application on a time series that can be
modeled with the composite ARMA(p, q) – GARCH(r, s)
model. Section III gives the results when the proposed method
is applied to a real life data set including the comparison
with those from a residual bootstrap method and the published
results from the ENTSO-E Transparency Platform [7]. Lastly,
Section IV gives a brief conclusion and the future direction.

II. METHODOLOGY

Algorithm 1 describes the proposed XSCBB method. The
application of interest is finding the prediction interval of
a time series that can be modeled with ARMA(p, q) –
GARCH(r, s) model. The summary of the parametric appli-
cation of XSCBB is given in Algorithm 2.

Here we use the composite conditional mean and variance
ARMA(p, q) – GARCH(r, s) model,

Xt = a0 + εt +

p∑
i=1

aiXt−i +

q∑
j=1

αjεt−j (2)

where the residual εt =
√
htηt and the conditional variance

process has the form

ht = b0 +

s∑
j=1

bjε
2
t−j +

r∑
i=1

βiht−i, (3)

b0 > 0, bj ≥ 0, βi ≥ 0, and the innovations {ηt} are
independent and identically distributed (i.i.d) random variables
such that E [ηt] = 0, E

[
η2t
]

= 1, follow a symmetric
distribution E

[
η3t
]
= 0, and E

[
η4t
]
<∞.

Let θ = (a0, . . . , ap, α1, . . . , αq, b0, . . . , bs, β1, . . . , βr)
′.

The log likelihood function for a set of N observations is

LN (θ) =
1

N

N−1∑
i=0

lt−i (θ) (4)

where

lt (θ) = −
1

2
log ht (θ)−

ε2t
2ht

(θ) . (5)

A quasi maximum likelihood (QML) estimator θ̂ is any
measurable solution of

θ̂ = argmax
θ∈Φ

LN (θ) , (6)

with the parameter space Φ = Φa×Φb, where Φa ⊂ Rp+q+1,
Φb ⊂ Rs+r+1

0 , R = (−∞,∞), and R0 = [0,∞) [13].
Since the predictions are done after deseasonalising, the

original seasonalities need to be added back. Let A (L) be
the lag operator polynomial,

A (L) =
(
1− Ld1

)
· · ·

(
1− LdM

)
= 1 + ϕ1L

1 + . . .+ ϕκL
κ, ϕ1,...,κ ∈ {−1, 1} ,

(14)

then the inverse seasonal difference operator is

A−1 (L) = 1− ϕ1L
1 − . . .− ϕκL

κ. (15)

The predicted value in the original domain is then

x̂t+1 = [−ϕκ,−ϕκ−1, . . . ,−ϕ1, 1]
⊺

[xt−κ+1, xt−κ+2, . . . , xt, x̃t+1] . (16)

For the application, we used the hourly electricity consump-
tion in Megawatt from TransnetBW, one of four transimission
grid operators in Germany. The sample points are hourly
from January 1st 2015 until October 1st 2020 (Figures 2a,
2b). We calculated the one-hour-ahead and one-day-ahead
predictions. For both cases, the number of historical sample
points used to estimate the parameters is N = 840. We
compared the forecasted values to the day-ahead load forecast
in TransnetBW as published on the ENTSO-E Transparency
Platform. The dataset is publicly available in Open Power
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Algorithm 1 The Complex Seasonal Circular Block Bootstrap
(XSCBB)

Step 1 Given the multiple seasons d1, . . . , dM , calculate
their least common multiple d = lcm (d1, . . . , dM ).

Step 2 Choose an integer b such that the resampled block
length is b · d. There are k = ⌈N/ (b · d)⌉ blocks of
samples that will be “stitched” together, where ⌈·⌉ is
the ceiling notation.

Step 3 For j = 0, . . . , k − 1, let(
X∗

jbd+1, X
∗
jbd+2, . . . , X

∗
(j+1)bd−1

)
=

(
Xij , Xij+1, . . . , Xij+bd−1

)
(7)

where ij is a discrete uniform random variable taking
values in the set

S = {τ, ϕ (τ + d) , ϕ (τ + 2d) , . . . ,

ϕ (τ + ⌈N/d⌉ d)} (8)

where 1 ≤ τ ≤ N , and

ϕ (t) =

{
t, t ≤ N

t mod N, t > N.
(9)

Step 4 Join the k blocks to obtain a new series
of bootstrap pseudo-observations X∗

1 , X
∗
2 , . . . , X

∗
kbd,

kbd ≥ N , and retain only the first N points,
X∗

1 , X
∗
2 , . . . , X

∗
N .

System Data [7]. We also compared the prediction intervals
obtained by XSCBB to those obtained by a residual bootstrap
method [10] that can be summarised as follows:

• Deseason the past N samples similarly to Step 2 of
Algorithm 2.

• Obtain the QML estimator θ̂, calculate the residuals ε̂τ ,
variance ĥτ and the standardised residuals ε̃τ in a similar
way to Equations (11)-(13), except with the original
deseasonalised observations.

• Resample ε̃τ with replacement to obtain ε̃⋆τ , τ = t−N+
1, . . . , t. With θ̂, xt, ĥτ , and ε̃⋆τ as the disturbance path,
estimate the predicted value at time t + 1, x̃, according
to Eq. (2).

• Repeat B times to obtain the bootstrapped predictions,
and the rest is as in Step 6 and 7 of Algorithm 2.

III. RESULTS

The deseasonalised sample is depicted in Fig. 2c. The
Engle’s test [9] to the resulting residuals indicated that they
are heteroskedastic. Both the Akaike Information Criterion
(AIC) [6] and Bayesian Information Criterion (BIC) [20]
confirmed the most parsimonious model to be ARMA(1, 1)
– GARCH(1, 1).

As shown in Figures 3 and 4, the prediction intervals
of XSCBB are consistently narrower, which indicates that
it is more stable than the residual bootstrap method. Due
to the narrower intervals, there is naturally a trade-off in

Algorithm 2 Parametric XSCBB for ARMA(p, q) –
GARCH(r, s) Model

Step 1 With N past observations
{Xτ , τ = t−N + 1, . . . , t}, obtain the bootstrapped
observations X∗

1 , X
∗
2 , . . . , X

∗
N using the XSCBB.

Step 2 Deseasonalising of the bootstrapped sample: Let
L be the lag (backshift) operator such that Ljxτ =
xτ−j . The stationary (deseasonalised) bootstrap ob-
servations X̃∗

1 , X̃
∗
2 , . . . , X̃

∗
N are obtained by multi-

plying them with the suitable lag operator polyno-
mials,

X̃∗
τ =

(
1− Ld1

)
· · ·

(
1− LdM

)
X∗

τ . (10)

Step 3 With X∗
1 , X

∗
2 , . . . , X

∗
N , obtain the

quasi maximum likelihood (QML)
estimator of the parameters θ̂

∗
=(

â∗0, . . . , â
∗
p, α̂

∗
1, . . . , α̂

∗
q , b̂

∗
0, . . . , b̂

∗
s, β̂

∗
1 , . . . , β̂

∗
r

)
and calculate the residuals

ε̂∗τ =Xτ − â∗0 − ε̂∗0 −
p∑

i=1

â∗iXτ−i −
q∑

j=1

α̂∗
j ε̂

∗
τ−j ,

τ = t−N + 1, . . . , t (11)

Step 4 Compute the variance

ĥ∗
τ = b̂∗0 + b̂∗1ε̂

∗2
τ−1+ β̂∗

1 ĥ
∗
τ−1, τ = t−N +1, . . . , t

(12)
and the standardised residuals

ε̃∗τ =
ε̂∗τ√
ĥ∗
τ

, τ = t−N + 1, . . . , t. (13)

Step 5 With θ̂
∗
, ĥ∗

τ , and ε̃∗τ as the disturbance path,
estimate the predicted value at time t+ 1, x̃.

Step 6 Repeat Step 1-5 B times to obtain the boot-
strapped predictions, x̃1, x̃2, . . . , x̃B and sort these
into x̃(1) ≤ x̃(2), . . . ≤ x̃(B).

Step 7 Obtain the 100 (1− α)% confidence interval
from x̃(1) ≤ x̃(2), . . . ≤ x̃(B) and the estimated
point prediction from the average

∑B
j=1 x̃j/B, or

the median Med (x̃1, x̃2, . . . , x̃B).

the coverage probabilities (CP) as shown in the results in
Table I. Nevertheless, the Root Mean Squared Errors (RMSE)
and the Mean Absolute Percentage Error (MAPE) of the
proposed method are consistently better than those of the
residual bootstrap and the published predictions by ENTSO-E
Transparency Platform.

IV. CONCLUSIONS AND FUTURE WORK

We proposed the XSCBB, a variation of the seasonal
block bootstrap that may take multiple seasonalities, and its
parametric application to a time series that may be modeled by
the composite conditional mean and variance ARMA(p, q) –
GARCH(r, s). As compared to the residual bootstrap method,
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Fig. 2: (a) The full dataset of hourly electricity consumption in Megawatt (MW), (b) the natural log of the last 10 days (240
hours) of the dataset, and (c) the corresponding non-seasonal and multiple seasonal differenced log sample.

Fig. 3: One hour ahead predictions from hourly training sample with N = 840, b = 2, B = 500, d = lcm(1, 7, 24) = 168,
noting that d1 = 1 will remove the linear trend in the time-series.

Fig. 4: One day ahead predictions from hourly training sample with N = 840, b = 2, B = 500, d = lcm(1, 7, 12) = 84.

TABLE I: Prediction metrics for the experiment setting as described in Figures 3 and 4.

Hour-ahead-predictions Day-ahead-predictions

CP RMSE (MW) MAPE (%) CP RMSE (MW) MAPE (%)
Median Mean Median Mean Median Mean Median Mean

Residual Bootstrap 96.25 330.38 384.10 2.85 2.98 97.9 368.64 366.83 3.71 3.72
XSCBB 95 271.749 325.04 2.48 2.47 90.42 323.15 325.04 3.43 2.97

Published RMSE: 375.12 MW, MAPE: 4.52%

the proposed XSCBB is more stable, as evident from the
narrower prediction intervals. The accuracy metrics also show
the XSCBB is better than the other 2 methods.

In our example, the block size b = 2 was arbitrarily

determined. In the future, this value should be optimised, such
that the coverage percentage and the accuracy can be further
improved.
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