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Abstract—Thunderstorm risk assessment is a key point in the
framework of the air traffic management and aircraft safety.
We consider a relevant list of 10 meteorological parameters
characterizing the state of the atmosphere from the standpoint
of lightning strike risk. Each parameter makes a binary decision
by performing a likelihood test based on its local threshold. The
optimal decision fusion is a weighted sum of discret random
variables not identically distributed. We show that the law
of this sum can be accurately estimated by the saddlepoint
approximation. We propose a method to maximize the detection
probability with respect to the local thresholds, subject to the
constraint of a global false alarm probability. An illustration of
the application of this method to thunderstorm risk assessment
has been done on the Gulf of Mexico.

Index Terms—thunderstorm risk, data fusion, thresholds op-
timization, saddlepoint approximation, detection probability op-
timization

I. INTRODUCTION

Lightning risk is one of the risks for aviation, when aircraft
fly near or inside a thunderstorm (the main lightning generator
on Earth). In recent years, different methods to assess the
risk of thunderstorms have been developed based on different
mathematical concepts such as belief function [1], machine
learning [2], ensemble prediction model [3] or based on the
definition of new index using thresholds [4]. In this study,
a new method is proposed for thunderstorm risk assessment
based on optimal data fusion. This method has the specificity
of being able to set a global false alarm probability Pfa.
The paper considers the problem of the fusion of binary de-
cisions H1 or H0. Each local decision is made by performing
a likelihood ratio test (LR) based on a local measurement
and on a local threshold. The problem of optimal decision
fusion has been formulated in [5], [6] in terms of weighted
sum of incoming decisions. This statistic is a weighted sum
of discrete variables not identically distributed. Under each
hypothesis, we show that the law of this statistic can be
accurately estimated by the saddlepoint method. We present an
efficient method to maximize the global detection probability
Pd with respect to the local thresholds subject to a global
Pfa constraint. Local decisions are then made based on
these optimized thresholds. By performing a LR test on the
weighted sum of the local decisions, the final decision is made.
Thanks to the saddlepoint approximation, the global Pd and
Pfa are estimated accurately. Similar approaches have been

proposed in the context of distributed data fusion [7] and in the
context of serial distributed decision fusion [8]. Saddlepoint
approximation has also been applied in a centralized detection
network where the raw data are transmitted to the fusion center
[9], in the context of parallel fusion network [10] and in the
field of channel coding [11].
In section II, we recall the optimal decisions fusion rule based
on the Neyman-Pearson test. In section III, we describe the
saddlepoint approximation and we adapt it to estimate the
law of a sum of discrete random variables not identically dis-
tributed. In section IV, a method of optimization is described
to maximize the global detection probability with respect to
the local thresholds. Section V is devoted to the application
of the proposed method to thunderstorm risk assessment using
real data from meteorological parameters.

II. RISK ASSESSMENT METHODOLOGY

A. Likelihood ratio test for binary decision

Under the hypothesis H1 and under H0, denoting the
distribution of the measurement zi from the i-th meteorological
parameter as P(zi|H1) and P(zi|H0) respectively, the likeli-
hood ratio (LR) test, referred as the Neyman-Pearson test [12],
is expressed as follows:

Λ(zi) =
P(zi|H1)

P(zi|H0)

H1

≷
H0

ηi. (1)

We denote the local decisions as X1, . . . , Xn:
{
Xi = 1 ⇐⇒ Λ(zi) ≥ ηi
Xi = 0 ⇐⇒ Λ(zi) < ηi.

(2)

The conditional laws of Xi are assumed to be known for any
value the threshold ηi:
{
P0(Xi = 0)

def
= P(Xi = 0|H0) = 1− Pfa(i)

def
= 1− αi

P1(Xi = 1)
def
= P(Xi = 1|H1) = Pd(i)

def
= µi.

(3)
The optimal detection rule based on the local decisions
(X1, . . . , Xn) is given by the LR test:

P(X1 = x1, . . . , Xn = xn|H1)

P(X1 = x1, . . . , Xn = xn|H0)
≥ η =⇒ H1. (4)

2013ISBN: 978-9-4645-9360-0 EUSIPCO 2023



We assume that the measurements zi, conditioned on each
hypothesis, are independent. The global likelihood ratio test is
then expressed as follows:

Z =

n∑

i=1

log

[
P1(Xi = xi)

P0(Xi = xi)

]
≥ log η =⇒ H1 (5)

Since the variables Xi take the values xi = 0, 1, we have:
{
P1(Xi = xi) = µxi

i (1− µi)1−xi

P0(Xi = xi) = αxi
i (1− αi)1−xi .

(6)

By replacing these terms in (5), we obtain:

Z =

n∑

i=1

log

[
1− µi
1− αi

]
+

n∑

i=1

log

[
µi(1− αi)
αi(1− µi)

]
Xi

= const +

n∑

i=1

aiXi,

(7)

where

ai = log

[
µi(1− αi)
αi(1− µi)

]
. (8)

As a result, by denoting Yi = aiXi, the LR test (4) test relies
on the sufficient statistic Ȳ = 1

n

∑n
i=1 Yi. Hence, the optimal

final decision is given by the following test:

LR test :





Ȳ =
1

n

n∑

i=1

aiXi ≥ γ =⇒ H1

Ȳ =
1

n

n∑

i=1

aiXi < γ =⇒ H0.

(9)

The threshold γ is determined by a fixed global false alarm
probability Pfa, namely:

Pfa = P

(
1

n

n∑

i=1

Yi ≥ γ|H0

)
= P0(Ȳ ≥ γ). (10)

We observe that Ȳ is a weighted sum of independent discrete
random variables not identically distributed. Indeed, the law
of Yi depends on (αi, µi) (3). The issue is to approximate
the law of Ȳ especially in the tail areas since the global false
alarm probability Pfa (10) will take small values.

III. SADDLEPOINT APPROXIMATION

Since Ȳ is a weighted sum of n discret random variables
(9), the central limit theorem (CLT) is not suitable to estimate
the law of Ȳ . The CLT gives poor estimations in the tail areas
especially in terms of relative errors. On the contrary, as we
will see below, the saddlepoint (SP) approximation can be
adapted to accurately estimate the cumulative density function
(CDF) of Ȳ , in particular in the tail area.

A. Introduction to saddlepoint approximation

Originally, the saddlepoint method [13] has been devel-
oped to approximate the distribution of the mean of i.i.d.
continuous random variables Zi: Z̄ = 1

n

∑n
i=1 Zi. The thesis

[14] provides a complete overview of the saddlepoint method.
Theoretical aspects are given in [15]. The probability density
function (pdf) of Z̄ is approximated as follows:

fZ̄(z̄) ≈
(

n

2πK ′′(T0)

) 1
2

exp [n(K(T0)− T0 z̄] , (11)

where K(t) = logE
[
etZ
]

is the cumulant generating function
(CGF) of Zi and where T0 is the saddlepoint, solution of the
equation: K ′(t) − z̄ = 0. A very accurate approximation of
the CDF, even in the tail area and for small values of n, is the
following [16]:

P[Z̄ ≥ z̄] ≈ 1− Φ(u) + φ(u)

(
1

t
− 1

u

)
, (12)

Φ and φ stand for the standard normal CDF and for the pdf
respectively, where u = sign(T0)

√
2n (T0 z̄ −K(T0))1/2 and

t = T0 (nK
′′
(T0))1/2. When z̄ is close to the mean of Z̄,

T0 is close to 0 and equation (12) should be replaced by the
following one [15]:

P[Z̄ ≥ z̄] ≈ 1

2
− 1

6
√

2πn

K ′′′(T0)

K ′′(T0)
3
2

. (13)

B. Application to the estimation of the law of Ȳ

Saddlepoint approximations of i.i.d discrete random vari-
ables are similar to that of continuous random variables [17].
The discrete random variables, Yi = aiXi, conditioned on
each hypothesis, are assumed independent (5) but they are
not identically distributed. To derive an approximation of
P(Ȳ ≥ ȳ) by the saddlepoint method, one can prove that it is
right to apply the formulae (12) with K(t) = 1

n

∑n
i=1Ki(t)

where Ki(t) = logE
[
etYi

]
is the CGF of Yi = aiXi. The

expression of K(t) is the following:




K(t) =
1

n

n∑

i=1

log
(
1− αi + αi e

ait
)

under H0

K(t) =
1

n

n∑

i=1

log
(
1− µi + µi e

ait
)

under H1.

(14)

The derivatives K ′(t), K ′′(t) and K ′′′(t) involved in the SP
approximation (12), (13) can be straightforward calculated.
For each hypothesis Hi, the saddlepoint T0 is the solution of
K ′(t)−ȳ = 0, which can be found easily since K(t) is convex
[18].
The following example illustrates the accuracy of the saddle-
point approximation. For this, we will require the Receiver
Operating Characteristic (ROC) curves of the meteorological
parameters connecting the local Pd to the local Pfa: µi =
ROC(αi). They are described in section V. We propose to
estimate ρ0 = P0( 1

n

∑n
i=1 aiXi ≥ γ) for several γ by the SP

approximation (12) with n = 10. The coefficients ai (8) and
the law of Xi (3) depend on (αi, µi) marked with an asterisk
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(*) in the ROC curves (Fig. 3). To assess the accuracy of
the SP method, we estimate empirically ρ0 by sampling 107

Bernoulli variables: Xi ∼ Bernoulli(αi). The latter estimation
is considered as exact. As we can see on figure (1), the SP
approximation is accurate and smooth for the whole range of
the threshold γ.

   P 0
(Ȳ

≥
γ
)

Th
e

de
riv

at
iv

es

Fig. 1: SP approximation and empirical estimation of ρ0

IV. DETECTION PROBABILITY OPTIMIZATION

A. Local threshold optimization
We aim to optimize the global detection probability Pd with

respect to the local thresholds ηi (1) related to local decisions
Xi (2). This is equivalent to maximize Pd with respect to
the local false alarm probabilities αi (3). This optimization is
subject to the constraint on the global false alarm probability
Pfa (10). Hence, the optimization problem leads to:





max
(α1...,αn)

P

(
1

n

n∑

i=1

aiXi ≥ γ|H1

)

subject to

P

(
1

n

n∑

i=1

aiXi ≥ γ|H0

)
= Pfa,

(15)

where the binary random variables Xi are defined in (3). Under
each hypothesis, the distribution of 1

n

∑n
i=1 aiXi depends only

on (α1 . . . , αn) since the local detection probability µi (3)
is a function of αi thanks to the ROC curves (Fig. 3). We
propose a formulation in which the constraint (15) is included
in the objective function to be maximized. Assessment of this
function is done in three stages.

Objective function formulation

• Compute the coefficients ai (8)

(α1, . . . , αn)→ (a1, . . . , an) = g0(ROC) (16)

• Compute the threshold γ satisfying the global Pfa con-
straint

(a1, . . . , an) → P0 [Ȳ =
1

n

n∑

i=1

aiXi ≥ γ] = g1(γ)

g1(γ) = Pfa → γ = g2 (Pfa, α1, . . . , αn) (17)

• Compute the objective function G

γ → Pd = P1 [
1

n

n∑

i=1

aiXi ≥ γ]
def
= G [Pfa, α1, . . . , αn].

(18)
All the probabilities involved in the evaluation of the objective
function formulation are estimated by the SP approximation
(12) with K(t) described in (14). The coefficients ai (8) are
computed thanks to the ROC curves (Fig. 3). The function
g2 is computed by solving g1(γ) = Pfa, which is an easy
task, since g1(γ) is continuous (due to the SP approximation)
and strictly decreasing. The constrained optimization (15) is
equivalent to the following unconstrained maximization:

(α̂1, . . . , α̂n) = arg max
(α1,...,αn)

G[Pfa, α1, . . . , αn], (19)

where G(.) is defined in (18). By construction, the optimum
(α̂1, . . . , α̂n) satisfies the global Pfa constraint (15). The
optimization algorithm used is the interior-point algorithm
implemented in MATLAB. For n=10, its computation cost is
about 4 min on a 2.5 GHz Intel Core i5 processor. We note
that this method is carried out offline.

B. Optimization implementation

The ROC curves of the meteorological parameters (θi) are
provided to the local thresholds optimizer (Fig. 2). From these
curves and from the given global Pfa, the optimizer gives the
optimized coefficient α̂i (19) to each local detector related to
θi and provides the global threshold γ̂ = g2 (Pfa, α̂1, . . . , α̂n)
(17) to the fusion center. Then, the thresholds η̂i (1) are
computed according to α̂i. The decisions Xi are the results
of the local LR tests (2) with the measurements zi and the
thresholds η̂i. Now, the fusion center gives the final decision
(9). The meteorological parameters may vary from mesh to
mesh (section V-C). The optimization must then be updated,
giving new local thresholds η̂i. The optimal α̂i for Pfa = 0.1
and n = 10 are shown in figure (3).

Local thresholds optimizer

ROC(1) ROC(i) ROC(n)

Fusion center

∈ { }
Xn ∈ {0, 1}

s’obtient en résolvant
X1 ∈ {0, 1} Xi ∈ {0, 1}

α̂1 α̂i α̂n

Λ(z1)
H1

≷
H0

η̂1 Λ(zi)
H1

≷
H0

η̂i Λ(zn)
H1

≷
H0

η̂n

γ̂

1

n

n∑

i=1

aiXi

H1

≷
H0

> γ̂

(1). This optimization is subject to the constraint on the global
false alarm probability Pfa

(

of the physical parameter θi
(??

θnof the physical parameter θ1

Fig. 2: Final decision implementation.

V. EXPERIMENTAL RESULTS

In order to illustrate the potential of the proposed method,
it has been applied on a real meteorological dataset.
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A. Meteorological parameters

The case of May 9, 2016 on the Gulf of Mexico was chosen.
The dataset used in this application comes from the output of
the numerical weather prediction model, Action de Recherche
Petite Echelle et Grande Echelle (ARPEGE), developed by
Météo-France in collaboration with the European Centre for
Medium-Range Weather Forecasts (ECMWF) [19]. ARPEGE
is a stretched global and spectral general circulation model
with a horizontal resolution ranging from 7.5 km over Europe
to 36 km at the opposite side of the globe in its 2015 version
[20]. Numerical weather prediction models solve the equation
describing the evolution of the atmosphere, with an assimi-
lation of observations. In addition, physical parameterizations
are included in this model to take into account meteorological
phenomenon not resolved by the model. Thus, the model
provides an estimate of the future state of the atmosphere. For
this application, the estimation of the state of the atmosphere at
09:00 UTC on May 9, 2016, based on informations produced
at 00:00 UTC on May 9, 2016, has been chosen.
A relevant list of 10 meteorological parameters has been
compiled to characterize the state of the atmosphere from the
standpoint of lightning strike risk. The following 10 parame-
ters provide informations on the dynamical, thermodynamical
or electrical state of the atmosphere. More details on theses
parameters can be found in [1].

• The convective nebulosity (NEBCON) indicates the per-
centage convective cloud in a mesh

• The convective precipitation (PRECIP), expressed in
kg/m2, is the estimate of 3-h accumulated precipitation
induced by a convective process

• The total water content (TWC) and the total ice water
content (TIWC), expressed in (kg/m2), are respectively
the sum of the water (resp. ice) content of all layers of
the atmosphere in a given mesh of the model

• The vertical velocity at the isotherm 0◦C (WISO), ex-
pressed in (m/s), provides information on the dynamic
component inside the cloud

• The maximum of relative humidity in the atmospheric
column at a given location (RH) expressed in %

• The lifted index (LI), expressed in degrees Kelvin, devel-
oped by Galway [21], characterizes the instability of the
atmosphere

• The convective available potential energy (CAPE), ex-
pressed in (J/kg), is the potential energy available to an
air parcel to lift up from the free convection level [22]

• The temperature at the top of the convective cloud (CTT)
is expressed in degrees Kelvin

• The difference between the altitude of the bottom of the
convective cloud and the altitude of the 0◦C isotherm
(ALTB) expressed in meters

In the present application, we aim to estimate thunderstorm
risk. Consequently, two states are defined: H0 is associated
with a meteorological situation without thunderstorm and H1

is a meteorological situation with thunderstorm. The first step
in applying the method was to obtain the distribution of

each of the meteorological parameters with and without a
thunderstorm. To calculate these distributions, data have been
cumulated over the Atlantic North (only meshes above the
sea are considered), with ARPEGE model, during 5 years
from 2012 to 2016. The distinction between the two cases
(H0 and H1) is made using the lightning location information
detected by the World Wide Lightning Location Network
(noted WWLLN) [23]. The ability to discriminate between
the 2 hypotheses of these distributions is illustrated in the
following ROC curves.

B. Receiver Operating Characteristic curves

The ROC curves, deduced from meteorological parameters
distributions, are computed as follows. Given Pfa(i), the
threshold ηi is calculated such that P0(Λ(zi) ≥ ηi) = Pfa(i)
(1). The detection probability is then obtained by computing
Pd(i) = P1(Λ(zi) ≥ ηi). The ROC curves of the 10
meteorological parameters, as well as the optimal α̂i (19),
are presented in the following figure. As we can see, the
parameters ALTB, RH and CTT are the least efficient to
discriminate the 2 hypothesis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
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1.2
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ALTB

LI

NEBCON

PRECIP

RH

TIWC

CTT

TWC

WISO

Fig. 3: ROC curves of the 10 meteorological parameters.
Optimal (α̂i, µ̂i) (*) for global Pfa = 0.1.

C. Thunderstorm detection performance

The geographical domain study extends from [15◦N ; 40◦N ]
in latitude and [100◦W ; 50◦W ] in longitude, with a mesh of
0.25◦× 0.25◦. For each mesh of the grid, firstly non-physical
data are removed from the dataset. The methodology is then
applied. Depending on the availability of the meteorological
parameters, the number of parameters used in a mesh varies
between 5 and 10. As a result, local thresholds optimization
(Section IV-A) must be performed for each mesh. At the
output of the the global LR test (9), a binary decision is
obtained for each mesh. By setting the theoretical Pfa to 10%
(15), we obtain the results shown in figure 4. On the map, a
mesh is colored in red if a risk is estimated and in grey if
not. In addition, the green dots indicates the lightning flashes
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detected by the WWLLN. This map highlights different areas
of thunderstorm risk.
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Fig. 4: Map of decision for the May 9, 2016 at 09:00 UTC. In
gray, the decision is equal to 0, which means no risk of
thunderstorm. In red, the decision is equal to 1, which means a
risk of thunderstorm. The green dots indicate lightning strokes
detected by the WWLLN.

For each mesh, two informations are compared: the light-
ning detection by the WWLLN and the decision obtained at the
output of the methodology. The geographical domain is com-
posed of 3655 meshes. Among them, lightning flashes have
been detected in 83 meshes. Statistical results are presented
in table I. By setting a global false alarm probability to 10%
(15) at the input of the method, we obtain a actual global false
alarm rate of 14.7% and an actual detection rate of 84.3%.

Correct detections False alarms
Number of meshes 70 526

Percentage 84.3 % 14.7 %

TABLE I: performance of the method on real data.

VI. CONCLUSION

An optimal data fusion methodology, based on the saddle-
point approximation, has been developed. The advantage of
this method is to set a global false alarm probability while
maximizing the global detection probability by optimizing the
local thresholds related to the meteorological parameters. This
method has been applied to a real dataset composed of 10
meteorological parameters extracted and derived from outputs
of a numerical weather prediction model. Its application shows
good performance in thunderstorm risk assessment. Neverthe-
less, improvements of the optimization algorithm could be
done in order to reduce the computational time. In addition,
further works will take into account possible correlations
between the parameters.
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