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Abstract—Independent component analysis is often considered
in a framework where the p observed variables are a mixtures
of only d < p latent independent components which are contam-
inated by white noise. The goal is then to estimate the number of
latent components as well as the components itself. Meanwhile
several approaches exist to estimate d which are all are based
on the eigenvalues of the covariance matrix. However all these
approaches were developed and tested in scenarios where p is
moderately small. If p is however large the estimation of the
eigenvalues suffers. To improve the estimation of d by better
estimation of the eigenvalues we employ the recently suggested
Elasso which penalizes the eigenvalue structure and groups them
together when possible. We show how the Elasso can be used for
estimation of d and show in simulations and in an example that
it is better than the competing methods when p is large.

Index Terms—noisy ICA, signal dimension, Elasso, order
determination

I. INTRODUCTION

One of the fundamental tasks in multivariate data analysis
is to extract signals from an observed set of data, which are
often assumed to be a linear mixture of the lower-dimensional
signals contaminated by noise. A popular way to blindly
estimate the signals is the independent component analysis
(ICA). Here, the blind means both the signals and the mixing
process are unknown. Numerous methods have been proposed
to solve the ICA problem, which are wide applicable in many
areas, for example, speech and noise filtering, financial time
series, telecommunications, medical images, and so on (see
[1], [2], [3], and the reference therein, for an overview).
Basically, the signals could be recovered by estimating a linear
transformation that guarantees independence between signals,
which are assumed to be non-Gaussian, as long as the number
of the signals are known. However, the signal dimension is
usually unknown in practice and needs to be estimated.

The goal of the current work is to estimate the signal
dimension in ICA. Throughout the paper, we consider the
following noisy ICA model

x = As+ σϵ, (1)

where A is a p × d mixing matrix. s = (s1, · · · , sd)⊤
contains the independent signals, with zero means and identity
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covariance matrix and d is referred to as the signal dimension
or signal number. ϵ is a p× 1 Gaussian white noise vector, in
dependent of the signals, with mean vector 0 and covariance
matrix Ip. σ2 denotes the unknown noise variance parameter.
In the above model, only x is observed and A is assumed to
be a full rank matrix, with rank d < p. The covariance matrix
of x is then given by:

Σ = AA⊤ + σ2Ip, (2)

which implies the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp of Σ are
respectively equal to

(δ1 + σ2, · · · , δd + σ2, σ2, · · · , σ2), (3)

where δ1 ≥ · · · ≥ δd > 0 are the d non-zero eigenvalues of
AA⊤. The structure of (2) or (3), can also be expressed as
the hypothesis:

H0d : λd > λd+1 = · · · = λp. (4)

[4] consider an asymptotic test to consistently estimate the
signal dimension d of the ICA model based on the principal
component analysis (PCA).

In the literature, the covariance matrix of the form (2)-(4),
also known as sub-sphericity models or factor models [5],
[6], is well-studied, and the problem of estimating d has been
investigated thoroughly, under different settings. For example,
in signal processing of IID Gaussian signals, the information
theoretic criteria were considered in, e.g., [7] and [8]; in time
series factor models, [9] estimate the signal dimension based
on the ratios of eigenvalues of autocovariance matrix; and
so on. The information theoretic criteria and the asymptotic
test are designed to perform well when the sample size is
much larger than the dimension, while the ratio-based method
is proved to work well for time series data and when the
dimension also grows with the sample size. However, it is
unknown yet how well those methods work in noisy ICA
setting and when the dimension is comparable with the sample
size.

Recently, to improve the poor performance of the sample
covariance when sample size is small relative to the dimension
of the data, [10] propose a class of nonsmooth penalty func-
tions, called Elasso, that can group the empirical eigenvalues
together. This method can be used to determine the number
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of signals when the sample size is not large enough. The goal
of this work is to present the benefit of its use for the signal
estimation, in a noisy ICA model of large variable dimension,
which has not yet been considered, and compare this procedure
with the above mentioned asymptotic test, ratio-based and
information criteria method in an extensive simulation study
and an real data example.

II. METHODOLOGIES

Given a set of n independent observations x1, · · · ,xn

of x, the sample covariance matrix is computed by S =
1
n

∑n
i=1(xi − x̄)(xi − x̄)⊤. Let l1 > · · · > lp > 0 be

the eigenvalues of S, and denote its eigen-decomposition as
S = PLP T , where L = diag{l1, · · · , lp}, and P is an
orthornormal matrix contains the eigenvectors of S. Consider
a set of null hypotheses:

H0k : d = k, k = 0, · · · , p− 1.

Under H0k, the eigenvalues of Σ are λi = δi + σ2(i =
1, 2, · · · , k) and λk+j = σ2(j = 1, 2, · · · , p− k).

When H0k is true and the noise are normally distributed,

Tk ≡
n(
∑p

j=k+1 l
2
j − (p− k)−1(

∑p
j=k+1 lj)

2)

2((p− k)−1
∑p

j=k+1 lj)
2

→ χ2
(p−k−1)(p−k+2)/2.

And the signal dimension can be consistently estimated by

Asym(d̂) = argmin
k=0,1··· ,p−2

{Tk < ck,n},

where ck,n → ∞ and ck,n = o(n). In practice, it is a non-
trivial task to select the sequences ck,n that guarantees the
performance of d̂ in finite samples. Therefore usually a divide-
and-conquer strategy is employed to estimate the dimension;
see for example [11]. Due to this limitation, the asymptotic
test performs poorly when p is large.

When the signals and noise are all normally distributed,
[8] proposed the IID likelihood-based information theoretic
criteria. The AIC criterion is given by

AIC(d̂) = argmin
k=0,1,··· ,p−1

{−2 logLk + 2k(2p− k)}

where Lk =

(∏p
i=k+1 l

1/(p−k)
i

1
p−k

∑p
i=k+1 li

)(p−k)n

is the Gaussian likeli-

hood ratio under the assumption of k signals. Similarly, the
MDL criterion is defined as

MDL(d̂) = argmin
k=0,1,··· ,p−1

{− logLk +
1

2
k(2p− k) log n}.

It was argued in [8] that MDL yields a consistent estimate of
the number of signals, while the AIC tends to overestimate.
The Gaussian assumption was relaxed in [7] and they showed
that the consistency of MDL also holds when x in (1) has an
elliptical distribution. However, it is unclear if they still have
a good performance in the noisy ICA setting.

Note that both the asymptotic test and the information
criteria depend on the fact that lk starts to become stable at
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Fig. 1. Elasso solution path for three signals when the sample size is 50 and
the dimension is 20. The upper figure is plotted using the SS weights and
the lower figure is plotted using the MP weights. The vertical bars give the
cut-off point based on cross-validation.

k = d+1. This fact could also be described by the behavior of
the ratio of the empirical eigenvalues. So, motivated by [12]
and [9], we propose the following ratio-based estimator

S(d̂) = argmin
i=1,··· ,M

li − li+1

li + li+1
,

where d < M < p is a predefined constant. Note that we
define the optimal as the minimum of the ratio, instead of the
maximum as done in most literature of factor models, because,
in noisy ICA setting, the true optimal ratio drop to 0 when
i = d + 1. In the factor model context, as discussed by [13]
and the reference therein, it is often argued that it would be
more stable to use the eigenvalues of the correlation matrix
instead of the eigenvalues of the covariance matrix. In the
noisy ICA model however, it is not clear that the correlation
matrix would have the eigenvalue structure as postulated in
hypothesis (4) and therefore we advise against this approach.
As the original ratio-based estimator defined in [9] was shown
to work better, when the dimension of time series increases
as the sample size, we expect S(d̂) would perform better than
the asymptotic test and the information criterior for large p.

Testing a sequence of H0k is also a type of model selection
problem, where covariance matrix with grouped eigenvalues
is regarded as a model. Recently, Tyler and Yi [10] studied
penalized sample covariance matrix estimators based on a class
of non-smooth penalties, that can automatically partition the
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Fig. 2. Estimated signal number when the sample size is n = 50 based on 1,000 repetitions.The columns correspond to different dimension of the observable
data and the rows to different variance levels.

empirical eigenvalues into distinct groups; thus is referred as
the Elasso-estimators. The Elasso estimator is defined as:

Σ̂η = arg min
Σ>0

Tr(Σ−1S) + log |Σ|+ η

p∑
i=1

ai log λi,

where a1 ≥ · · · ≥ ap are the weights satisfying
∑p

i=1 ai = 0.
It was shown that the solution Σ̂η has the form

Σ̂η = PΛηP
⊤, Λη = diag{λ̂1, · · · , λ̂p},

where λ̂1 ≥ · · · ≥ λ̂p is the solution of

min
λ1≥···≥λq>0

p∑
j=1

{lj/λj + (1 + ηaj) log(λj)}.

Different values of the tuning parameter η yield different
multiplicities of eigenvalues that solve the above optimization
problem. The best tuning could be selected by regular K-fold
cross-validation or model cross-validation; see [10] for details.
If the best tuning suggests the roots have r different groups,
with the p− k smallest eigenvalues in one group, thus having
weight (multiplicity) wr = p − k, and all the larger eigen-

values are distinct, with weight wi = 1, (i = 1, · · · , r − 1),
respectively, then the eigenvalues of Σ̂η has the structure

λ̂1 > · · · > λ̂k > λ̂k+1 = · · · = λ̂p.

The signal dimension could thus be estimated by

Elasso(d̂) = argmin
i=1,··· ,r

{wi > 1} − 1.

The choice of the weights aj , j = 1, · · · , p depends on the
application of interest. For example, if we want to group the
smallest eigenvalues together, we could choose the SS weight,
defined as

a1 = 1, a2 = 1, · · · , ap−1 = 1, ap = −(p− 1). (5)

If we want to get general multiplicities of eigenvalues, [10]
suggests using the Marchenko-Pastur (MP) weight,

amp,i = ξj − ξ̄, ξj = F−1{(p− j + 0.5)/p; p/n},

where F (x; ν) is the Marchenko-Pastur distribution function
with parameter ν. Many useful properties, like the model
consistency when both n and p grow to infinity, for the MP
weight, have been shown in the paper. If using the MP weight,
we could first find the group index that contains the most
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Fig. 3. Estimated signal number when the variable dimension is p = 10 based on 1,000 repetitions. The columns correspond to different sample size of the
observable data and the rows to different noise variance levels.

eigenvalues and the signal number could then be estimated by
the sum of the multiplicities before that index group.

We illustrate the above arguments with a toy example.
Figure 1 plots the Elasso solution path using the data, with
n = 50, generated from a three-signal 20-variate noisy ICA
model described in detail in Section III. The upper figure path
uses the SS weights and the lower path uses the MP weights,
with the vertical lines indicating the corresponding optimal
partition selected by the regular 5-fold cross-validation and the
model 5-fold cross-validation [10], respectively. It can be seen
from the figures that, the SS weights group first the smallest
eigenvalues and the best tuning partitions the roots into three
distinct groups with respective multiplicities w1 = 1, w2 = 1,
and w3 = 18, indicating that the model has two different
signals; the MP weights may group the smallest, middle-large
and/or large eigenvalues simultaneously and the best tuning
partitions the roots into five distinct groups with respective
multiplicities w1 = 1, w2 = 1, w3 = 1, w4 = 8, w5 = 9,
indicating that the model has eleven signals.

As the Elasso estimator Σ̂η was proposed to solve the
insufficient sample size problem, we anticipate that the Elasso-
based method would perform well for small n. And according
to the underlying eigenvalue structure of the noisy ICA model,
we would prefer to use the SS weight.

III. SIMULATION STUDY

In this section, we conduct a simulation study to compare
the Elasso method with four other methods. We assume the

data follow the noisy ICA model (1) and consider a similar
set-up inspired by [4], that has d = 3 independent signals

s1 ∼ logsitic(0, 1), s2 ∼ t5, s3 ∼ unif[0, 1].

All signals have been standardized to have mean zero and
variance one. The noise ϵ is taken from a Np(0, Ip) distribu-
tion and all the p × d elements of the mixing matrix A are
generated independently from N(0, 1). Eight different noise
levels σ2 are used for comparison:

σ2 = (0.1, 1, 1.5, 2, 2.5, 3, 3.5, 4).

We consider two scenarios:
• Fixed n: n = 50, p = 10, 20, 30, 40;
• Fixed p: p = 10, n = 50, 100, 2000.

The following estimators of the signal dimension are to be
compared: (1) S.d, ratio method based on S, with M = p−1;
(2) AIC.d, minimization of the AIC criterion; (3) MDL.d,
minimization of the MDL criterion; (4) ASYM.d, asymptotic
test method applied using a divide and conquer strategy where
each test uses α = 0.05; (5) EKCV.d, the Elasso method
using the SS weights (5), with the tuning η determined by 5-
fold cross-validation; (6) EMCV.d, the Elasso method obtained
by 5-fold model cross-validation with the Marchenko-Pastur
weights.

The simulations were repeated over 1000 runs, and the
estimated signal dimension of different estimators, for the two
scenarios, are plotted in Figure 2 and Figure 3, respectively.
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Fig. 4. Estimated signal dimension for the sound example for various
estimators when the noise variance changes.

In general, the Elasso method EKCV performs better than any
other method, especially for the increasing dimension case.
When the dimension p is close to the sample size n, only
the two Elasso-based estimators can still provide a reasonable
estimator: the EMCV has a large probability to underestimate
the signal number and the EKCV tends to overestimate; see the
last column of Figure 2. For the increasing sample size case,
Figure 3, the benefits of the Elasso methods are not prominent
when n = 50 and become better when n gets larger, while the
performance of the other estimators vary little for different
sample size and noise level. Note also that the noise level
affect the performance of Elasso estimators slightly, in some
cases even in a positive way.

IV. REAL DATA EXAMPLE

The results of the simulation suggest that if one uses the
Elasso method with cross-validation, the resulting estimator
can yield significant improvements in estimating the signal
number of a noisy ICA setting. In practice, when the variable
dimension is comparable with the sample size, we recommend
choosing the SS weights (5) and select the tuning parameter
by regular cross-validation. To further study the behavior of
EKCV.d for large dimension, we consider three sound samples,
publicy available in the R package JADE [14]. We mix the
three sound signals with a 100× 3 matrix A, whose elements
are randomly generated from a uniform distribution on [0, 1],
and add then 100-variate Gaussian noise to the mixed signals
and let the noise variance vary. For simplicity, we use only the
first 1, 000 observations and study how the noise level affects
the estimation of the signal number, considering only AIC.d,
S.d, ASYM.d and EKCV.d. The estimated signal numbers are
plotted against the noise variance in Figure 4. From Figure 4
it is clear that in this example AIC and the gaps of the sample
covariance matrix eigenvalues are not useful at all and hugely
overestimate the number of signals. Also the successively
applied hypothesis test is not performing well, it seems to

find in most cases only one signal. The Elasso approach
however performs well. In most cases it estimates 3 or little
bit higher signal dimension, therefore reducing the dimension
dramatically without loosing a signal.

V. CONCLUSION

Most ICA applications require a reduction of the signal
dimension, assuming a known signal dimension; this does not
hold in general. Recent advances propose several methods to
estimate the signal dimension for noisy ICA. These methods
are applicable when the sample size n is considerably larger
than the variable dimension p, which, however, does not
hold when n/p is not so favorable. Here we estimate the
signal dimension in noisy ICA using a newly proposed Elasso
method, which groups eigenvalues of the covariance together.
Meanwhile we compare ratio statistic of the eigenvalues of
the covariance as often used in the context of dynamic factor
models in time series. Our simulations and example show that
Elasso works well when n compared to p is less ideal, thus a
valuable new tool in the blind source separation workflow.
Further, Elasso does not presume the ICA independence
assumption, but works with any model of the covariance
structure (2), thus has broader applications. Also, when n < p,
a regularized covariance estimator could replace S for the
Elasso method, this is however a topic for future research.
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