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Abstract—This paper concentrates on pattern learning of
Granger causality. In this context, the entities of the Granger
causality matrix estimation derived from the state-space model
indicate directional dependencies of the observations. Existing
methods propose different forms of thresholding to eliminate
insignificant entities from this matrix. These approaches do not
exploit the difference in statistical characteristics of insignificant
entities compared to the Granger causality itself. In this work,
Noise Invalidation Soft Thresholding is chosen as the thresholding
method to discard null relations in the Granger causality ma-
trix pattern learning. Unlike existing approaches, the proposed
method benefits from the statistical properties of insignificant
entities. The simulation results demonstrate the advantages and
superiority of the proposed method in the sense of accuracy
and robustness for both randomly generated datasets with causal
footprints as well as simulated electroencephalogram datasets.

Index Terms—Granger Causality, State-Space Modelling,
Noise Invalidation Soft Thresholding

I. INTRODUCTION

Causality is a fundamental concept that lies at the heart of
many fields, from philosophy to science to social sciences. The
notion of causality is central to understanding the workings
of the world around us, from the physical laws that govern
the universe to the social and economic forces that shape
our societies [1]. Causality has two distinct categories that
continue to captivate researchers across various domains. The
first category deals with the notion of time preceding, where
events in the past influence those in the future [2]. The
second category pertains to the influence of treatments or
interventions on an outcome of interest [3], which is out of
the scope of this paper. The majority of research examining
causal footprints using the Granger technique in the time and
frequency domain focuses on data modeling using vector auto-
regressive (VAR) models [4]. It has been shown in [5] that, for
a VAR model, in addition to regression coefficients, the auto-
covariance sequence and the cross-power spectral density of
the underlying process can also be used to measure Granger
causality. Although the use of VAR modeling has advantages,
such as the simplicity of the linear structure, VAR models are
not accurate in the presence of moving average (MA) compo-
nents [6]. There is a class of multivariate auto-regressive mov-
ing average (ARMA) models or equivalent finite-order state-
space models [7] which performs accurately in the presence
of MA components [8]. Taking into account the availability
of efficient and effective state-space system procedures [9],
a novel method for estimating Granger causality using state-
space models was developed and has since become the primary

method for Granger causal analysis [6]. However, one major
issue here is that applying a significance test to the Granger
causality matrix is still an issue since its theoretical distribution
is unknown [10]. The majority of analyses often struggle
with either discovering causal links that do not exist or not
finding existing causal links [11]. Two approaches for learning
Granger causality have been proposed in [10], but those
are not considered data structures. Inspired by this existing
problem, we propose a method that fully exploits the structure
characteristics by transforming the problem of learning into
determining a suitable threshold. This technique, known as
noise invalidation soft thresholding (NIST), as presented in
[12], is used to classify causal and null entities of the Granger
causality matrix. The paper is organized as follows. Section II
briefly reviews Granger causality using both VAR and state-
space models. Section III deploys a noise signature from noisy
Granger causality sample means and presents the proposed
estimation of Granger causality using NIST. Simulation results
are provided in Section IV, and conclusions are drawn in
Section V.

II. GRANGER CAUSALITY

Defining “causality” is a challenging problem in complex
systems without intuitive cause-and-effect relationships. Nor-
bert Wiener introduced the concept of a causal relationship
between two time series in 1956. Later in 1969, Clive Granger
formalized this concept using linear VAR models of stochastic
processes to implement this idea of causality [13]. Consider
a discrete-time, stationary vector stochastic observable pro-
cess consisting of r real-valued zero-mean scalar processes,
yn = [y1,n y2,n ... yr,n]

T ,−∞ < n < ∞. Assume
that the observable process is partitioned into sub-processes
yn = [yT

i,n yT
j,n yT

k,n], which are respectively the driver (yi,n),
the target (yj,n), and remaining processes (yk,n). Denoting
the infinite past of a process by y−

N = [yT
N−1 yT

N−2 ...],
conditional Granger causality in the context of vector auto-
regressive models from driver to target (yi,n → yj,n|yk,n)
measures the degree to which the driver’s past (y−

i,n) enhances
the prediction of the target’s future beyond the degree to
which infinite past of target conditional on remaining pro-
cesses (y−

j,n|y
−
k,n) already anticipates its own future [14]. This

definition is evaluated in the time domain by finding regression
errors in (1) and (2), where E is the expectation operator.

ej|ijk,n = yj,n − E[yj,n|y−
n ] (1)

ej|jk,n = yj,n − E[yj,n|y−
j,n,y

−
k,n] (2)
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In the context of maximum likelihood (ML), the relevant
measure is the log-likelihood ratio [6]. This measure applies
to nested autoregressive (AR) models that are associated with
the projections E[yj,n|y−

n ] and E[yj,n|y−
j,n,y

−
k,n]. Granger

Causality is then the log-likelihood ratio of error variances
in (1) and (2) as [15]:

Fi→j = ln
E[e2j|jk,n]
E[e2j|ijk,n]

(3)

The above procedure can be repeated for i, j = 1, 2, ..., r.
By calculating Fi→j for every possible (i, j) pair and con-
structing it as a matrix without taking the diagonals into
account, the Granger causality matrix can be inferred from
observations. A notable finding from [6] is that whenever (i, j)
entry is zero, then the jth variable does not Granger cause the
ith variable. Many types of time series data, especially those
used in econometrics and neuroscience, have a significant MA
component. Moreover, filtering, down-sampling, and recording
noises all contribute to the presence of MA components,
resulting in an ARMA process [16]. These MA components
may not be well represented by a finite-order AR model. Thus,
for a finite number of samples, a finite, possibly large model
order must be chosen, which results in weak Granger causality
with reduced statistical power and increased bias [6]. Contrary
to linear AR models, the class of multivariate ARMA models
or finite-order linear state-space (SS) models [7] are closed
under the aforementioned procedures [16]. Given the general
form of the linear state-space model, in terms of an innovation
variable εn = yn−E[yn|y−

n ], a new state-space model can be
achieved associated with Kalman filtering with Kalman gain of
K in (4), which is called the ”Innovation form of state-space
(ISS).” {

zn+1 = Azn +Kεn

yn = Czn + εn

(4a)
(4b)

The state equation (4a) in a dynamic system is represented
by the transition matrix A ∈ Rl×l, which describes how
the system’s current state zn ∈ Rl relates to its future
state. On the other hand, the output equation (4b) shows the
relationship between the system state zn and the observable
process yn ∈ Rr, and it is represented by the observation
matrix C ∈ Rr×l. States and observations are assumed to be
weakly stationary, which necessitates the stability of matrix
A. From [17], εn comprises a white noise process with
a positive-definite covariance matrix Σ = E[εnεTn ]. It is
essential to solving a problem known as the discrete algebraic
Ricatti equation (DARE), expressed in terms of the state error
variance matrix, to get the ISS parameters [18]. The error
variance in (1) is equivalent to the j-th diagonal element of the
innovation covariance, E[e2j|ijk,n] = Σ(j, j). Forming a sub-
model that eliminates the driving process yields (5), where
the superscript (R) denotes a model that has been reduced by
removing rows that correspond to the driver.

yR
n = CRzn + εRn (5)

The sub-model (4a, 5) forms another innovation form of state-
space model for which the error variance in (2) is equivalent
to the j-th diagonal element of the innovation covariance,
E[e2j|jk,n] = ΣR(j, j). This proves that using the ISS param-
eters of an observed process yn; Granger Causality in (3) can
be calculated numerically as [6]:

Fi→j = ln
ΣR(j, j)

Σ(j, j)
(6)

A. Estimation of Granger causality
In the case of using the VAR model to measure Granger

causality by using regression parameters, the statistical test to
learn a Granger Causality pattern becomes the log-likelihood
ratio test [19]. When the VAR model is represented by an auto-
covariance sequence of the underlying process, it is suggested
that the statistics are well-approximated by a Γ distribution
[5]. According to [6], for the case that there is no theoretical
asymptotic distribution for Granger causality inferred from
state-space models significant testing should be conducted
using permutation or bootstrapping approaches. A method to
learn Granger causality resulting from state space parameters
has been put forth in [10] by creating a set of Granger causality
matrix sample means (Fmean) to remove insignificant entries
in the Granger causality matrix. By constructing a vectorized
version of Fmean (fvec), two methods for Granger Causality
Pattern Learning (GCPL) are proposed in [10] to remove
insignificant entities of Fmean by fitting a Gaussian Mixture
Model (GMM) to fvec as follows:

1) GCPL with Clustering (GCPL-C): The entries clustered
by the posterior probabilities into the first Gaussian com-
ponent with parameters (µ1, σ

2
1) are considered null.

Thus, causal entities are those grouped into the other
components.

2) GCPL with Thresholding (GCPL-T): The intersection
of two first component distributions (f1 and f2) can be
considered as a threshold (TPL−T ), defined to classify
entities in Fmean as causal or null. Where:

logf1(TPL−T ;µ1, σ
2
1) = logf2(TPL−T ;µ2, σ

2
2) (7)

The block diagram of these methods is demonstrated in Figure
1.

Fig. 1. The proposed scheme in [10] for learning Granger causality matrix
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B. Motivation

It seems rational to consider what is denoted by insignificant
entities as irrelevant nulls, which behave like unwanted noise.
From [10], GCPL-C and GCPL-T, respectively, assume the
values under the first component and the values less than the
intersection of the two first components of fitted GMM to fvec
in Figure 1 as insignificant entities without considering the
statistical characteristics of noise. Besides, both these methods
require a sufficiently large number of trials to be performed,
which may not be appropriate in some cases. Ignoring these
assumptions can produce inaccurate results, especially in the
presence of high-order and strong MA components. Therefore,
a more robust approach toward learning Granger causality is
to explore the statistical characteristics of Granger causality
estimations. To this aim, in this research, NIST in [12]
has been chosen to improve the Granger Causality learning
performance.

III. GRANGER CAUSALITY PATTERN LEARNING WITH
NIST (GCPL-NIST)

The objective of denoising is to eliminate noise in the
observed data as much as possible. Among many approaches,
thresholding seeks to remove the small values that are often
associated with noise [12]. Consider noiseless fvec contami-
nated by an additive noise w to construct fvec, where w =
[w[1],w[2], ...,w[N ]]T is a white Gaussian random process
with zero mean and variance σ2

w. Thus, fvec can be expressed
as follows:

fvec[n] = fvec[n] +w[n] (8)

A new variable γm is defined as follows once noisy fvec has
been sorted based on its absolute value (fsort):

γm =

N∑
n=m+1

|fsort[n]|2 =

N∑
n=m+1

|f∗sort[n] + v[n]|2 (9)

where m is the number of thresholding-induced non-zero coef-
ficients, and f∗sort[n] and v[n] are the corresponding noiseless
and noise-only parts of fsort[n]. If the thresholding procedure
with a soft threshold TNIST discards values that are just
corresponding to noise, then γm is represented by γv

m. Where
γv
m is a sample of random variable Γv

m. From (9).
Whenever γm is a member of the set of γv

ms, it can be
inferred that there are no noiseless values with the probability

of erf( λ√
2
) = 1√

π

∫ λ√
2

0 e−t2dt. Otherwise, there is a similar
high likelihood that γm includes nonzero rejected coefficients.
λ must be chosen so that the probability is close to one. The
following criteria can be used to evaluate this condition [12]:

β[m] =
|γm − E[Γv

m]|
λ
√
var[Γv

m]
(10)

If β[m] is less than one, then γm = γv
m, is very likely to be

true with the probability of erf( λ√
2
), and there are no non-

zero values involved. But once β[m] gets bigger than one,
it is likely with the same probability that γm cannot have the
same structure as the additive noise. Consequently, the desired

m∗ can be determined by considering the criteria in (11). The
threshold of this method (TNIST ), which is first introduced in
[12], can be expressed as (12).

m∗ = argmin
m

(β[m] ≥ 1) (11)

TNIST = |fsort[m∗]| (12)

Once TNIST is determined using the NIST method, the
elements of the Fmean that have a greater value of the
threshold represent a valid Granger causality (causal), and
values smaller than the threshold do not indicate any Granger
causality relationship between corresponding source and target
variables (null). The block diagram of proposed methods for
Granger causality learning using NIST has been shown in
Figure 2.

Fig. 2. Proposed scheme for learning Granger causality matrix using NIST

IV. SIMULATION RESULTS

A. Simulated multivariate ARMA Model Dataset

Consider a vector auto-regressive moving average
(VARMA) model of order (p, q):

yn =

p∑
k=1

Akyn−k + ηn +

q∑
j=1

Ckηn−j (13)

where Ak’s represent autoregressive coefficients, and Ck’s are
moving average coefficients. VAR polynomial of order p has
to be stable by checking if all eigenvalues of the system lie
inside the unit circle. Moreover, the MA polynomial of order
q is considered to be minimum-phase. To assess the proposed
method, simulated time series were generated by forming
sparse Ak as a random array with dimensions p× n× n and
scaling it to make a stable model. After the VARMA model
has been generated, It has been shown in [20] that the Granger
causality pattern of the VARMA model can be controlled by
the sparsity pattern of Ak matrices [10].

Let N0 represent the total number of trials in the simulated
time series. After performing subspace identification on each
trial of the process yn to find parameters in (6), the Granger
causality matrix (F) for each trial can be computed by solving
DARE. Then, by averaging over N1 samples out of N0

samples of F, N2 = N0/N1 samples of Fmean will be
produced as it is shown in Figure 3 (a).

Reference [10] assumed that the Central Limit Theorem
applies, which means that if N1 is sufficiently large, the entries
in Fmean will converge to a Gaussian distribution. By creating
a vectorized version of Fmean, denoted by fvec, and pooling
all its entries, a histogram of fvec will exhibit a mixture of
Gaussian components, as shown in Figure 4. However, it is
important to note that when using the Central Limit Theorem
to analyze the distribution of entries in Fmean, one must
consider the assumptions and limitations of the analysis. If the
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Fig. 3. a) An example of Fmean, an averaged matrix over N1 samples out
of N0 Samples of F, b) Learned Granger causality pattern

noise in the process is stationary and Gaussian, and the moving
average components are either known or negligible, the Central
Limit Theorem may be applicable, as illustrated in Figure 4.
However, in many real-world applications, the noise is non-
stationary or non-Gaussian, and the moving average compo-
nents may be significant and unknown, making it difficult to
apply the Central Limit Theorem with the limited number of
observations. In such cases, alternative methods that consider
the underlying structure of the noise may be required to model
its behavior and distribution. For example, if the noise is
colored, a more suitable approach may be to use techniques
that explicitly account for the statistical characteristics of the
noise. The GCPL-NIST approach proposes a new method that
accounts for the underlying structure of the noise, resulting in
a more precise and robust model that can better capture the
complex dynamics of the underlying process.

For this section of the simulation results, N0 = 20000 trials
containing 5 observation (n = 5) with the length of T = 1000
were generated as the output of a ground-truth model. By find-
ing the Granger causality matrix for each trial and averaging
over N1 = 20 of them, N2 = 1000 samples of Fmean were
produced. Then three methods, GCPL-T, GCPL-C, and GCPL-
NIST, were applied to form the Granger causality pattern
matrix. In Figure 4, the results of denoising of fvec using
the NIST method can be found. As demonstrated in Figure 4,
the threshold obtained by the GCPL-NIST method (TNIST ) is
quite different from the threshold obtained by GCPL-T in [10].
Also, as shown in red bars, not only are insignificant values
of Fmean detected by GCPL-NIST not limited to the first
component of the GMM model, as suggested by the GCPL-
C method, but they also include most values of the second
component. Thus, it seems that using denoising methods to
remove insignificant values in Fmean is a more efficient and
accurate choice for learning the Granger Causality pattern
since GCPL-NIST takes advantage of statistical characteristics
of insignificant entities. As explained in Section III The matrix
of the Granger pattern will be formed by using TNIST as it
is illustrated in Figure 3 (b) for the Fmean matrix in Figure 3
(a).

In order to verify the accuracy of the proposed method,
ten distinct random VAR models were generated. For each of

Fig. 4. Fitted Gaussian Mixture Model to a Vectorized F̄

them, N2 samples of Fmean were split into train and test
sets using 10-fold cross-validation to test the performance
of methods for unseen data. In the training set, required
parameters were found to classify entities in test data as
causal or null and compared with the ground-truth model.
The measure of accuracy is the ratio of the total number of true
causal and true null entities to the number of non-diagonal
elements of the Fmean. In any analysis, when a method is
repeated several times, a mean performance value is calculated
alongside the standard deviation of the results to evaluate the
robustness of the method. The accuracy for two methods in
[10], and the proposed method in this paper (GCPL-NIST) are
presented in Table I. As this table shows, NIST has higher
accuracy, and the smaller standard deviation indicates that
NIST offers more robustness.

TABLE I
ACCURACY AND STD PERFORMANCE COMPARISON OF GCPL-NIST,

GCPL-C, AND GCPL-T

Method

GCPL-NIST GCPL-C GCPL-T

Accuracy 90.5 83.5 78.5
Standard Deviation 1.49 2.29 3.21

B. Simulated Electroencephalogram Dataset

To demonstrate the effectiveness of the proposed Granger
causality method on real-world electroencephalogram (EEG)
data, simulations were conducted using an EEG dataset.
Simulated EEG signals were generated from ten electrodes
across a range of SNR levels and for a variety of differ-
ent scenarios, including both unidirectional and bidirectional
causal relationships. The SEED-G toolbox [21] was utilized to
generate the simulated EEG signals, which included realistic
noise and artifact components. These simulated datasets were
then analyzed using the proposed Granger causality learning
method. The resulting causal relationships were compared to
known ground truth causal relationships obtained from the
simulation process. All measures used in this comparison were
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similar to those explained in Section IV-A. As shown in Table
II, the proposed method (GCPL-NIST) performed better and
achieved higher accuracy than the other two methods in [10],
and its smaller standard deviation for different values of SNR,
even when the SNR was relatively low, indicates that GCPL-
NIST offers more robustness. These findings suggest that the
proposed method can accurately identify causal relationships
in EEG datasets, and its superior performance makes it a
promising method for EEG signal analysis.

TABLE II
ACCURACY AND STD OF PERFORMANCE COMPARISON OF GCPL-NIST,
GCPL-C, AND GCPL-T FOR EEG DATASET ACROSS DIFFERENT VALUES

OF SNR

Method

SNR GCPL-NIST GCPL-C GCPL-T

5 dB 90.55 ± 1.87 84.89 ± 2.86 78.67 ± 3.47
10 dB 91.89 ± 1.57 86.11 ± 2.54 80.99 ± 3.23
15 dB 93.1 ± 1.47 87.89 ± 2.35 83.67 ± 3.94
20 dB 94.88 ± 1.24 89.78 ± 2.09 86.22 ± 3.65

V. CONCLUSION

This paper addresses the Granger causality learning problem
for a time series by employing state-space models. Due to the
lack of knowing theoretical asymptotic distribution, applying
a significance test to the Granger causality matrix remains
problematic. To address this problem, NIST, as a method that
can explore the statistical structure of insignificant entities in
the Granger causality matrix, has provided a robust approach
to improve the performance of Granger causality learning. The
simulation results for both the randomly generated VARMA
model and the simulated EEG dataset show the beneficial
advantages of this method compared to previously introduced
methods in the sense of accuracy and robustness. It is worth-
while to mention that this method is capable of being applied
for learning causality in other biomedical time series, such
as electrocardiogram or functional magnetic resonance imag-
ing, to determine the connectivity between different sources’
activities.
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