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ABSTRACT

Online detection of abrupt changes in streaming time series
is a challenging problem with many applications, in particu-
lar when little prior knowledge of the statistics of the data is
available and computation resources are scarce. While many
algorithms have been developed for Euclidean spaces, there is
a wealth of data that belongs to Riemannian manifolds. Tak-
ing the geometry of the data space into account is however
paramount in designing effective change point detection al-
gorithms. In this paper, we propose a non-parametric online
algorithm to detect abrupt changes in manifold-valued data
streams. The proposed method monitors abrupt changes in
the Karcher mean of the data using a stochastic Riemannian
optimization algorithm. Experiments with both synthetic and
real data illustrate the performance of the proposed method.

Index Terms— Online change point detection, non-
parametric, Riemannian manifolds, Karcher mean.

1. INTRODUCTION

Change-point detection (CPD) aims to detect abrupt changes
in the data distribution, and is recognized as one of the most
significant tasks in time series data analysis. Despite the huge
literature on offline CPD, online CPD still suffers from ma-
jor challenges while it plays a fundamental role in a wide
range of applications such as audio [1] and video [2] seg-
mentation, medical condition monitoring [3], or human be-
havior analysis [4] to cite a few. Considering whether prior
knowledge about the data distributions is available or not, on-
line CPD approaches can be divided into parametric and non-
parametric. Examples of parametric methods include the cu-
mulative sum (CUSUM) [5] and the generalized likelihood
ratio test (GLRT) [6]. Such methods assume that the distribu-
tion of the data belongs to a known parametric family. How-
ever, knowledge of the data distribution is not always avail-
able, making the use of non-parametric methods necessary.
Classic non-parametric strategies include monitoring changes
in the mean or the variance (e.g., the exponentially weighted
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moving average – EWMA) [7] or in a generalized statistic [8]
of the data stream. In [9], a new algorithm called NEWMA
was proposed. It consists of comparing two EWMA of the
data statistics computed using two distinct forgetting factors
to detect change points without requiring the storage of old
samples. A non-parametric online algorithm was designed
in [10] based on an adaptive kernel-based density ratio esti-
mation. Recently, deep learning has been also considered in
non-parametric online CPD [11, 12].

Modern signal processing tasks increasingly tackle data
that does not reside in Euclidean spaces, such as graphs or
categorical data. In particular, Riemannian manifolds [13, 14]
have drawn significant attention due to their widespread ap-
plications, including diffusion tensor imaging [15] and pedes-
trian detection [16]. However, developing methods that can
process manifold-valued data is still challenging since one has
to account for the nonlinear geometry of the space. Moreover,
manifolds lack a vector space structure, which makes it hard
to generalize algorithms originally developed for Euclidean
spaces. Aside from some online CPD algorithms that have
been extended to particular non-Euclidean domains such as
graphs [17, 18] or categorical data [19], few works have in-
vestigated manifold-valued data. For instance, an online CPD
algorithm in [20] was specifically designed for the compound
Gaussian distribution. This technique is however parametric
and not broadly applicable. An example of non-parametric
techniques can be found in [21], but it is only able to detect a
single change point in an offline manner.

In this work, we introduce a unified framework for on-
line CPD on Riemannian manifolds based on Karcher mean
estimation. Specifically, a non-parametric strategy is con-
sidered by monitoring the Karcher mean of manifold-valued
data, which is estimated efficiently in an online way using a
Riemannian stochastic gradient descent (SGD) algorithm. To
detect abrupt change points, two Karcher mean estimates with
different step sizes – one which takes longer to converge and
focus on a long-term trend, and one which converges faster to
assimilate change points quickly – are compared to form a test
statistic. We then illustrate the proposed framework to detect
changes on the Riemannian manifold of symmetric positive
definite (SPD) matrices. Experimental results on sequences
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of SPD matrices generated both synthetically and as feature
descriptors of video sequences demonstrate its effectiveness.

2. BACKGROUND

This section introduces some basics of Riemannian geometry
with geometrical tools for optimization. Extensive presenta-
tions can be found in [13, 14]. Then this section focuses on
a usual example of Riemannian manifolds, that of p× p SPD
matrices, denoted as S++

p , with an invariant metric.

2.1. Riemannian geometry and optimization

A Riemannian manifold (M, g) is defined by a constrained
set M equipped with a Riemannian metric gx(·, ·), that is, a
smoothly varying inner product ⟨·, ·⟩x : TxM× TxM 7→ R,
defined for each x ∈ M, where TxM is called the tangent
space of M at x. The length of a parameterized curve, say,
c : [a, b] 7→ M, is given by:

L(c) =

∫ b

a

√
g(ċ(α), ċ(α))dα =

∫ b

a

∥ċ(α)∥dα, (1)

where ċ = ∂c/∂α is the velocity of c. This allows us to define
the geodesic γ : [0, 1] 7→ M, which is the unique curve of
minimal length linking x and y, with x = γ(0) and y = γ(1).
The Riemannian distance dM(·, ·) : M×M 7→ R is defined
as follows:

dM(x, y) =

∫ 1

0

∥γ̇(α)∥dα. (2)

Note that dM satisfies all conditions to be a metric.
The exponential map w = expx(v) defines the point w of

M located on the unique geodesic γv(t) such that γv(0) = x,
γ′
v(0) = v and γv(1) = w. The inverse of the exponential

map is defined as v = exp−1
x (w). Since the exponential map

may be hard to compute, one often resorts to a second-order
approximation, called retraction mapping Rx : TxM 7→ M
at x ∈ M, and which satisfies dM(Rx(tv), expx(tv)) =
O(t3).

Consider f : M 7→ R a smooth function. The Rieman-
nian gradient of f at x ∈ M is the defined as the unique
tangent vector ∇f(x) ∈ TxM satisfying:

d

dt

∣∣∣
t=0

f(expx(tv)) = ⟨∇f(x), v⟩x (3)

for all v ∈ TxM.

2.2. The Riemannian manifold of SPD matrices

The geodesic distance of S++
p between two SPD matrices Σ1

and Σ2 ∈ S++
p can be computed in closed form [15] as:

dS++
p

(Σ1,Σ2) =
∥∥ log(Σ− 1

2
2 Σ1Σ

− 1
2

2 )
∥∥
F
, (4)

where ∥·∥F denotes the Frobenius norm.
The Riemannian gradient ∇f at Σ ∈ S++

p is given by:

∇f(Σ) = Σ sym(G)Σ, (5)

with G ∈ Rp×p the Euclidean gradient of function f at Σ and
sym(G) = 1

2 (G
T +G). In practice, the Euclidean gradient

can be easily computed using automatic differentiation tools.
Let ξ ∈ TΣS++

p . A retraction RΣ,S++
p

: TΣS++
p 7→ S++

p is
defined as

RΣ,S++
p

(ξ) = Σ+ ξ +
1

2
ξΣ−1ξ. (6)

This retraction is a second-order approximation of the expo-
nential mapping, that is,

expΣ,S++
p

(tξ) = RΣ,S++
p

(tξ) +O(t3). (7)

3. METHODOLOGY

Let us consider a time series of independent random variables
{xt}t∈N lying on a Riemannian manifold M. We assume that
there exists a time index tr ∈ N with an abrupt change in the
probability distribution of xt, that is,

t < tr : xt ∼ P1(x) , t ≥ tr : xt ∼ P2(x), (8)

where P1(x) and P2(x) denote two different probability mea-
sures on M [22] which represent the distribution of data xt

before and after the change point tr. Note that, to simplify the
presentation, (8) considers only a single change point. How-
ever, the algorithm presented hereafter can handle multiple
change points.

CPD algorithms aim to estimate a change point t̂r accord-
ing to two complementary objectives: 1) minimizing the de-
tection delay, i.e., t̂r − tr for t̂r being the first detection after
tr; and 2) minimizing the probability of false alarms, i.e.,
of flagging some t ̸= tr as a change point. In this work,
we consider a problem setting where manifold-valued data xt

are observed sequentially over time and change points must
be detected online. This means that we need to decide if
each time instant t ∈ IN is a change point based only on
past data {xt′}t′≤t. Moreover, unlike [20], we focus on non-
parametric strategies, which do not make additional assump-
tions about the statistical distribution of the data.

3.1. Non-parametric statistics and the Karcher mean

As discussed above, we focus on non-parametric strategies,
where there is no prior knowledge about probability measures
of the data stream. In Euclidean spaces, this can be done by
monitoring changes in the mean or the variance [7], or in a
generalized statistic [8] of the data stream. In order to gen-
eralize such strategies to Riemannian manifolds, we consider
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the Karcher mean [23] of the data stream xt ∈ M, which pro-
vides a generalization of the center of mass from Euclidean
domains to a manifold M.

The Karcher mean is a generalization of the Fréchet mean,
which is defined as the set of values that (globally) minimize
the expected variance:

f(m) = Ex∼P (x)

{
d2M(m,x)

}
=

∫
d2M(m,x)dP (x)

of the Riemannian distance dM, that is,

m∗ ∈ argmin
m

f(m) . (9)

Note that the existence and uniqueness of the Fréchet mean
are not guaranteed. The Karcher mean relaxes this definition
by considering the local optima of f(m), instead of only the
global one. This allows to establish existence and uniqueness
conditions [24], and also makes it possible to compute m by
locally solving (9) using Riemannian optimization methods
[22]. The Karcher mean is unique in many manifolds, such as
those that are connected and have nonpositive curvature [25],
which includes S++

p .
The CPD strategy on manifolds proposed in the follow-

ing monitors abrupt changes in the Karcher mean of the data
stream. An important requirement is that change points must
be detected in an online way, that is, only based on past data.
Consequently, we start the presentation with an online Rie-
mannian descent algorithm to estimate the Karcher mean of
streaming data. This will be an integral part of the CPD strat-
egy presented afterward.

3.2. Online estimation of the Karcher mean

In optimization problem (9), the cost function cannot be com-
puted explicitly because P (x) is unknown. However, obser-
vations {xt} are available to compute function d2M(m,xt)
for any parameter m and data point xt. That function can
be viewed as a stochastic approximation of the loss f(m)
updated with new input data xt. Consequently, we consider
using the Riemannian SGD algorithm [26] to address prob-
lem (9). On manifold M, the update of m with a step size α
is given by:

mt+1 = expmt

(
− αH(mt,xt)

)
, (10)

where expm is the exponential map at m, and H(m,x) de-
notes the Riemannian gradient of the loss such that

Ex∼P (x)

{
H(m,x)

}
=

∫
H(m,x)dP (x) = ∇f(m).

For computational simplicity, we replace the exponential map
in (10) by a retraction Rmt

. This yields the alternative update:

mt+1 = Rmt

(
− αH(mt,xt)

)
. (11)

Algorithm 1: Online CPD on manifolds
Input: {xt}, step sizes λ,Λ, threshold ξ.

1 Initialization: mλ,0 = mΛ,0 = x0 ;
2 for t = 1, 2, 3, . . . do
3 Update the “fast” and “slow” Karcher mean estimates

mλ,t and mΛ,t using (12) and (13) ;
4 Compute the test statistic gt = dM(mλ,t,mΛ,t) ;
5 if gt > ξ then
6 Flag t as a change point;
7 end
8 end

3.3. An adaptive CPD with the Karcher mean

We aim to detect change points by monitoring abrupt changes
in m over time, that is, a point t′ is labeled as a change point
if m changed abruptly at t′. This requires knowledge of two
quantities of interest, mbef and maft, which correspond to
the Karcher mean before and after a candidate change point t′.
First, we propose to compute estimates of these values, say
m̂bef and m̂aft. Then, as a test statistic, we propose to com-
pare these two quantities using the Riemannian distance, that
is, dM(m̂bef , m̂aft): the larger the Riemannian distance be-
tween the Karcher mean estimates before and after instant t′,
the more likely we are to flag t′ as a change point.

The question is how to calculate m̂bef and m̂aft ef-
ficiently and in an online way. Previous work proposed
to partition a data stream of length N into two segments,
{1, . . . , t′ − 1} and {t′, . . . , N} for every t′, and testing for
differences between their Karcher mean and variance [21].
However, this strategy cannot process data streams on-the-fly
or detect multiple change points. In [9], within the realm of
Euclidean geometry, these estimates were computed using
two exponentially weighted moving averages with different
forgetting factors. Nevertheless, this principle cannot be
transposed directly to Riemannian manifold setting. Instead,
we propose to use two estimates provided by Riemannian
stochastic gradient descent algorithms as presented in Sec-
tion 3.2, with two different fixed step sizes λ < Λ. The
Karcher means are updated according to (11) as follows:

mλ,t+1 = Rmλ,t

(
− λH(mλ,t,xt)

)
, (12)

mΛ,t+1 = RmΛ,t

(
− ΛH(mΛ,t,xt)

)
, (13)

with initialization mλ,0 = mΛ,0 = x0. Convergence of the
updates (12) and (13) is directly affected by λ and Λ. Con-
straint λ < Λ thus means that mΛ,t is more likely to adapt
to new data and approximates m̂aft, while mλ,t has longer
memory and is more suitable to estimate baseline trend m̂bef .

Using these two estimates, we can define an adaptive CPD
statistic by comparing the difference between mλ,t and mΛ,t

using the Riemannian distance on M as:

gt = dM(mλ,t,mΛ,t) . (14)
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Fig. 1. ROC curves for all compared algorithms.

CPD is then performed by comparing gt to a threshold ξ. The
full CPD procedure is summarized in Algorithm 1.

4. EXPERIMENTS

We shall now present some experiments on manifold S++
p

discussed in Section 2. We consider the problem of detect-
ing change points with Algorithm 1 both in a sequence of
synthetic SPD matrices, and in a sequence of region covari-
ance descriptors derived from a real video. With {Σt}t∈N
lying on S++

p and the metric defined in (4), the Karcher
means were estimated by minimizing the objective function
f(Σ) = ES∼P (S)

{∥∥ log(S− 1
2ΣS− 1

2 )
∥∥2
F

}
using the Rie-

mannian SGD algorithms in (12) and (13) and the stochastic
approximation S ≃ Σt at each t. They were used to compute
the online CPD statistic in (14).

We compared our method with two baseline algorithms,
namely, NEWMA [9] and the Fréchet CPD (F-CPD) [21]. On
the one hand, since NEWMA was originally designed for Eu-
clidean spaces, we applied it to the vectorization of the left tri-
angular and diagonal parts of each SPD matrix. On the other
hand, F-CPD was designed for manifold-valued data but can
only detect a single change point in an offline manner. We
tackled these issues by using F-CPD over consecutive sliding
windows of length 100. We set λ = 0.01 and Λ = 0.02 for
synthetic data, and λ = 0.05 and Λ = 0.06 for real data.

Experiment with synthetic data: The synthetic matrices
Σt ∈ S++

p with p = 6 were sampled from a Wishart distri-
bution with the scaling matrix V and d degrees of freedom.
We generated 800 samples and set a change point at tr = 500
where we reset V . Fig. 1 shows the Receiver Operating Char-
acteristic (ROC) curves of all methods for 5000 Monte Carlo
runs. It can be seen that our method achieved a significant im-
provement in the detection rate with a low rate of false alarms
when compared to both NEWMA, which does not take the
manifold geometry into account, and to F-CPD, which was
designed to operate offline.

Experiment with real data: To further evaluate our ap-
proach, we made use of a real video of an outdoor scene

Fig. 2. Snapshot of the video sequence with its super-pixels
decomposed via the SLIC algorithm [27].

0 200 400 600 800 1000
0.00

0.02

0.04

Fig. 3. Test statistic applied to a super-pixel of the video se-
quence. The ground-truth change points are colored in red.

from [28]. This scene contains intermittent object mo-
tions including cars and pedestrians as well as subtle, non-
informative changes such as tree leaves moving. The video
contains color images with 658×491 pixels. Ground truths of
segmentation results for larger moving targets are available.
With ground truths, the first T = 1150 sequential frames
were selected and cropped to 658 × 260 pixels. We con-
sidered detecting change points in disjoint, compact regions
of this scene by segmenting each frame into superpixels via
the SLIC technique [27]. A snapshot of this scene with its
superpixel decomposition is shown in Fig. 2.

We considered the region covariance descriptor features
in [16] but with the pixel location information removed. Let
{st}t∈N denote the video sequence. Each frame st was first
processed by computing a feature vector for each pixel:

zt(x, y) =
[
|Ix|, |Iy|,

√
I2x + I2y , |Ixx|, |Iyy|, arctan

(Ix
Iy

)]T
where (x, y) represents pixel locations and Ix, Iy, Ixx, Iyy de-
note intensity derivatives. For each superpixel p containing n
pixels, the covariance descriptor was an SPD matrix of the
feature vectors zt(x, y) computed as follows:

Σt =
1

n− 1

∑
(x,y)∈p

(
zt(x, y)− z̄t

)(
zt(x, y)− z̄t

)T
,

with Σt ∈ S++
p and p = 6, and z̄t the sample mean of

zt(x, y) for all (x, y) ∈ p.
We used Algorithm 1 to detect change points in the data

stream {Σt}. The resulting test statistic for one given super-
pixel and the corresponding change points are illustrated in
Figure 3, and compared to the ground truth. We can ob-
serve that all peaks of the test statistic are located near change
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points pointed out by the ground truth, which indicates that
the proposed method can reach a low false alarm rate.

5. CONCLUSION

In this paper, we presented a general approach for the online
detection of change points in Riemannian manifolds based
on Karcher mean estimation. An adaptive test statistic was
computed by comparing two Karcher means estimated with
Riemannian SGD algorithms, one converging faster to assim-
ilate new data, and another one converging more slowly to
focus on a long-term trend. Experimental results on the Rie-
mannian manifold of SPD matrices illustrated the superiority
of our strategy compared with two baseline algorithms that
either operate offline or do not take manifold geometry into
account.
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