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Abstract—Target motion analysis for bearings-only tracking is
a challenging task and while estimating the range and velocity
of the target, estimation error may diverge. To improve the
estimation accuracy and minimize the track divergence, in this
paper, we assume that by hearing the sound, a sonar operator is
capable of saying the upper and lower limit of range and velocity
of the target and we incorporate such information along with the
traditional state estimation methods. To do so, after obtaining
the posterior estimate a constrained optimization problem which
minimizes weighted error square has been solved. The developed
method is applied to two bearings-only tracking scenarios. It
has been observed that the proposed technique delivers more
accurate results in terms of root mean square error and track
loss percentage than that obtained from only nonlinear filters.

Index Terms—Bearings-only tracking, target motion analysis,
constrained optimization, Lagrange multiplier.

I. INTRODUCTION

The bearings-only tracking (BOT) problem finds major
application in underwater target tracking [1], due to the fact
that passive bearing measurements aid in hiding the ownship’s
position from the enemies [1]. The objective of BOT problems
is to obtain a moving target’s kinematics with noisy bearing
measurements so it is also referred to as target motion analysis
(TMA) [2]. In TMA, the observer has to maneuver to make
the system observable while tracking a non-maneuvering target
[3]–[5]. Thus, TMA is a challenging task and many times it
leads to poor estimation accuracy [6] and high track divergence
[7].

Several nonlinear filtering techniques are used to solve the
TMA. The first among which is the extended Kalman filter
(EKF) [8] and its variants [9], [10]. Poor estimation accuracy
of the EKF leads to the idea of deterministic sample point
filtering which includes cubature Kalman filter (CKF) [11],
[12], unscented Kalman filter (UKF) [13], Gauss Hermite filter
(GHF) [7], [14] etc. A few filters such as the shifted Rayleigh
filter (SRF) [15], [16], the batch recursive filter [17], [18],
and weighted instrumental variable (WIV) [19] estimator are
specifically developed for solving a BOT problem. However,
the number of diverging tracks still remains, especially for
highly nonlinear scenarios [6], [7].

The sound emitted from the enemy ship is generally re-
ceived by hydrophones, mounted on the hull of the own ship
or towed at the back of the ship using a cable. The received

sound is also heard manually by a sonar operator. The operator
is trained and experienced enough to guess the limit of the
range and velocity of the enemy ship or submarine. Sometimes
the operators on the ownship may have prior knowledge about
the type of the target vessel, which allows them to leverage
valuable information about the target’s range and velocity
limits. To increase the accuracy of the estimation and decrease
the percentage of track loss, the information received from the
operator is incorporated with the estimation methods. In [17],
[20], [21], it has been assumed that the limit of the target’s
radial velocity is known and with such limit a constrained
optimization problem has been solved.

In this paper, we have incorporated the limit of the target’s
range in addition to the limit of target’s radial velocity as
the constraints at each time instant. This has been done by
formulating a constrained optimization problem and solving it
using the Lagrange multiplier. The cost function is considered
as the square of the errors weighted with the error covariance
matrix. The optimization process is implemented along with
the existing state estimation techniques when the velocity
or/and range of the estimators go beyond the said limit.

The developed method is implemented on two BOT scenar-
ios, namely one moderately nonlinear and another highly non-
linear. Simulation results show that the proposed technique of
estimation with both the range and velocity constraints is more
accurate compared to the unconstrained estimators in terms of
root mean square error (RMSE) and track loss percentage.
Interestingly, the proposed constrained optimization can be
incorporated with any nonlinear state estimation method and
is thus capable of improving the accuracy when the operator’s
experience is included.

II. PROBLEM FORMULATION

A two dimensional tracking problem is considered, where
the target follows a nearly constant velocity path. The target
dynamics and measurement model can be represented as [6]

Xk = FXk−1 − Uk−1,k + vk−1, (1)

Yk = tan−1
(xk

yk

)
+ ωk, (2)

where Xk = X t
k − X o

k =
[
xk yk ẋk ẏk

]T
is the relative

state vector. X t
k and X o

k represent the target and the observer
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state, respectively and Yk is the measurement. Uk−1,k is the
vector of input defined as

Uk−1,k =


xo
k − xo

k−1 −∆ẋo
k−1

y0k − yok−1 −∆ẏok−1

ẋo
k − ẋo

k−1

ẏok − ẏok−1

 ,

where ∆ is the sampling time. F is the system matrix defined
as

F =

[
I2×2 ∆I2×2

02×2 I2×2

]
.

vk−1 and ωk are process and measurement noises, respec-
tively which are assumed to be white, following a Gaussian
distribution with zero mean and covariance Qk−1 and Rk,
respectively. The expression for Qk can be derived as,

Qk =

∆3

3
I2×2

∆2

2
I2×2

∆2

2
I2×2 ∆I2×2

 q,

where q is the process noise intensity.

III. TRACKING METHODOLOGY

A. State constraint

As stated above a trained sonar operator has enough ex-
perience to say about the upper and lower limit of range
and velocity of a target. So we can write the target’s range,
rk =

√
x2
k + y2k ∈ [rk,min, rk,max] and the target’s radial

velocity v =
√

ẋ2
k + ẏ2k ∈ [vmin, vmax]. It can be noted that

we omit the subscript k from velocity because we assume the
target is moving with a near constant velocity.

We define the cost function as

J(X̂ ′
k|k) = argmin

X̂ ′
k|k

(X̂ ′
k|k − X̂k|k)

TP−1
k|k(X̂

′
k|k − X̂k|k), (3)

where X̂ ′
k|k is the constrained estimate; X̂k|k and Pk|k are the

posterior state estimate and posterior error covariance of state
obtained from any traditional nonlinear filter. We have to solve
Eq. (3) subjected to the constraint,[

r2k,min

v2min

]
≤ DrvX̂ ′

k|k ≤
[
r2k,max

v2max

]
, (4)

where Drv =

[
x̂k|k ŷk|k 0 0

0 0 ˙̂xk|k ˙̂yk|k

]
.

Four cases are taken under consideration which are: (i) the
posterior range estimate, r̂k|k goes beyond the upper bound of
the range, rk,max, (ii) the r̂k|k goes below the lower bound
of the range, rk,min, (iii) the posterior velocity estimate, v̂k|k
goes beyond the upper bound of velocity, vmax and (iv) v̂k|k
goes below the lower bound of velocity, vmin. If the posterior
estimate is within the range and velocity limit, the optimization
problem mentioned above is not required to be solved.

1) Range only constrained estimation: For range only
constrained estimation, if the estimated range is out of the
bound, either case (i) or (ii) may occur at any time step.
Let, the range only constrained estimate to be represented by
X̂ ′

r,k|k. When r̂k|k ≥ rk,max, we try to assign the x axis and y
axis position estimate in such a way that the estimated range
remains the same as the upper bound of it i.e. rk,max. In such
consideration the inequality constrain can be replaced with the
equality constrain and our optimization problem becomes

J(X̂ ′
r,k|k) = arg min

X̂ ′
r,k|k

(X̂ ′
r,k|k − X̂k|k)

TP−1
k|k(X̂

′
r,k|k − X̂k|k),

(5)

subjected to,

DrX̂ ′
r,k|k = r2k,max, when r̂k|k ≥ rk,max, (6)

DrX̂ ′
r,k|k = r2k,min, when r̂k|k ≤ rk,min, (7)

where Dr =
[
x̂k|k ŷk|k 0 0

]
.

2) Velocity only constrained estimation: The estimated ve-
locity at any instant may remain within the bound or it may
be out of the limit as guessed by the operator. If it is out of
the limit, Case (iii) or (iv) may occur at each time step. In
such cases, the optimization problem becomes

J(X̂ ′
v,k|k) = arg min

X̂ ′
v,k|k

(X̂ ′
v,k|k − X̂k|k)

TP−1
k|k(X̂

′
v,k|k − X̂k|k),

(8)
subjected to

DvX̂ ′
v,k|k = v2max, when v̂k|k ≥ vmax, (9)

DvX̂ ′
v,k|k = v2min, when v̂k|k ≤ vmin, (10)

where Dv =
[
0 0 ˆ̇xk|k ˆ̇yk|k

]
.

3) Range and velocity constrained estimate: In range and
velocity constrained estimation, range and velocity obtained
from a nonlinear filter may remain inside the limit guessed
by the operator or r̂k|k or v̂k|k or both may go beyond
their respective boundaries. Thus, while performing both range
and velocity constrained optimization, if the filter’s states go
beyond the limit, any one from Case (i) and (ii) may occur
along with another from either Case (iii) and (iv) i.e., at most
two out of the four cases may occur at each time step. So, at
first, the range only constrained estimation is performed and
then the velocity only constrained estimation is performed. On
merging both the constraints the range and velocity constrained
estimate, X̂ ′

k|k can be evaluated as

X̂ ′
k|k =

[
I2×2 02×2

02×2 02×2

]
X̂ ′

r,k|k +

[
02×2 02×2

02×2 I2×2

]
X̂ ′

v,k|k. (11)

B. Solution

The constrained optimization problems described above are
solved in this subsection. Without loss of generality, we can
express the above optimization problems as

J(X) = argmin
X

(X − X̂k|k)
TP−1

k|k(X − X̂k|k), (12)
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subjected to
DX = d. (13)

To solve it using Lagrange multiplier we augment the cost
function

L(X,λ) = (X−X̂k|k)
TP−1

k|k(X−X̂kk)+2λT (DX−d), (14)

where λ is the Lagrange multiplier. To minimize L, the
necessary first order conditions are as follows [22]

∂L

∂X
= 0 =⇒ P−1

k|k(X − X̂k|k) +DTλ = 0, (15)

and
∂L

∂λ
= 0 =⇒ DX − d = 0. (16)

On solving Eqs. (15) - (16), we get

λ = (DPk|kD
T )−1(DX̂k|k − d). (17)

Substituting Eq. (17) in Eq. (15), we get

X = X̂k|k − Pk|kD
T (DPk|kD

T )−1(DX̂k|k − d). (18)

The second order condition that is sufficient for minimiza-
tion of L is [23, p. 803]

∂2L

∂X2
= P−1

k|k ≥ 0, (19)

where P−1
k|k is the inverse of a positive definite matrix and

the determinant of Hessian matrix of L from Eq. (14) can be
expressed as

∂2L

∂X2

∂2L

∂λ2
− ∂2L

∂X∂λ

∂2L

∂λ∂X
, (20)

evaluating which we get DDT , which is again positive as on
applying range constraint, DDT = DrD

T
r = x̂2

k|k + ŷ2k|k and
on applying velocity constraint, DDT = DvD

T
v = ˆ̇x2

k|k+
ˆ̇y2k|k.

Thus, Eq. (18) delivers the local minima.
The pseudocode of the developed method is shown in

Algorithm 1, where X̂k|k−1, Pk|k−1 could be obtained from
any nonlinear state estimator. For TMA of underwater BOT
problem, deterministic sampling point filters [11], [13], [24],
or particle filter [25] or shifted Rayleigh filter [26] or other
available filters [8], [9], [12] could be used.

C. Constrained Cramer-Rao bound

The covariance of X̂ ′
0|0 [17],

E[(X̂ ′
0|0 −X0)(X̂ ′

0|0 −X0)
T ] ≥ PCCR

0 , (21)

where E[·] represents the expectation. PCCR
0 is initial error co-

variance of constrained Cramer-Rao bound. The unconstrained
Fisher information matrix (FIM), I0 is defined as [19],

I0 = E[(∇X0
ln p(Y0,X0))(∇X0

ln p(Y0,X0))
T ], (22)

where the expectation is with respect to Y0 and X0, and

p(Y0,X0) = p(X0)p(Y0|X0), (23)

Algorithm 1 Range and velocity constrained estimation

1: Initialize filter, X̂0|0, P0|0.
2: for k = 1 : kmax do
3: Perform time update to produce X̂k|k−1, Pk|k−1.
4: Perform measurement update to produce X̂k|k, Pk|k.
5: Evaluate range, r̂k|k =

√
x̂2
k|k + ŷ2k|k.

6: if r̂k|k ≤ rk,min then
7: d = r2k,min, D = Dr, find X̂ ′

r,k|k = X using (18).
8: else if r̂k|k ≥ rk,max then
9: d = r2k,max, D = Dr, find X̂ ′

r,k|k = X using (18).
10: end if
11: if v̂k|k ≤ vmin then
12: d = v2min, D = Dv , find X̂ ′

v,k|k = X using (18).
13: else if v̂k|k ≥ vmax then
14: d = v2max, D = Dv , find X̂ ′

v,k|k = X using (18).
15: end if
16: Redefine X̂k|k = X̂ ′

k|k as in Eq. (11).
17: end for

where p(Y0|X0) represents the likelihood of measurement.
Taking negative natural logarithm of Eq. (23) on following
[19] we can write,

I0 = I0,0 + I0,1, (24)

where I0,0 = P−1
0|0 and

I0,1 =
[
∇X0tan

−1
(X0(1, 1)

X0(2, 1)

)]
R−1

k

[
∇X0tan

−1
(X0(1, 1)

X0(2, 1)

)]T
.

(25)
Further, equality constrained FIM, IEC

0 can be evaluated as
[27]

(IEC
0 )−1 = I−1

0 −I−1
0 Gr,v(G

T
r,vI−1

0 Gr,v)
−1GT

r,vI−1
0 , (26)

where Gr,v ∈ R4×2 denotes the gradient of the constraints
x2+y2−r2 = 0 and ẋ2+ẏ2−v2 = 0, where r and v represents
the necessary values of range and velocity, respectively i.e.,

Gr,v =

[
2x 2y 0 0
0 0 2ẋ 2ẏ

]T
. (27)

From Eq. (26) we can evaluate PCCR
0 as follows:

PCCR
0 = (IEC

0 )−1. (28)

Under inequality constraint, [28] the FIM becomes IIEC
0 =

P−1
0|0 . Once initialized as discussed above, the constrained

Cramer-Rao bound of the estimation problem can be calcu-
lated using traditional Cramer-Rao bound as in Section III, D
of [2], [17], [27].

IV. SIMULATION RESULTS

A. Scenarios

In this paper, two scenarios, one moderately nonlinear and
another highly nonlinear are taken into consideration. The
moderately nonlinear scenario as shown in Fig. 1a is denoted
as Scenario I and the highly nonlinear scenario shown in Fig.
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1b is denoted as Scenario II [2], [6]. The total time taken
for simulation in both the scenarios is 30 min. The sampling
time in both scenarios is ∆ = 1 min. The process noise
intensity, q is considered to be 1.944 × 10−6 km2/min3. All
the parameters of both scenarios are as in [7]. For Scenario
I, the upper and lower velocity limits are considered to be 5
knot and 3 knot, respectively, and for Scenario II they are 17
knot and 13 knot, respectively. The upper and lower limits
of the range in both scenarios are considered to be ±1 km
of the respective true values. In Fig. 1, ‘Start’ represents the
beginning of the trajectories and ‘*’ denotes the point from
where ownship started maneuvering. In Fig. 1(a) ‘+’ denotes
the ownship ended maneuvering.

B. Performance comparison

The Algorithm 1 is implemented for constrained estimation
using the EKF, CKF, and UKF. The single run plots for
Scenario I and Scenario II are shown in Fig. 1a and 1b,
respectively, where the estimated trajectory is obtained using
constrained CKF (CCKF). It can be seen from the figure that
the estimated trajectory merges with the truth at the end of the
simulation in both the scenarios. The single run plots of range
and velocity, using the UKF, for Scenario I are shown in Fig.
2a and 2b, respectively, and for Scenario II are shown in Fig.
3a and 3b, respectively. Using constrained filtering method,
both range and velocity values get limited to their maximum
and minimum values in both the scenarios.

Fig. 2c and 2d show the RMSE plots of position and
velocity for 500 Monte Carlo runs along with the CRLB
and constrained CRLB (CCRLB) for Scenario I excluding
lost tracks. In our case of inequality constraints the CRLB
represents the minimum bound for error. The tracks whose
terminal error which is the estimation error at the 30th min
is beyond 1 km are considered to be lost. From the figures,
we can see that the RMSE plots of the constrained UKF
(CUKF) and CCKF after implementing both the range and
velocity constraints are higher than the unconstrained filters for
Scenario I. This is due to the fact that the track loss % is much
lowered on implementing the range and velocity constraints.
The RMSE in position and velocity on implementing the range
and velocity constraints are the lowest in Scenario II as shown
in Fig. 3c and 3d.

The track loss % and relative execution time are shown
in Table I. The track loss % is evaluated considering a track
bound of 1 km i.e., the maximum allowable error in estimation
at the last time step beyond which the track is considered to be
lost, evaluated for 10, 000 Monte Carlo runs. In both scenarios,
the track loss % obtained using constrained estimators is lower
compared to the unconstrained filters. The execution time in
the table is relative to the execution time of the unconstrained
EKF. It can be observed that the execution time is slightly
increased for the constrained filters than for the unconstrained
filters.

TABLE I: % of track loss and relative execution time

Filter Scenario I Scenario II Rel. Exe. Time
EKF 5.71 81.21 1

CEKF 2.18 65.88 1.55
CKF 2.2 63.89 1.41

CCKF 0.18 40.98 1.89
UKF 1.23 63.58 1.75

CUKF 0.09 38.66 2.04

V. DISCUSSION AND CONCLUSION

In this paper, accuracy of the TMA has been enhanced
by incorporating the limit of the range and radial velocity
of the target as received from an experienced sonar operator.
Consequently, a constrained optimization problem has been
solved along with a nonlinear estimation technique. The pro-
posed method is applied to two BOT scenarios. The results
obtained from the proposed technique are compared to that
of the traditional filters in terms of RMSE, track loss %, and
relative execution time. It has been observed that the proposed
method works better but it requires slightly more execution
time.
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Fig. 1: (a) Engagement scenario I and (b) Engagement scenario II.
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Fig. 2: (a) Truth and estimated Range, (b) Truth and estimated velocity, (c) RMSE plot of position and (d) RMSE plot of
velocity for Scenario I.

0 5 10 15 20 25 30

Time in min

-2

0

2

4

6

8

10

12

R
a
n
g
e
 in

 k
m

Unconstrained UKF estimate

Constrained UKF estimate

Truth

Upper limit

Lower limit

0 5 10 15 20 25 30

Time in min

0.3

0.35

0.4

0.45

0.5

0.55

0.6

V
e
lo

ci
ty

 in
 k

m
/m

in

Unconstrained UKF estimate

Constrained UKF estimate

Target velocity

Upper limit

Lower limit

20 21 22 23 24 25 26 27 28 29 30

Time in min

0

0.5

1

1.5

2

R
M

S
E

 o
f 
p
o
si

tio
n
 in

 k
m

CRLB

CCRLB

EKF

CEKF

CKF

CCKF

UKF

CUKF

20 21 22 23 24 25 26 27 28 29 30

Time in min

0

0.02

0.04

0.06

0.08

0.1

0.12

R
M

S
E

 o
f 
ve

lo
ci

ty
 in

 k
m

/m
in

CRLB

CCRLB

EKF

CEKF

CKF

CCKF

UKF

CUKF

(a) (b) (c) (d)

Fig. 3: (a) Truth and estimated Range, (b) Truth and estimated velocity, (c) RMSE plot of position and (d) RMSE plot of
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