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Abstract—We present a novel and computationally efficient
solution to the problem of subspace outlier detection that does not
assume knowledge of the number of outliers nor exact knowledge
of the dimension of the inliers subspace. The solution is based
on a powerful representation of the inliers subspace, referred
to as soft projection, and on a novel goodness-of-fit metric,
referred to as signal subspace matching (SSM). Experimental
results, demonstrating the performance of the SSM solution, are
included.

Index Terms—Subspace outlier detection, coherence metric,
signal subspace matching.

I. INTRODUCTION

Any types of signals, images and text are being mod-

eled as vectors in a lower-dimensional subspace, re-
ferred to as signal subspace. Indeed, this model is common in
face recognition [1], emitter localization [2], object recognition
[3], radar [4], EEG [5], hyperspectral images [6], and text clas-
sification [7], to name a few key areas. Unfortunately, the data
characterizing these low-dimensional subspaces is in many
cases contaminated by outliers. These outliers can be either
unstructured, i.e., random vectors lying outside the inliers’
subspace, or structured, i.e., generated by a different low-
dimensional subspace. As the solutions based on principal-
component-analysis (PCA) are very sensitive to these outliers,
[8], [9], coping with these outliers has been a central problem
in data analysis in the last decade. For a review of this work,
see [10]-[12].

Most of the work on this subject was aimed at direct
subspace recovery. The proposed solutions were based either
on L-norm minimization, which is known to be more robust
to outliers than the Lo norm [13]-[17], or on decomposing
the data into a sum of a low-rank matrix and a sparse matrix,
with the columns of the sparse matrix representing the outliers
[18]-[30]. Yet, these solutions require solving optimization
problems involving a large number of iterations, each with
a high computational load. More critically, they all require
knowledge of the dimension of the low-rank subspace, with
some requiring also knowledge of the number of outliers,
which are both typically unknown. Also, the algorithms based
on sparse outlier models can only handle a relatively small
number of outliers. A different solution, aimed at the direct
detection of the outliers, was presented in [31]. This solution,
inspired by [32] and referred to as Coherence Pursuit (CoP), is
based on using a “coherence” metric measuring the coherence
of each vector with all the other vectors. The vectors are
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sorted in descending coherence order, and the outliers are
declared as those vectors with the lowest coherence score.
This solution was shown to be computationally simple, handle
both unstructured and structured outliers, and have equal or
better performance than the other more computationally com-
plex solutions. Yet, the solution suffers from two drawbacks.
First, though the coherence metric is a good metric for the
“similarity” of the vectors to each other, it does not truly
capture the nature of the underlying subspace, especially of
high-dimensional subspaces. Second, and more critically, the
solution assumes knowledge of either the number of outliers
or the dimension of the inliers subspace, which is typically
unknown in practice.

In this paper, we present a radically different solution that
does not assume knowledge of the number of outliers nor
exact knowledge of the dimension of the inliers subspace. The
solution is based on a powerful representation of the inliers
subspace, referred to as soft projection, that does not require
explicit determination of the inliers subspace, and on a novel
goodness-of-fit metric, referred to as signal subspace matching
(SSM), that measures the distance between the given vectors
and the inliers subspace.

II. PROBLEM FORMULATION

Due to limited space, and since “unstructured” outliers
pose a significantly less challenging problem, we confine our
discussion to “structured” outliers only.

Suppose that we are given a total of N P x 1 vectors
{yi}N,, with Ny vectors {y;}\", referred to as inliers, and
No = N — Ny vectors {y;}Y \ ., referred to as outliers.
Suppose that the inliers are generated by the following low-
rank model:

yi=Asienl i=loN,

where Aj is the P x Q; matrix characterizing the inliers
subspace, s! is a Q; x 1 coefficients-vector characterizing the
i-th inlier, and niI is the P x 1 vector of the i-th inliers noise.

Suppose further that the outliers are generated by the
following low-rank model:

yi=Aps® +n?, i=N;+1,..,N. )

where Ao is the P x Qo matrix characterizing the outliers
subspace, s is a Qo x 1 coefficients vector characterizing
i-th outlier, and nio is the P x 1 vector of the i-th outliers
noise.
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We make the following further assumptions regarding the
inliers and outliers:

Al: The number of outliers N is unknown.

A2: The subspace-dimensions ); and Q¢ are unknown and
obey Q7 < P and Qp < P.

A3: The matrices A and Ao are unknown and full-column-
rank, i.e., rank[A ;] = Q and rank[Ao] = Qo.

Ad4: The coefficient matn'ces are full row rank,
rank|s{....,s}y ] = Q and rank][s (N ey = Qo.

A3: The noise vectors {n!} and {n®} are zero-mean and
independent of {s!} and {s¢}.

Let Y denote the P x N matrix of the given data,

ie.,

Y = [Y1, Yol 3)

where Y[ = [Y17~-~
inliers, and Yo = [y N, +1, -
of the outliers.

We can now state the subspace outliers detection problem as
follows: given the vector set Y = {y;} N, detect the inliers
vectors {y;} N,

,¥n,] denotes the P x Ny matrix of the
,¥n] denotes the P x Np matrix

III. THE SOFT PROJECTION

Ignoring the noise and the outliers, and denoting by y; the
noise-free y;, from (1), we have

:AISiIa 1= '7NI7 (4)

which implies, by A2-A4, that <Y[> = (Aj), where Y; =
[¥1,..-,¥n] and (e) denotes the column span of the bracketed
matrix. That is, (A ;) and (Y ) span the same Q;-dimensional
subspace, referred to as the inliers signal subspace. Denoting
by Pa, and ISYI the projection matrices on (A;) and (Y),
ie.,

Pa, = Ai(A7A) AT, 5)
and

Py, = Y/(Y[/'Y1) 'Y/, (6)
where (o) is the Hermitian operator, it follows from (4) that

Py, = Pa,. 7)

Note that for Ny > P, the Ny x Ny matrix Y'Y is rank-
deficient and hence singular. To solve the singularity problem,
and more critically, to make the projection matrix a good
estimate of Pa, in the presence of noise, we use the soft
projection, which was introduced in [33] [34] and is given by

Py = Y(YHY 4+ 6Iy)71YH, (8)

where Iy is the V x N identity matrix and § is the diagonal
loading factor given by

§=atr(YYH), )

with « denoting a small scalar, and tr(e) denoting the trace
of the bracketed matrix. As shown in [33] [34], « can be
selected in two ways. In applications such as image recognition
problems, wherein the pixels of each image are stacked into

a vector with more than 1000 elements, the value of « is set
to a small data-independent value

€[1073,...,1077]. (10)

In other applications, such as sensor array problems, wherein
there is a need to cope with large variability in the impinging
signals, « is set to a data-dependent value, given by

1
T (1D

VB
where o) is the sample-standard-deviation of the eigenvalues
of the sample-covariance-matrix R = - YY*, given by

a =

= —=||(R-Xp)||lr, (12)

with )\; denoting the ¢-th eigenvalues of R, and \ denoting
the sample-average of {\;}£ ,, given by

13)

If « is selected accordingly, it was demonstrated in [33]
[34] that if there are no outliers, P+ is a good approximation
to the projection matrix on the signal subspace, i.e.,

Py ~ Pa,. (14)

Note that Py does not require specifying explicitly the dimen-
sion of the underlying subspace — it is determined implicitly
by the data. This is in contrast to PCA, wherein the dimension
must be specified explicitly by the user, giving rise to the well-
known and challenging order-selection problem. Note also that
Py is not a proper projection matrix. Indeed, because of the
diagonal loading, its eigenvalues are not necessarily zero or
one, in contrast to a proper projection matrix.

The form of the soft projection given by (8) is computation-
ally complex when N is large, as it requires the inversion of
a N x N matrix. In the case that N > P, a computationally
simpler form can be obtained by using the matrix inversion
lemma. Indeed, we readily get

((Ip4+ YY) =5 Ip-Y(SIy+YHY) Y H), (15)
which can be rewritten as
Py =Ip—0(YYH +61p)7, (16)

requiring only the inversion of a P x P matrix.

IV. SOLUTION INGREDIENTS
A. The Signal Subspace Matching (SSM) Score

To introduce the SSM score, we first extract a small set of
vectors that capture as best as possible the inliers subspace. To
this end, we use the “coherence” metric [31], measuring the
”coherence” of each vector in a set with the other vectors.
More specifically, the CoP score of y; is given by the
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accumulated squared cosines of the angles between y; and
all the other vectors:

N

S i lyi) " e/lyel)l?, i=1,...,N.

k=1,ks#i

CoP(yi) =

(17)
We compute the CoP scores of each vector y;, sort the values
{CoP(y;)}Y., in descending order, and select the @) vectors
y; yielding the highest CoP score. () is a parameter that
should obey @@ > @ so as to ensure that the selected set
of vectors spans the inliers subspace. Yet, () should not be
too large, so as to ensure that the selected set includes only
inliers. Thus, a loose upper bound on the dimension should
do. The selected () vectors are then used to form the P x @)
matrix Y and its corresponding soft projection,
Py =Y(YHY +01g) 'Y, (18)
where

6 = atr(YYH). (19)
With ]_5? serving as an estimate of the projection matrix
onto the inliers subspace, we next introduce the SSM score.

To this end, let Py, denote the projection matrix on y;,

Py, =yilyly:) 'yF, (20)

and let the distance between 15? and P, be measured by the
following SSM metric, inspired by [33] [34]:

SSM(Py,Py,) = [|Py — Py, |3 1)

Using the fact that tr(P} ) = tr(Py,) = 1, this metric can be
rewritten as

SSM(Py, Py,) = tr(P%) + 1 - 2[P¢(yi/ly: ), (22)

where | e | denotes the Euclidean norm. Ignoring the first two
terms, since they are independent of y;, the SSM score is
defined as

SSM(yi) = [Py (vi/lyil)|*, i=1,..

The SSM score has a very intuitive interpretation: it measures
the squared norm of the projection of the unit vector y;/|y;]|
onto the inliers subspace. Thus, the higher is SSM(y;), the
more likely is y; an inlier.

N, (23)

B. The SSM error Criterion

As the SSM score measures the likelihood of being an
inlier, sorting the SSM scores {SSM(y;)}}Y, in descending
order yields an ordered list wherein the order represents the
likelihood of being an inlier. The outliers are supposedly at the
“end” of this ordered list. The question is how to determine
the “border” between inliers and outliers.

To this end, let y;) denote the ¢-th vector in the ordered
list, let Y; denote the P x ¢t matrix constructed from the first
t vectors in the ordered list,

Y:=[ya), Yol (24)

and let f’yt denote the corresponding soft projection matrix,
Py, = Y (Y'Y + 1) 'Y, (25)

where

6 = autr(Y, Y ). (26)

Note that as ¢ increases, Y; includes more and more inliers,
and as a result Pyt captures better and better the inliers
subspace. Yet, at some value of ¢, outliers start entering Y, and
corrupt it, and consequently ].Syt starts deteriorating. Recalling
that f’? characterizes the inliers subspace, we propose to
detect the “border” between inliers and outliers by evaluating

the distance between Py and Pv,, given by
SSM(Py,, Py) = [IPy, — Pyl @7)

and searching for the value of ¢ yielding its minimal value,

t = argmin,||Py, — Pg||%. (28)
The inliers are then given by:
Y =[ya). s Y@ (29)

C. Recursive Expression for Py,

The evaluation of SSM(Pvy,, f’?) requires the computation
of Pyt for every value of ¢. This, in turn, by (16), requires
matrix inversion for every ¢, which is computationally ex-
pensive. To alleviate this computational burden we apply the
matrix inversion lemma to (16), with some straightforward
manipulations, resulting in the following recursive algorithm:

~ ~ 1
Py, =Py, , + —Yu¥{ (30)
Y Y. 70y MOMO)
where ~
Yo = (Ip — Py,)yw), (3D
and 1
Ye=1+ Eyg)f’(t)- (32)

This is an intuitively pleasing rank-one update of f’yt. Indeed,
the updating vector, y ), is the projection of y(; on Ip —
f’ytfl, the orthogonal complement of f)Ytil, with ;61
serving as a normalization scalar.

To numerically stabilize (30), we apply a forgetting factor
B, with # < 1, resulting in the following recursion:

- - 1
Py, =8Py, , + ——— V) Vi (33)
Y BPy,_, 701 YY)

V. EXPERIMENTAL RESULTS

We next present experimental results for a sensor array
problem, comparing the performance of the SSM solution to
the CoP solution [31]. The CoP solution was selected since
it is based on direct outliers detection, and as such enables
straightforward performance comparison, without resorting to
the estimation of the inliers subspace

The performance is compared by two error metrics:

CER1 — number of inliers classified as outliers,

N, (34)
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TABLE I
INLIERS AND OUTLIERS SUBSPACES

Ar [a(10), a(20), a(30), a(40), a(50), a(60), a(70), a(80)]
Ao [a(130), a(140)]
Ao [a(130), a(140), a(150), a(160), a(170), a(180)]
and
CER2 — number of outliers classified as inliers. (35)

No

We consider a uniform circular array (UCA) with P =
100 elements, spaced half-wavelength apart. The inliers
and outliers are generated according to (1) and (2), using
@r-dimensional and (Qp-dimensional subspaces, respectively,
specified by the P x @y and P x Qo matrices A; =
[a(61),...,a(0g,)] and Ap = [a(61),...,a(fg, )], where the
P x 1 vector a(f) denotes the “steering vector” of the array
towards the bracketed direction-of-arrival (in degrees). The
coefficient {s;} are generated as white Gaussian random
vectors with covariance matrix 02Ip, and the noise {n;} as
white Gaussian vectors with covariance matrix O';Ip. The
signal-to-noise ratio (SNR) is defined as 10log;( 75

In all the experiments, the value of the parame?er Q was
set to () = 12, and the value of 3 was set to 3 = 0.999.

The performance is evaluated by presenting the classifica-
tion errors (34) and (35) as a function of the number of outliers
for an SNR of 15dB, with inliers and outliers having the same
SNR. The results are obtained by averaging 20 runs.

Experiment 1 presents the results for Ny = 100 inliers
generated by an 8-dimensional subspace A;, and a variable
number of outliers generated by a 2-dimensional subspace
A . The subspaces are specified in Table I. The results are
presented in Fig. 1. Note the clear superiority of the SSM over
the CoP in coping with a larger number of outliers. Indeed,
while the CoP classification errors start rising at 20 outliers,
the SSM classification errors start rising only at 40 outliers.

As evident from the results of the CoP solution, a relatively
small number of 2-dimensional outliers is sufficient to deterio-
rate its performance. Though the SSM uses the CoP coherence
metric for the construction of f’?, its performance is affected
to a much less extent, as is evident from the results.

To shed more light on the SSM solution in this experiment,
we examine the behavior of the SSM error (27). The results of
20 superimposed Monte Carlo runs for No = 30 are presented
in Fig. 2, with each run having a different color. Note that
almost all runs have a minimum at ¢ = 100, implying that
almost all inliers are classified correctly.

Experiment 3 presents the results for N; = 100 inliers
generated by an 8-dimensional subspace Aj, and a varying
number of outliers generated by a 6-dimensional subspace
A . The subspaces are specified in Table I. The results are
presented in Fig. 3. Note again the clear superiority of the
SSM over the CoP in coping with a larger number of outliers.
Indeed, while the CoP classification errors start rising at 40
outliers, the SSM starts rising only at 70 outliers.
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Fig. 1. Structured outliers: N7 = 100 inliers generated by an 8-dimensional
subspace A, and a varying number of outliers generated by 2-dimensional
subspace A . SNR=15dB.

SSM error

0 20 40 &0 80 100 120 140
Sorted samples

Fig. 2. Structured outliers: Ny = 100 inliers generated by an 8-
dimensional subspace A7, and outliers generated by 2-dimensional subspace
A . SNR=15dB. 20 superimposed runs of the SSM error as a function of
the sorted samples. Np = 30.

Note that the performance of the CoP and SSM in Experi-
ment 3 is better than their performance in Experiment 1. This
can be attributed to the fact that the CoP metric is significantly
more robust to outliers from a 6-dimensional subspace than to
outliers from a 2-dimensional subspace, reflecting the inherent
larger sensitivity of the CoP to low-dimensional outliers, being
based on an angles-between-vectors metric.

Note also that in experiments 1 and 3 the SSM classification
error CER1SSM falls to zero at a large number of outliers. This
happens because when the number of outliers is relatively large
f’yt is composed of both inliers and outliers and hence all
the vectors are classified as inliers.
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Fig. 3. Structured outliers: N7 = 100 inliers generated by an 8-dimensional
subspace A, and a varying number of outliers generated by a 6-dimensional
subspace A . SNR=15dB.

VI. CONCLUSIONS

We have presented a computationally efficient solution for
subspace outlier detection that does not assume knowledge of
the number of outliers nor exact knowledge of the dimension
of the inliers subspace — a loose upper bound on the subspace
dimension suffices. The solution was compared to the CoP
solution in the case of structured outliers and shown to largely
outperform it, notwithstanding that the CoP solution assumes
knowledge of the number of outliers while the SSM solution
estimates it from the data.
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