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ABSTRACT

Unsupervised anomalous sound detection (ASD) is an impor-
tant and practical task. For machine monitoring, there are
target machine type and other types. Recently, the classifica-
tion of positive and negative examples improved the perfor-
mance of ASD, where the first is the normal data of the target
type, and the latter is the anomalous data of the target type
and normal data of other types. This assumes that the dis-
tance between normal and anomalous data of the target type
is larger than that between anomalous data of the target type
and normal data of other types; however, this assumption is
not satisfied for some cases. The inclusion of normal data
from other machine types in positive examples helps to im-
prove the ASD performance of the target type, but its appro-
priate division of positive and negative examples is difficult
because the number of required model training and testing is
M · 2M−1 when the number of machine types is M . We pro-
pose an efficient division based on the performance change
caused by the data mismatch between training and testing,
which reduces the number of model training and testing to M
and M2, respectively. Experiments on task2 of the DCASE
2022 challenge show the effectiveness of our proposed ap-
proach.

Index Terms— anomalous sound detection, unsupervised
training, outlier exposure, feature extraction

1. INTRODUCTION

Anomalous sound detection (ASD) is an important and prac-
tical task, and previous challenges in detection and classifica-
tion of acoustic scenes and events (DCASE)1 have proposed
ASD tasks whose purpose is machine monitoring [1, 2, 3, 4].
For ASD, supervised training is effective [5, 6, 7], but be-
cause it is rare to obtain anomalous sound samples, unsuper-
vised training that does not require anomalous sound sam-
ples is desirable [2]. There are two types of unsupervised
ASD methods: inlier modeling (IM) [2, 5, 6, 7] and outlier
exposure (OE) [8, 9, 10]. IM detects anomalies on the ba-
sis of anomaly scores by making a probability distribution of

1DCASE challenges are one of the biggest shared tasks for acoustic event
detection.

normal data. On the other hand, the OE-based model classi-
fies positive examples and negative examples [8, 9, 10] based
on the high performance of advanced classifiers, where pos-
itive examples are normal sounds and negative examples are
anomalous sounds of the target type and normal sounds of
other types, which can be discriminated from positive ones.
Both methods have been widely used; in fact, recent DCASE
challenges have prepared two types of corresponding base-
lines. For most cases, the OE-based model outperformed IM,
but for some cases, classification catastrophically failed [9],
that is, IM is more robust than the OE-based model.

To take advantage of both methods, two-stage ASD has
been proposed to combine IM and OE [11, 12], which is one
of the SOTA methods of the DCASE 2022 challenge. After
features are extracted by an OE-based feature extractor, IM
detects anomalous sounds. Here, we modify the OE-based
feature extractor, which does not fully exploit the data of other
machine types. This model assumes that the distance between
normal and anomalous sounds of the target type, which is
the distance between positive and negative examples, is larger
than that between anomalous sound of the target type and nor-
mal sounds of other types, which is the distance among neg-
ative examples. As shown in the experiments later, this as-
sumption is not satisfied for some cases. In addition, the per-
formance of the multiconditioned models trained on sounds of
multiple machine types simultaneously was better than that of
models trained on sounds of a single machine type [13]. Ac-
cording to these observations, the inclusion of normal sounds
of other machine types in positive examples helps to improve
the ASD performance of the target type, but it is difficult to
divide positive and negative examples appropriately because
the number of total combinations is too large. Thus, we pro-
pose an efficient division of positive and negative examples
based on the performance change caused by the mismatch of
the data between training and testing. The proposed method
can be easily applied to other types of OE-based ASD. Exper-
iments on the DCASE 2022 challenge show that the proposed
method improved ASD performance.

2. OE-BASED FEATURE EXTRACTOR

The two-stage ASD extracts features using OE-based models
and inputs the obtained features into IM to make probabil-
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Fig. 1. A schematic diagram of assumptions of embedded
vectors obtained by conventional OE-based feature extractor
to classify section id.

ity distributions for normal data [11]. We briefly describe the
OE-based feature extractor, which is the first stage of the two-
stage ASD. To train discriminant feature extractor, classifiers
are used to classify positive and negative examples, where
positive examples are normal data of the target type and neg-
ative examples are anomalous data of the target machine type
and normal data of other machine types. In an unsupervised
setting, because anomalous data of the target machine type
are unobserved, normal data of other machine types are used
as negative examples when training classifiers. This is based
on the assumption that embedded vectors of negative exam-
ples are located near the center of the hypersphere and those
of positive data are remote from the center, as shown in Fig. 1
and that to properly classify section ids of normal data, clus-
ters are made in the embedded space, where section id is the
recording condition ID of a subset of normal data within the
same machine type.

The classifier λ uses the features f(xi) extracted from
the feature extractor f , where the input acoustic feature is
x = {x1, ...,xi, ...,xI} and i is the index of the sound files.
For each i, the section id s and the machine type m ∈ M
are specified. There are two types of loss functions to train
classifiers λ. The one of the two loss functions is a categor-
ical cross-entropy of section ids conditioned on the machine
type. The classifier λ estimates the posterior probability π̂λ

of the section id s ∈ S . For example, S = {1, 2, ...} and
M = {bearing, fan, ...}.

Ls(x;m) =
−1

|S|
∑

i πi(m)

∑
i,s

πi(m)πi(s) log(π̂λ(s|f(xi))),

(1)
where πi(m) is a one-hot distribution of the correct label of
machine type m, πi(s) is a one-hot distribution of the correct
label of the section id s, and π̂λ(s|f(xi)) is the softmax out-
put of the section id s. In addition, the other loss function is a
cross-entropy of machine types as

Lm(x) = −1

I

∑
i,m

πi(m) log(π̂λ(m|f(xi))), (2)

Fig. 2. A schematic diagram of assumption of embedded vec-
tors obtained by the proposed OE-based model trained with
two types of positive examples composed of normal data of
target type and other types.

where π̂λ(m|f(xi)) is the softmax output of the machine type
m. The loss function to be optimized for the model of m was
a combination of them as

L(m) = Lm(x) + γLs(x;m). (3)

3. OE-BASED FEATURE EXTRACTOR TRAINED
WITH EXTENDED POSITIVE SETS

3.1. Modified loss function with extended positive sets

As shown in the experiments in Sec. 4, data of some other
machine types help improve the ASD performance of the tar-
get type. We modify the assumption of Fig. 1 as shown in
Fig. 2. There are two types of positive examples in the dia-
gram. One is from the normal data of the target type and the
other is from those of other types, which is helpful for the tar-
get type classification. These two types of positive examples
are far from the negative examples when these two types of
positive examples are more similar than the others. Section
ids can be different between two positive sets because section
ids are arbitrary for each type. The conventional method [11]
optimizes a loss function (3) only in terms of the target type
m, but our proposed method optimizes a loss function

L(m) =
∑

m′∈MP

[Lm′(x) + γLs(x;m
′)] , (4)

for the set of positive machine types MP . Here, positive
machine types MP are the target type and helpful machine
types, and when MP only contains the target type, the pro-
posed method is the same as the conventional method.

3.2. Efficient positive and negative set division

To divide the set of machine types M into the set of positive
ones MP and negative ones MN (Mp ∩MN = empty and
Mp∪MN = M), for each machine type m, the other m−1
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types have an option to belong to MP or MN . To find the
best Mp, the total number of training and testing of the model
is |M| · 2|M|−1. In the case of M = 7 and M = 10, this
number is 448 and 5120, respectively. In particular, model
training is intractable. It is necessary to reduce this number;
thus we propose an efficient division method.

To find the helpful type, the performance improvement or
degradation caused by the mismatch of data between training
and testing can be used. We compute a performance metric
such as AUC 2 in the development set using a model trained
on the mtr data to evaluate the mte data as φ(mtr,mte)
where mtr,mte ∈ M. This is made up of |M| matched
cases and |M|(|M| − 1) mismatched cases. Generally, in
mismatched cases, the ASD performance degrades from the
matched cases, but if the performance improves in the mis-
matched cases (mtr ̸= mte), the data mtr are suitable for
training models of mte. For each mte, after the calculation of
φ, which requires |M|-times evaluations, model training is
required once. The total number of necessary model training
and that of testing are |M| and |M|2, respectively, which are
much smaller than |M| · 2|M|−1.

The metric φ is normalized for each model because the
performance of the matched case is different from machine
type to machine type. Normalized performance metric is the
difference of φ between matched and mismatched cases as

φ̄(mtr,mte) = φ(mtr,mte)− φ(mtr,mtr). (5)

For each mte, if mismatched cases are better than the matched
case, the data mtr are helpful to improve the performance of
mte. This judgement is based on the normalized metric φ̄ as

φ̄(mtr,mte)

{
> 0 (mtr ∈ MP )

≤ 0 (mtr ∈ MN )
. (6)

4. EXPERIMENT

4.1. Experimental setups

We conducted an experiment using the DCASE challenge
2022 task2 dataset3 [4] for unsupervised machine condition
monitoring, which focuses mainly on the domain-shift sce-
nario. It consists of two types of machines (“ToyCar” and
“ToyTrain”) from ToyADMOS2 [14] and of five types of
machines (“bearing,” “fan,” “gearbox,” “slider,” and “valve”)
from MIMII DG [15]. Evaluation was performed on the de-
velopment set and the evaluation set. There are three sections
per machine type (sections 00, 01, and 02) for the develop-
ment set and other three sections per machine type (sections

2AUC score cannot be used when no anomalous data are provided. For
that case, the classification accuracy of the section id of normal data can be
used.

3We used DCASE challenge 2022 dataset because in DCASE challenge
2023, the settings were totally different and it is difficult to apply OE-based
models.

Table 1. All combinations of harmonic mean of AUC and
pAUC (p = 0.1)[%] for source domain (development set).
mtr is machine type for training data and mte is machine type
for test data.
mtr \mte bearing fan gearbox slider valve ToyCar ToyTrain

bearing 47.56 58.22 66.06 63.76 55.20 64.85 53.16
fan 57.76 58.89 58.63 66.01 69.95 63.06 52.01

gearbox 44.67 62.79 69.01 66.11 60.37 64.21 49.76
slider 46.64 62.87 66.82 92.49 61.82 60.56 53.12
valve 53.59 59.05 65.08 76.94 88.83 58.25 54.65

ToyCar 50.29 66.80 55.85 63.41 54.54 70.43 49.73
ToyTrain 54.51 54.82 62.01 64.60 54.25 65.43 56.96

Table 2. All combinations of harmonic mean of AUC and
pAUC (p = 0.1)[%] for target domain (development set).
mtr \mte bearing fan gearbox slider valve ToyCar ToyTrain

bearing 57.12 56.18 58.65 57.95 49.65 53.59 53.56
fan 58.29 62.57 50.37 58.50 63.29 53.44 53.26

gearbox 57.44 56.36 62.30 58.64 55.00 53.58 50.70
slider 56.23 56.73 54.97 61.82 54.96 50.83 54.24
valve 54.12 54.37 50.39 60.77 84.60 49.15 55.31

ToyCar 59.33 61.25 50.16 59.20 49.02 54.25 46.00
ToyTrain 56.93 54.75 52.95 56.43 51.44 52.73 51.60

03, 04, and 05) for evaluation set. This task prepared two
domains (source and target), but domain information cannot
be used for evaluation. For training, each section provided
990 normal clips from the source domain and 10 normal clips
from the target domain. Thus, the training condition for the
target domain was fewshot. For testing, each section pro-
vided 100 normal clips and 100 anomalous clips from both
domains.

The Mel spectrogram was used for the input, where the
window size was 128 ms and the hop size was 16 ms. The
classification models were composed of efficientnetV2B0
[16], Transformer [17], and Conformer [18]. The number of
epochs was 50, and the batch size was 128. AdamW opti-
mizer was used with a learning rate of 10−3. The weight γ
in Eqs. (3) and (4) was 10. We modified the source codes
provided by the authors of the two-stage ASD4. For the per-
formance metric φ, we used the harmonic mean of AUC and
pAUC (p = 0.1).

IM was used to calculate the anomaly score for the i-th
file as ai = A(h(f(xi))), where IM h was Gaussian mix-
ture models (16 mixtures) [19] and the aggregator A was a
max pooling. Based on the score ai, the performance of ASD
was evaluated. To clarify the effectiveness of the proposed
method, the system combination approach [12] was not used
in this experiment.
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Table 3. Harmonic mean of AUC and pAUC (p = 0.1)[%] for
source domain (development set). ‘d(target)’ and ‘d(source)’
are proposed division on target and source domain of the de-
velopment set, respectively.

Method bearing fan gearboxslider valve ToyCarToyTrainhmean
baseline 47.56 58.89 69.01 92.4988.83 70.43 56.96 65.84
d(target) 46.40 66.23 77.73 92.7681.50 69.15 66.22 68.54
d(source) 51.45 62.94 81.48 94.6988.00 69.95 63.20 70.25

Table 4. Harmonic mean of AUC and pAUC (p = 0.1)[%]
for target domain (development set).

Method bearing fan gearboxslider valve ToyCarToyTrainhmean
baseline 57.12 62.57 62.30 61.8284.60 54.25 51.60 60.68
d(target) 60.02 64.19 65.44 62.8382.53 53.88 46.51 60.54
d(source) 60.64 66.64 66.41 60.0587.51 56.63 50.39 62.42

4.2. Result and discussion

Table 1 shows the harmonic mean of AUC and pAUC (p =
0.1) in the source domain of the development set. The row
shows the machine type of the training data mtr and the col-
umn shows the machine type of the test data mte. For ex-
ample, the element in the first row and in the second col-
umn (φ(bearing, fan) = 58.22%) shows the harmonic mean
of AUC and pAUC in the fan data evaluated with the model
trained on the bearing data. The diagonal elements were the
matched cases and the off-diagonal ones were the mismatched
cases. If the assumption of Fig. 1 is satisfied, the diagonal el-
ements should always be better than the off-diagonal ones,
because data of other types were concentrated near the hy-
persphere and in mismatched cases it is hard to discriminate
the difference between normal and anomalous data of the tar-
get type. This difference is negligible for the model trained
on other types, because both are negative examples for the
model. However, for three types out of seven machine types
(bearing, fan, and ToyTrain), off-diagonal elements were bet-
ter than diagonal ones. This shows that some machine types
are helpful to improve the performance of the target type as
shown in Fig. 2. Table 2 shows the harmonic mean in the
target domain of the development set. The trends were sim-
ilar to those of the cases in Table 1. For four of the seven
types of machines (bearing, fan, ToyCar, and ToyTrain), the
off-diagonal elements were better than the diagonal ones and
the types of machines whose off-diagonal elements were bet-
ter than the diagonal ones (bearing, fan, and ToyTrain) were
common in Table 1 and Table 2. Based on these results, posi-
tive and negative examples were divided.

Table 3 shows the harmonic mean in the source domain of
the development set for the matched cases, which compares
the performance of the proposed methods using positive and
negative division with the baseline. Except for ToyCar, the
ASD performance was improved by the proposed method.

4https://github.com/ibkuroyagi/dcase2022_task2_
challenge_recipe

Table 5. Harmonic mean of AUC and pAUC (p = 0.1)[%]
for target domain (evaluation set).

Method bearing fan gearboxslider valve ToyCarToyTrainhmean
baseline 60.61 56.10 57.81 60.6869.30 39.17 52.33 55.04
d(target) 62.51 58.55 55.41 65.0876.74 40.27 48.82 56.07
d(source) 61.50 60.80 56.09 62.6379.70 45.22 45.65 56.88

The division based on the source domain (Table 1) was better
than that based on the target domain (Table 2). Table 4 shows
the harmonic mean in the target domain of the development
set. Except for ToyTrain, ASD performance improved and
trends were similar to those of Table 3 despite the domain-
shift scenario. The division based on the source domain was
the best on average. Table 5 shows the harmonic mean in
the target domain of the evaluation set. The proposed method
improved the ASD performance of the baseline.

5. CONCLUSION

To improve ASD performance by including normal data from
other machine types in positive examples appropriately, we
propose an efficient division of positive and negative exam-
ples based on the performance change caused by the mis-
match of data between training and testing. This method re-
duced the total number of training from M · 2M−1to M and
that of testing from M · 2M−1to M2, where M is the number
of machine types. Experiments on task2 of the DCASE 2022
challenge show the effectiveness of our proposed method.
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