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Abstract—Foley sound generation, the art of creating audio
for multimedia, has recently seen notable advancements through
text-conditioned latent diffusion models. These systems use mul-
timodal text-audio representation models, such as Contrastive
Language-Audio Pretraining (CLAP), whose objective is to map
corresponding audio and text prompts into a joint embedding
space. AudioLDM, a text-to-audio model, was the winner of
the DCASE2023 task 7 Foley sound synthesis challenge. The
winning system fine-tuned the model for specific audio classes
and applied a post-filtering method using CLAP similarity scores
between output audio and input text at inference time, requiring
the generation of extra samples, thus reducing data generation
efficiency. We introduce a new loss term to enhance Foley sound
generation in AudioLDM without post-filtering. This loss term
uses a new module based on the CLAP model—Latent CLAP
encoder—to align the latent diffusion output with real audio in
a shared CLAP embedding space. Our experiments demonstrate
that our method effectively reduces the Fréchet Audio Distance
(FAD) score of the generated audio and eliminates the need for
post-filtering, thus enhancing generation efficiency.

Index Terms—Foley sound synthesis, latent diffusion, CLAP

I. INTRODUCTION

In recent years, deep learning models have made tremen-
dous advances in the domain of sound generation [1]–[5].
In light of these advancements, user-controlled neural audio
synthesis has the potential to revolutionize numerous domains,
including Foley sound synthesis [6], [7], the art of creating or
reproducing everyday sound effects that are added to film,
video, and other media in post-production. This innovation
could impact a variety of fields that utilize Foley sound by
automating the labor-intensive manual sound design.

Diffusion models [8] have gained significant attention for
their ability to learn complex distributions, which makes
them well-suited for data types such as audio. By integrat-
ing the latent diffusion model (LDM) [9] for generation
and the contrastive language-audio pretraining (CLAP) [10]
model as a text encoder, AudioLDM [1] stands as one of
the current state-of-the-art text-to-audio generation systems,
demonstrating strong performance in Foley sound generation
tasks. Models built upon AudioLDM [11], [12] emerged as
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the winner of the DCASE2023 Task 7 Foley Sound Synthesis
Challenge [13]. The winning model used AudioLDM, fine-
tuned on a set of sound classes, alongside a post-filtering
technique that generated superfluous samples and sub-selected
the best among them using a heuristic. Although post-filtering
improved the output quality, it significantly compromised the
efficiency of generation.

We propose augmenting the AudioLDM framework by
introducing a Latent CLAP loss, which is incorporated through
a Latent CLAP encoder module. This module is integrated
into the fine-tuning process with an objective to increase
the similarity in the CLAP embedding space between the
generated and real audio at training time, thus enhancing the
quality of the generated samples.

Our experiments show that the proposed method not only
improves Fréchet Audio Distance (FAD) [14], an objective
generative audio metric, but also alleviates the need for post-
filtering, thereby enhancing the quality of generated sounds
while greatly improving the efficiency of the audio generation
process. Additionally, a perceptual study involving subjective
evaluations from a cohort of human listeners confirm our
objective metrics, indicating strong preferences towards the
data generated using the proposed model, as compared to
AudioLDM fine-tuned on the DCASE2023 Task 7 data.

II. BACKGROUND

A. AudioLDM System Overview

AudioLDM comprises a text-audio encoder, a generator,
an autoencoder, and a vocoder. CLAP serves as the text-
audio encoder, mapping audio and text into a shared em-
bedding space. This is succeeded by an LDM that serves
as the main generator of the system. To train on limited
computational resources while retaining generation quality,
the LDM operates within the latent space of a Variational
Autoencoder (VAE) [15]. This VAE is pretrained to compress
and reconstruct Mel-spectrograms. Finally, a HiFi-GAN [16]
vocoder is used to synthesize the audio output from the
generated Mel-spectrograms.

Each component—the CLAP encoder, VAE, and HiFi-GAN
vocoder—is pretrained independently and frozen within the

351ISBN: 978-9-4645-9361-7 EUSIPCO 2024



overall system, for the subsequent training of the LDM. Au-
dioLDM overcomes a primary challenge in the field of audio
machine learning, the need for vast, high-quality audio-to-text
datasets, by directly extracting embeddings from audio using
the CLAP model. Additionally, AudioLDM utilizes classifier-
free guidance (CFG) [17], which allows for the adjustment
of adherence to conditioning during inference through CFG
weighting.

B. Foley Sound Synthesis Task and Baseline Models

This study follows the challenge set out by DCASE2023,
specifically Task 7 on Foley Sound Synthesis [13]. The chal-
lenge was set up as a category-to-sound generation with seven
distinct categories: dog bark, footstep, gunshot, keyboard,
moving motor vehicle, rain, and sneeze/cough. The challenge
organizers supplied a hand-curated development dataset con-
taining the above mentioned 7 categories.

For our baseline comparisons, we select the winning model
from the DCASE2023 Challenge Task 7 on Foley Sound
Synthesis [11], and its subsequent modification [12]. Both
baselines employ a pretrained AudioLDM, fine-tuned on the
text-to-audio pairs from the challenge dataset. In this process,
class labels are transformed into descriptive sentences, which
are then fed into the text branch of the CLAP model. To
extract better semantic embeddings for each class, [12] used
an additional tuning layer between the CLAP and LDM
modules. Both models applied a post-filtering technique to the
generated audio samples. The post-filtering process involved
calculating the cosine similarity between CLAP embeddings
of the generated audio and the target text. Audio samples
achieving similarity scores beyond a predefined threshold were
then selected for the final output pool. In both studies, the post-
filtering thresholds, as well as the CFG weights (see II-A) were
determined empirically for each sound class.

III. METHOD

Our system, depicted in Fig. 1, is a modification of Audi-
oLDM [2] with the addition of a novel Latent CLAP encoder
for enhanced loss computation.

A. CLAP Encoder

The CLAP model comprises two parallel, jointly-trained
transformer-based encoders: one for text and one for audio.
The text encoder in the CLAP model converts the text input
xtext into an embedding vector denoted by Etext. Similarly,
the audio encoder converts the audio input xaudio into Eaudio
that matches the dimensions of Etext. These two encoders are
trained with a contrastive loss, resulting in an aligned latent
space of the same dimensionality. A comparative analysis
[10] shows that the best architecture for the CLAP audio
encoder is HTSAT [18], and the best architecture for the text
encoder is the RoBERTa [19] language model. In our work,
we utilize the publicly released model † from [10] pretrained
on AudioCaps [20], Clotho [21], LAION-Audio-630K [10],
and Audioset [22] datasets.

†https://github.com/LAION-AI/CLAP
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Fig. 1. Overview of the overall system for Foley audio generation.

Similarly to the baseline model [12], we add a fully con-
nected tuning layer after the text CLAP encoder (see Fig. 1).
We evaluate the system with and without this layer.

B. LDM Generator

The LDM generator, operating in latent space, when con-
ditioned on the text embedding Etext, produces a compressed
representation of Mel-spectrogram sn ∈ RC×T

r ×F
r , where r

shows the compression ratio, C denotes the number of chan-
nels, T and F represent the time and frequency dimensions
of Mel-spectrogram respectively. The variable n ∈ [1, . . . , N ]
in sn represents the step number in the diffusion model’s
forward or reverse steps. During the forward phase of the
diffusion process, the original clean compressed representa-
tion of the Mel-spectrogram s0 is gradually turned into an
isotropic Gaussian noise sN with distribution N (0, I) over N
steps, by incrementally adding Gaussian noise ϵ at each step.
Conversely, in the reverse phase of the diffusion process, the
clean representation s0 is incrementally reconstructed through
a denoising process, where at each time step n, the model
predicts the injected noise ϵ to reconstruct sn−1 from sn.

The training objective of the model is to minimize the
mean square error (MSE) between the predicted noise ϵθ and
the actual Gaussian noise ϵ, following the classic Denoising
Diffusion Probabilistic Model’s (DDPM) [8] loss approach:

LDDPM (θ) = Es0,ϵ,n∥ϵ− ϵθ(sn, n, Etext)∥2, (1)

where θ corresponds to the parameters of the LDM model.

C. Variational Autoencoder and HiFi-GAN Vocoder

We employ a VAE model [7] to bridge the Mel-spectrogram
domain with the latent space used by the LDM. The VAE
encoder projects Mel-spectrograms into the latent space and
the VAE decoder reconstructs the Mel-spectrograms from
compressed representations. During training, the input audio
xaudio is first converted into a Mel-spectrogram xMel as shown
in Fig. 1. Then, the VAE encoder maps xMel to a latent
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compressed representation xlatent ∈ RC×T
r ×F

r , which is then
compared with the LDM’s output sn. During inference, the
VAE decoder transforms the denoised compressed represen-
tation output of LDM, s0, into the Mel-spectrogram x̂Mel.
The HiFi-GAN vocoder subsequently maps x̂Mel into an audio
waveform x̂audio.

D. Latent CLAP Encoder

To improve the model performance without the need for
post-filtering, we attempted to include CLAP similarity score
into the loss function, aiming to maximize similarity during
training. Unfortunately, this end-to-end training setup required
extensive GPU resources and proved to be ineffective. To over-
come this limitation, we developed a new module that maps
the VAE latent space, in which LDM operates, to the CLAP
embedding space. This module, which we refer to as the Latent
CLAP encoder, utilizes the Pretrained Audio Neural Network
(PANN) architecture [23], a popular approach for tasks such
as audio classification. Concretely, we use the ‘PANN-10’
design, with modified input and output layers which process
compressed audio representations – xlatent during its own
training and sn during fine-tuning of the AudioLDM system
– and predicts the corresponding CLAP embedding Elatent,n.

As illustrated in Fig. 2, we trained the Latent CLAP encoder
ϕ in conjunction with the frozen audio branch of the pretrained
CLAP model using MSE objective to match the embedding
spaces of the two encoders:

L(ϕ) = Exlatent∥Eaudio − Elatent∥2. (2)

The audio inputs xaudio are first transformed into Mel-
spectrograms xMel and then compressed into a latent repre-
sentation xlatent by a pretrained, frozen VAE encoder before
being fed into Latent CLAP. The dataset employed for training
was WaveCaps [24], a collection of around 400K Chat-GPT
labeled audio clips. Apart from the labels that were not used
in our training process, the WaveCaps compilation includes
popular audio datasets such as Audioset, BBC, Freesound, and
Soundbible, sharing substantial commonalities with the data
that was used to train the original CLAP model. Our rationale
for using a similar dataset was to align the performance of
the new Latent CLAP encoder as closely as possible with the
existing branches of CLAP.

As shown in Fig. 1, we introduce the Latent CLAP loss to
our Foley generation system at the fine-tuning stage, aiming
to enhance the similarity between LDM’s latent audio output
and the actual ground truth audio, facilitating improvements
in sample quality. The objective of the loss function in the
training process is minimizing the MSE between the CLAP
embedding vector outputs of real audio and generated latent
representations, as follows:

LLCLAP (θ) = En

[
w(n) · ∥Eaudio − Elatent,n∥2

]
, (3)

where the embedding vectors Eaudio and Elatent,n represent the
outputs of the CLAP audio branch and latent CLAP encoder,
respectively. The audio branch processes the incoming audio
xaudio, while the Latent CLAP encoder operates on the noisy,
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+ 

Mel FB

Fig. 2. Latent CLAP encoder pretraining.

compressed representation sn, which is the output of the LDM
model at step n. The w(n) in the equation is a n-dependent
weighting function that defines the contribution of higher n
(noisier) and lower n (cleaner) samples in the loss calculation,
addressing the observed ineffectiveness of the method when
treating noisy and less noisy samples uniformly.

The Foley synthesis model’s total loss combines the con-
ventional DDPM loss with the newly introduced Latent CLAP
loss with weight λ as follows:

L(θ) = LDDPM (θ) + λLLCLAP (θ) (4)

IV. EXPERIMENTAL SETUP

A. Data and Metrics

Our experiments utilized the DCASE2023 Task 7 challenge
dataset, comprising 6.1 hours of audio, distributed across seven
given categories, with each containing 600 to 800 clips of
4 seconds long. We pre-processed the data by resampling it
from 22 kHz to 16 kHz and employing a repeating method
to extend the clips from 4 to 10.24 seconds in length. Using
a window length of 1024 and a hop size of 160 samples,
the audio clips were transformed into Mel-spectrograms with
dimensions F × T = 64 × 1024, representing Mel-frequency
bins and time frames respectively. Text prompts were trans-
formed from class labels to sentences using the phrase “This
is a sound of <label>.” We adopted the FAD metric
for evaluation, utilizing the means and standard deviations of
VGGish embeddings provided by the challenge organizers as
the reference distribution for the evaluation set.

B. Parameter Settings

As a starting point for our fine-tuning process, we took a
pretrained audioldm-m-full variant of the AudioLDM model
from publicly released checkpoints†. When fine-tuning with
the DCASE2023 development dataset, all parts of the model
were frozen except for the parameters of the LDM and the
tuning layer as demonstrated in Fig. 1. Our setup uses a VAE
with a compression ratio r = 4, encoding Mel-spectrograms
of size F ×T = 64×1024 into latent vectors of size C× F

r ×
T
r = 8×16×256 in channel, frequency and time dimensions,
respectively. The embedding sizes for audio, text, and latent
representations from the CLAP encoder are 512. During fine-
tuning, we use the Adam optimizer with a learning rate of
3×10−6 for up to 500 epochs. The number of LDM denoising
steps is set to N = 1000 during training and N = 200 during
inference. To evaluate model performance, we generate 100

†github.com/haoheliu/AudioLDM
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TABLE I
EVALUATION: FAD SCORES (LOWER IS BETTER, ↓).

System Dog Bark Footstep Gun Shot Keyboard Motor Vehicle Rain Sneeze/Cough Average Std.

Real Audio 3.19 5.51 5.02 3.42 6.24 4.46 4.43 4.61 1.09

LDM [11] 5.69 10.24 7.25 5.11 19.77 9.75 3.38 8.74 5.45
LDM+Tuning [12] 6.58 10.31 5.07 4.7 11.57 9.59 4.5 7.47 2.95

LDM+Latent 4.54 7.08 5.6 5.31 16.14 7.84 3.16 7.1 4.28
LDM+Tuning+Latent 5.91 9.9 4.51 4.46 7.3 8.99 4.55 6.52 2.26

LDM+filter [11] 4.11 9.47 5.2 4.48 23.45 9.56 3.4 8.52 7.05
LDM+Tuning+filter [12] 5.64 9.91 4.56 4.93 12.54 8.86 4.33 7.25 3.2

LDM+Latent+filter 4.46 8.24 5.27 4.71 10.91 8.83 2.87 6.47 2.88
LDM+Tuning+Latent+filter 6.24 9.01 4.4 4.86 10.7 9.94 4.24 7.05 2.76

clips per class and compute their FAD with respect to the
evaluation set.

In our experiments, we standardized the CFG
weight (see II-A) to 2.0 for all categories, unlike the
baselines [11], [12] in which it varied between 1.5 and
2.5. Also in contrast to the baselines, which used varying
AudioLDM models for different classes, we only used
audioldm-m-full, with a goal of analyzing Latent CLAP’s
impact rather than minimizing FAD scores. For post-filtering,
we used the same CLAP similarity threshold as in the
baselines (see II-B). Namely 0.2 for all classes, except for
keyboard (0.15) and motor vehicle (0.75).

For Latent CLAP loss in (3), we set the denoising-step-
dependent weighting function as w(n) = 10−

n
200 , where n is

the denoising step in the latent diffusion process. The function
is an exponent decay attenuating contributions of overly noisy
samples in the training above N = 200 step, which is also the
number of steps used at the inference stage. For the weighting
coefficient λ balancing the DDPM and Latent CLAP loss
contributions in (4), we found that a setting of λ = 2000
provided the best results for the model using latent CLAP
loss, whereas λ = 1000 yielded the best results for the model
utilizing both latent CLAP loss and the tuning layer.

V. RESULTS

A. Objective Metrics

We evaluated our models, which incorporate Latent CLAP
loss, both with and without the inclusion of the tuning layer,
against baselines [11], [12]. The performance of our proposed
method on the DCASE2023 Task 7 validation set is reported
in Table I. As shown in rows 2-5, models using Latent CLAP
loss in both settings outperform the baselines in terms of FAD
score (1.64 and 0.95 avg. FAD improvement, respectively),
indicating substantially better correspondence of the generated
set with the evaluation set in the matter of objective metrics.

We observed that integration of Latent CLAP loss showed
minimal effect on the similarity scores between generated
audio and text embeddings (.65 → .66 with the tuning layer
and .30 → .31 without the tuning layer). Our results demon-
strate that the addition of latent CLAP enhances the output
audio quality without altering the alignment between the text
prompts and generated audio. This outcome is consistent with

0
50

0
10

00
20

00
30

00
40

00
50

00
75

00

10
00

0

6

8

10

12

14

FA
D

LDM
LDM+Tuning
LDM+Latent
LDM+Tuning+Latent

Fig. 3. Impact of Latent CLAP Loss Weight on FAD Score. Note: these
FAD scores were obtained for the models trained for only 100 epochs, while
Table I presents the evaluation of the models trained for 500 epochs. This
study aims to explore the relative performance changes as a functions of λ.

our emphasis on improving audio fidelity, as opposed to
increasing the similarity between text and audio, which is the
underlying assumption of the baseline’s use of post-filtering.

Furthermore, we observed that audio and text embedding
similarity score-dependent post-filtering is ineffective for our
model (Table I, lower section). In contrast to the baseline mod-
els, where post-filtering has a noticeable effect, our method,
particularly combining the tuning layer and Latent CLAP loss,
shows that post-filtering not only becomes superfluous and can
also slightly increase the FAD score.

The elimination of the post-filtering stage provided signif-
icant data generation efficiency improvements. Here, using
NVIDIA GeForce RTX 3090 generating 100 10-seconds-long
clips, the elimination of post-filtering increases the generation
speed by an order of magnitude.

B. Latent CLAP Loss Weight Analysis

To test the robustness of Latent CLAP loss to hyperpa-
rameter selections, we varied the weighting parameter λ from
(4) and calculated the average FAD scores across all classes,
comparing models with and without the tuning layer trained
over 100 epochs (note that the models in Table I were trained
for 500 epochs). Results presented in Fig. 3 illustrate that the
increase in the λ gradually improves the avg. FAD score until
the optimal point is reached, beyond which the performance
starts to decrease. This indicates that the latent CLAP loss is
consistently contributing to the overall performance without
unexpected λ-dependent effects.
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TABLE II
SUBJECTIVE EVALUATION OF AUDIO QUALITY AND CLASS RELEVANCE

Model Audio quality Class relevance

Ground Truth 5.55 6.03
LDM + Tuning [12] 6.00 6.55
LDM + Tuning + Latent 6.40 7.03

C. Subjective Evaluation

Human perception of audio quality and class relevance can
be highly subjective and nonlinear, often correlating poorly
with objective metrics [25]. Human ratings are still considered
the gold standard in audio quality evaluation. Thus to better
ground our work, the audio generated by the proposed method
was compared to those from the baseline model involving
the tuning layer (LDM + Tuning) [12] and ground truth
audio samples in a series of 7 online surveys. Each survey
focused on a specific sound class, included 15 audio samples
from each of the three models and was completed by 40
listeners. Respondents rated audio clip for their quality and
class relevance on a scale from 0 to 10. Our survey’s audio
samples and analyses are publicly available†.

As reported in Table II, the average subjective ratings reveal
that the Latent CLAP loss model outscored the baseline model
and ground truth samples in both audio quality and category
fitness. A mixed-design ANOVA showed that the main effect
of model was significant for both audio quality (F (1.9,509.6)
= 115.3, p < .001, η2p = .3) and category fit (F (1.9,522)
= 156.6, p < .001, η2p = .36), while post-hoc paired t-tests
with Bonferroni corrections further support the finding that
the proposed model was rated significantly higher than both
the baseline model and ground truth samples across both items
(p < .001 for all comparisons).

The lower ratings for the ground truth samples is unexpected
and could be attributed to the fact that real-world recordings
often contain extraneous noises or recording artifacts. Our
generated audio presents cleaner sounds with features that
are more distinctly aligned with the target class, offering a
potentially clearer representation of the intended sound event,
which may contribute to higher scores in human evaluations.

VI. CONCLUSION

This work introduces an improved AudioLDM model for
Foley sound generation with the addition of the Latent CLAP
loss. The concept of the proposed method is to integrate
the post-filtering process within the model to enhance audio
quality while maintaining inference efficiency. As indicated
by both objective (FAD score) and subjective evaluations
(listening study), the proposed model generates higher quality
audio in comparison to baselines. This approach is not limited
to the closed-set Foley generation problem and can be applied
to general-purpose text-to-audio models without any further
modifications. Future research will explore these applications
further, potentially enhancing the fidelity of generative audio
models.

†https://github.com/karchkha/Latent-CLAP-subjective-evaluation
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D. Parikh, Y. Taigman, and Y. Adi, “Audiogen: Textually guided audio
generation,” in ICLR, 2023.

[5] R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li, Z. Ye, J. Liu,
X. Yin, and Z. Zhao, “Make-an-audio: Text-to-audio generation with
prompt-enhanced diffusion models,” arXiv:2301.12661, 2023.

[6] L. Chen, S. Srivastava, Z. Duan, and C. Xu, “Deep cross-modal audio-
visual generation,” in Proc. of the on Thematic Workshops of ACM
Multimedia, 2017, pp. 349–357.

[7] V. Iashin and E. Rahtu, “Taming visually guided sound generation,” in
British Machine Vision Conference (BMVC), 2021.

[8] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in NeurIPS, vol. 33, 2020, pp. 6840–6851.

[9] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10 684–10 695.

[10] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and S. Dubnov,
“Large-scale contrastive language-audio pretraining with feature fusion
and keyword-to-caption augmentation,” in Proc. ICASSP, 2023, pp. 1–5.

[11] Y. Yuan, H. Liu, X. Liu, X. Kang, P. Wu, M. D. Plumbley, and W. Wang,
“Text-driven foley sound generation with latent diffusion model,” in
DCASE-workshop, 2023.

[12] Y. Yuan, H. Liu, X. Liu, X. Kang, M. D. Plumbley, and W. Wang,
“Latent diffusion model based foley sound generation system for dcase
challenge 2023 task 7,” arXiv:2305.15905, 2023.

[13] K. Choi, J. Im, L. Heller, B. McFee, K. Imoto, Y. Okamoto, M. La-
grange, and S. Takamichi, “Foley sound synthesis at the dcase 2023
challenge,” arXiv: 2304.12521, 2023.

[14] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi, “Fréchet audio
distance: A metric for evaluating music enhancement algorithms,”
arXiv:1812.08466, 2019.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv:1312.6114, 2013.

[16] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis,” in NeurIPS, vol. 33,
2020, pp. 17 022–17 033.

[17] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in NeurIPS
Workshop on Deep Generative Models and Downstream Applications,
2021.

[18] K. Chen, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dubnov,
“HTS-AT: A hierarchical token-semantic audio transformer for sound
classification and detection,” in Proc. ICASSP, 2022, pp. 646–650.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” in ICLR, 2020.

[20] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Generating
captions for audios in the wild,” in NAACL-HLT, 2019, pp. 119–132.

[21] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: an audio captioning
dataset,” in Proc. ICASSP, 2020, pp. 736–740.

[22] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and
human-labeled dataset for audio events,” in Proc. ICASSP, 2017.

[23] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNs: Large-scale pretrained audio neural networks for audio pattern
recognition,” IEEE TASLP, vol. 28, pp. 2880–2894, 2019.

[24] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D. Plumbley,
Y. Zou, and W. Wang, “Wavcaps: A chatgpt-assisted weakly-labelled
audio captioning dataset for audio-language multimodal research,”
arXiv:2303.17395, 2023.

[25] A. Vinay and A. Lerch, “Evaluating generative audio systems and their
metrics,” in Proc. ISMIR, 2022, pp. 858–865.

355


