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Abstract—Most existing deep learning-based direction-of-
arrival (DOA) estimation methods are realized within a limited
range of DOAs per training time, posing great challenges to
effective DOA estimation in a full 3-D space of 360◦. To address
the problem, a spatial sectorized neural network is proposed for
2-D DOA estimation in the full azimuth. In particular, the full
angular region is divided into a series of sectors to compress
the ranges of both azimuth and elevation angles. Based on that,
we formulate the full-azimuth DOA estimation problem into
two tasks, namely, sector identification and angles mapping. To
this end, the proposed network consists of a classifier and an
estimator, thereby addressing the issue of angle discontinuity near
the 0◦ and 360◦. The estimated DOAs can be reconstructed from
the outputs of the proposed network based on the angles mapping
relationship, leading to an effective 2-D DOA estimation in the
full azimuth. Our simulation results indicate that the proposed
network outperforms the conventional model-based method and
neural-network-based method in estimation accuracy.

Index Terms—DOA estimation, full azimuth, neural network,
spatial sectorization.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation plays a fundamental
role in various applications, including radar, wireless com-
munication, Internet of Things (IoT), and astronomy [1], [2],
[3], [4], [5], [6]. Conventional model-based DOA estimation,
such as MUSIC [7], ESPRIT [8], sparsity-based [9], [10], [11],
and tensor-based methods [12], [13], [14], are typically based
on statistical optimizations. However, as the signal propaga-
tion environments becoming more complicated, these model-
based methods suffer from degraded estimation accuracy and
lower computational efficiency. To address the problem, deep
learning-based DOA estimation methods have been developed
to handle diverse scenarios, including multipath propagation
[15], [16], non-Gaussian interference [17], coherent sources
[18], array imperfections [19], few snapshots [20], limited
system resources [21], [22], [23] and others [24], [25], [26],
[27], [28]. However, most of these methods are completed
within preset limited ranges of azimuth and elevation angles
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to pursue a satisfactory performance. While, sources in the 3-
D space may emit signals from any potential angle of 360◦

relative to the antenna array, in such case, the performance of
the aforementioned deep learning techniques degrades when
the range of DOAs expands.

Concerning the above-mentioned issue, a series of ap-
proaches have been proposed for 2-D DOA estimation in
the full azimuth. In [29], full-azimuth DOA estimation is
accomplished using two distinct beam scanning procedures.
Based on the extended manifold separation technique, the 3-
D spatial-temporal spectrum is computed and an estimator
called FFT-MUSIC is proposed to realize 2-D DOA estimation
in the full azimuth [30]. In [31], a sparse array design is
investigated, which allows to estimate the DOAs of more
sources than the number of antennas in full azimuth field-
of-view. Nevertheless, these model-based methods are time-
consuming and sensitive to noise. In this regard, a CNN-
based classifier is employed in [32] to estimate wider ranges
of azimuth angles, but the complexity of the network is
unacceptable when additional elevation angle information is
required. Although sparse Bayesian learning can be adopted
to aid the full-azimuth DOA estimation task [33], it is only
suitable for the high signal-to-noise ratio (SNR) environments.
Thus, it remains an outstanding but challenging problem in
designing an effective neural network for 2-D DOA estimation
in the full azimuth.

In this paper, a spatial sectorized neural network is proposed
for full-azimuth DOA estimation. Specifically, the full angular
region is divided into a group of sectors to compress the wide
range of DOAs. Then, the azimuth and elevation angles are
mapped into a limited angular range by encoding sectors. A
classification and a regression neural networks are designed
to estimate the sector indices and the DOAs after mapping,
respectively. As such, the impact of wide angle range is elim-
inated by the connected classification and regression networks,
which behaves less sensitive to the DOA range discontinuity
compared to the conventional networks. Estimations of az-
imuth and elevation angles are reconstructed by the outputs of
the proposed spatial sectorized neural network, enabling the
effective 2-D DOA estimation in the full azimuth. Simulation
results corroborate the superiority of the proposed network
over the model-based method and the existing network.
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II. SIGNAL MODEL

We consider a uniform rectangular array (URA) P with M×
N antennas, where M and N respectively denote the number
of antennas along the x -axis and the y-axis. The inter-element
spacing of P is half of the signal wavelength. Assume that K
uncorrelated farfield narrowband source signals impinge on
P from directions {(θk, ϕk), k = 1, 2, . . . ,K}, where θk ∈
[0◦, 360◦] and ϕk ∈ [0◦, 90◦] denote the azimuth and elevation
angles of the k -th source, respectively. Here, the DOAs of
sources are assumed to lie within the full azimuth, instead of
a relatively narrow region as the conventional assumptions.

The array received signals can be modeled as a matrix

X = AS +N ∈ CMN×T , (1)

where S = [s1, s2, · · · , sK ]T ∈ CK×T is the signal matrix of
K sources with sk = [sk(1), sk(2), · · · , sk(T )] ∈ CT being
the signal waveform of the k-th source, T is the number of
snapshots, A = [a1,a2, · · · ,aK ] ∈ CMN×K is the steering
matrix with

ak =
[
1, e−ȷπ(M−1)µk , · · · , e−ȷπ(M−1)µk−ȷπ(N−1)νk

]T
∈ CMN

(2)
being the steering vector of the k-th source, and N is the
additive Gaussian white noise. Here, µk = sinϕkcosθk, νk =
sinϕksinθk, ȷ denotes the imaginary unit, and [·]T denotes the
transpose operator.

To extract the spatial correlation information from signals
while reducing the input dimensionality, the covariance matrix

R = E

{
1

T
XXH

}
= AHRsA+ σ2

nI ∈ CMN×MN , (3)

is derived as the input of the neural network, where Rs =
E{ 1

T SS
H} ∈ CK×K is the covariance matrix of source

signals, σ2
n is the power of noise, [·]H, E{·} and I respectively

denote the conjugate transpose operator, the statistical expec-
tation and the identity matrix. In practice, R is approximated
by

R̂ =
1

T
XXH. (4)

It is noteworthy that existing deep learning framework, such
as PyTorch, can only handle real-valued data. In this regard, we
stack the real and imaginary parts of R̂ along a new dimention
to build a 3-D tensor input, which can be fed into the neural
network to retrieve azimuth and elevation angles for 2-D DOA
estimation in the full azimuth.

III. PROPOSED NETWORK FOR DOA ESTIMATION

In this section, we propose a spatial sectorized neural
network to realize full-azimuth DOA estimation. Specifically,
the pair of azimuth and elevation angles is mapped to a triplet,
which consists of the sector information and the angles after
mapping. This constrains the azimuth and elevation angles to a
relatively narrow range. Accordingly, a pair of interconnected
neural networks is designed to classify sector indices and esti-
mate DOAs after mapping. The original azimuth and elevation
angles are reconstructed by the triplet, thereby facilitating 2-D
DOA estimation in the full azimuth.

Fig. 1: Spatial sectorization for azimuth and elevation map-
ping.

A. Spatial Sectorization and Angles Mapping

In DOA estimation tasks, classification and regression net-
works are widely applied. However, when the range of DOAs
expands, numerous classes are required in the classification
network, which results in excessive computational complexity.
As for the regression network, the accuracy declines when
facing sources near the 0◦ and 360◦ due to the range dis-
continuity. To maintain a high accuracy of full-azimuth DOA
estimation, it is necessary to compress the wide ranges of
DOA into narrow ones. Thus, spatial sectorization and angles
mapping are proposed.

Specifically, the range of the azimuth angle is sectorized
into P subregions with an equal size, and the range of the
elevation angle is also equally sectorized into Q subregions.
As such, the entire angular space is partitioned into P × Q
equally sized sectors. The DOA of the k -th source belongs
to a specific sector, denoted by an index hk, which can be
calculated as

hk =

⌊
θk
Aθ

⌋
+ P

⌊
ϕk

Aϕ

⌋
∈ [0, PQ− 1]. (5)

Here,

Aθ =
360◦

P
, Aϕ =

90◦

Q
(6)

respectively denote the range of azimuth and elevation angles
of each sector, and ⌊·⌋ denotes the floor function.

Let θ = [θ1, θ2 · · · , θK ], ϕϕϕ = [ϕ1, ϕ2 · · · , ϕK ], as shown in
Fig. 1, the relationship between {θ,ϕϕϕ} and the DOAs after
sectorization, i.e., {θ̄, ϕ̄ϕϕ}, can be expressed as

θ̄ = θ −Aθ

⌊
θ

Aθ

⌋
= θ −Aθ(h mod P ) ∈ [0, Aθ), (7)

ϕ̄ϕϕ = ϕϕϕ−Aϕ

⌊
ϕϕϕ

Aϕ

⌋
= ϕϕϕ−Aϕ

⌊
h

P

⌋
∈ [0, Aϕ), (8)

where θ̄ = [θ̄1, θ̄2, · · · , θ̄K ], ϕ̄ϕϕ = [ϕ̄1, ϕ̄2, · · · , ϕ̄K ], θ̄k and
ϕ̄k respectively denote the sectorized azimuth and elevation
angles of the k-th source, mod(·) denotes the modulo operator,
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h = [h1, h2, · · · , hK ] denotes the sector indices. As such, the
DOAs {θ,ϕϕϕ} can now be equivalently characterized by the
triplet {h, θ̄, ϕ̄ϕϕ} after angles mapping process.

Notably, by introducing the sector indices h, the maximum
values of {θ̄, ϕ̄ϕϕ} are restricted to max{Aθ, Aϕ}, whose angular
range is much smaller than {θ,ϕϕϕ}. Based on this property, a
spatial sectorized neural network is designed for full-azimuth
DOA estimation.

B. Spatial Sectorized Neural Network Framework

In order to accommodate the designed sectorization process,
the proposed network consists of a classification neural net-
work called Classifier and a regression neural network called
Estimator. In particular, Classifier and Estimator are employed
to estimate the sector information h and the sectorized DOA
{θ̄, ϕ̄ϕϕ}, respectively. Based on the principle of spatial sec-
torization, the required number of classes for Classifier is
relatively small after sectorization. Meanwhile, in Estimator,
the range of {θ̄, ϕ̄ϕϕ} is compressed and the range discontinuity
of DOA near 0◦ and 360◦ can be evaded. Thus, the impact
of DOA range expansion is eliminated, which contributes to
a stable performance in the full-azimuth scenario. Besides,
the powerful fitting and generalization capabilities of the
proposed network ensure a low computational complexity with
robustness to noise, compared to the model-based method.

The architecture of the proposed spatial sectorized neural
network is shown in Fig. 2. Both Classifier and Estimator
utilize the covariance matrix of signals as input. For Classifier,
convolutional layers and a multilayer perceptron (MLP) are
deployed. The output of Classifier is K probability distri-
butions of PQ sectors. Therefore, K Softmax functions are
followed by the output layer. Sector indices h can be obtained
by extracting the indices corresponding to the maximum value
among each PQ neurons in the output layer. For Estimator,
convolutional layers are stacked. The expected output of
Estimator is a vector ϑ̄ = [θ̄1, θ̄2, · · · , θ̄K , ϕ̄1, ϕ̄2, · · · , ϕ̄K ],
i.e., {θ̄, ϕ̄ϕϕ}. Note that pooling layers are not necessary for the
proposed network since the depth of the network framework
is shallow to prevent excessive model complexity.

C. Network Training and 2-D DOA Reconstruction

In the training stage, Classifier and Estimator are trained
independently. The loss function of Classifier is the binary
cross-entropy function, i.e.,

Ec(p, p̂) = − 1

C

C∑
j=1

[
pj log p̂j + (1− pj) log(1− p̂j)

]
, (9)

where C = KPQ denotes the number of output layer neurons,
p = [p1, p2, · · · , pC ] ∈ {0, 1} and p̂ = [p̂1, p̂2, · · · , p̂C ] ∈
[0, 1] respectively denote the true and estimated probability of
sectors. Assuming that the maximum value in the probability
distribution corresponds to the matched sector of the input
signal, the sector indices can be estimated by

hk = argmax
(k−1)PQ<i⩽kPQ

pi. (10)

Fig. 2: The proposed spatial sectorized neural network.

To train Estimator, we utilize Huber function as the loss
function, i.e.,

Er(ϑ̄,
ˆ̄ϑ) =


1

4K ∥ϑ̄− ˆ̄ϑ∥2, if∥ϑ̄− ˆ̄ϑ∥1 ⩽ Kη,

1
2K

(
∥ϑ̄− ˆ̄ϑ∥1 − 1

2η
)
, otherwise,

(11)
where ˆ̄ϑ = [ˆ̄θ1,

ˆ̄θ2, · · · , ˆ̄θK , ˆ̄ϕ1,
ˆ̄ϕ2, · · · , ˆ̄ϕK ] contains the

estimated DOAs of signals. ∥·∥1 and ∥·∥2 respectively denote
the Taxicab norm and Euclidean norm, and η is a threshold to
control the value of Huber loss between the mean squared
error (MSE) and the mean absolute error (MAE), making
the Huber function more robust than MSE or MAE losses.
The parameter matrices of Classifier and Estimator can be
updated with gradient descent method, which is controlled by
the learning rate α > 0.

Once h and {θ̄, ϕ̄} are estimated by the proposed network,
the estimated azimuth and elevation angles {θ̂, ϕ̂ϕϕ} can be
reconstructed according to the angles mapping relationship (7)
and (8), i.e.,

θ̂ = ˆ̄θ + (ĥ mod P )×Aθ, (12)

ϕ̂ϕϕ = ˆ̄ϕϕϕ+
⌊ ĥ
P

⌋
×Aϕ, (13)

where ĥ and {ˆ̄θ, ˆ̄ϕϕϕ} respectively denote the estimated sectors
and angles from the output layers of the proposed network.
In summary, through the angles mapping, the designed spatial
sectorized neural network, and the corresponding 2-D DOA re-
construction, the full-azimuth DOA estimation is consequently
accomplished.

IV. SIMULATION

In the simulations, we consider a URA with M = N = 7
and the number of signals K = 1. The number of snapshots is
fixed at T = 250, and the size of input tensor is 49× 49× 2.
The choice of P,Q is a trade-off between Classifier’s accuracy
and Estimator’s precision. Excessive sector identification error
leads to a degradation in DOA estimation, which overshad-
ows the performance gain of Estimator within smaller sector
ranges. Considering this, we select P = 8 and Q = 2.
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(a) (b) (c)

Fig. 3: DOA estimation performance comparison. (a) RMSE versus SNR with θ ∈ [0◦, 360◦]. (b) RMSE versus the range of
θ with SNR = 5dB and ϕ ∈ [0◦, 90◦]. (c) RMSE versus the range of ϕ with SNR = 5dB and θ ∈ [0◦, 180◦].

In particular, two convolutional layers and five fully con-
nected layers are used in the deployed Classifier, and ReLU(·)
is chosen as the activation function. For Estimator, three
convolutional layers are set. Tanh(·) is selected for the first
activation function, and ReLU(·) is used for the remaining
activation functions. Detailed information of network layers is
shown in TABLE I and TABLE II.

TABLE I: Description of layers in Classifier

Layer Description
Conv1 channels: 16, kernel size: (3×3), padding: (1,1)
Conv2 channels: 32, kernel size: (3×3), padding: (0,0)
Flatten reshape 3-D tensor into a vector

Fc1&Fc3&Fc5 512 neurons
Fc2&Fc4 128 neurons

Output 16 neurons with a Softmax

TABLE II: Description of layers in Estimator

Layer Description
Conv1 channels: 16, kernel size: (5×5), padding: (1,1)
Conv2 channels: 32, kernel size: (5×5), padding: (0,0)
Conv3 channels: 32, kernel size: (3×3), padding: (0,0)
Flatten reshape 3-D tensor into a vector
Output 2 neurons

We generate 40, 500 samples as the dataset to train both
Classifier and Estimator. For each sample, azimuth and ele-
vation angles {θ,ϕϕϕ} are respectively chosen within the ranges
of [0◦, 360◦] and [0◦, 90◦] randomly, so that Aθ = Aϕ =
45◦. The SNR of signals is randomly selceted from the set
{−10,−5, 0, 5, 10} dB. The threshold η for Huber loss in
(11) is set to 1. Adam[34] is chosen for the optimizer of both
Classifier and Estimator. The number of training epochs and
batch size are respectively set to 40 and 32. Learning rate is
set to 5 × 10−4 during the first 30 epochs and will reduce
to 5 × 10−5 for the last 10 epochs. The deployed network is
run on a computer equipped with an NVIDIA GeForce RTX
3060 Laptop GPU. Meanwhile, a CNN is deployed to directly
estimate the full-azimuth DOA, serving as the benchmark. The
architecture and hyperparameters of CNN are identical to those
of Estimator.

In Fig. 3, we compare the estimation accuracy of the
proposed network to those of the conventional CNN and

TABLE III: Classifier and Estimator performance versus SNR

SNR (dB) -10 -5 0 5 10
Classifier: Accuracy (%) 96.9 98.4 99.0 99.3 99.6
Estimator: RMSE (deg) 1.39 0.88 0.67 0.53 0.41

ESPRIT. The root-mean-square error (RMSE) is chosen as
the performance metric for comparison. To produce the curves,
10, 000 Monte Carlo trials are performed for each scenario. As
depicted in Fig. 3(a), the proposed network has an improved
estimation accuracy compared to the CNN in all tested scenar-
ios. The RMSE of the CNN is about 6.5◦ even in a relatively
high SNR scenario (SNR = 10 dB), which indicates that
the conventional network faces challenges in handling full-
azimuth scenario. By contrast, the proposed network exhibits
a 71.7% improvement in estimation accuracy compared to
the CNN when SNR = 10 dB. The total RMSE of the
proposed network is acceptable as Classifier can maintain a
high accuracy in sectors classification. As shown in Fig. 3(b)
and Fig. 3(c), the RMSE of both the CNN and ESPRIT
increases when the ranges of azimuth and elevation angles
become larger, whereas the RMSE of the proposed network
maintains a relatively stable trend.

In TABLE III, we list the classification accuracy of Clas-
sifier and the RMSE of Estimator versus SNR when θ ∈
[0◦, 360◦] and ϕ ∈ [0◦, 90◦]. It is clear that both Classifier
and Estimator maintain a robust performance, being less
sensitive to the range of DOAs compared to the conventional
methods. Therefore, the effectiveness of the proposed method
in handling full-azimuth DOA estimation is verified.

V. CONCLUSION

In this paper, we proposed a spatial sectorized neural
network for full-azimuth DOA estimation. By dividing the full
angular space into sectors, the range of DOAs is compressed to
avoid the angle discontinuity. The proposed network consists
of Classifier for sector identification and Estimator for angles
mapping. Simulation results corroborate the enhanced DOA
estimation accuracy of the proposed method compared to the
conventional model-based method and the CNN.
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