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Abstract—Imagined speech is the mental task where individu-
als internally simulate the articulation of a prompt without actual
vocalization. Recently, it gained widespread attention due to its
simplicity and intuitiveness as a Brain-Computer Interface (BCI)
paradigm. Hence, the decoding of imagined speech from brain
signals emerges as a pivotal challenge addressed with various
signal processing and machine learning techniques documented
in the literature. The most commonly employed neuroimaging
method is Electroencephalography (EEG) because of its non-
invasive nature, low cost and high temporal resolution. Recent
attempts of deciphering imagined speech from EEG signals
deploy Convolutional Neural Network (CNN) architectures such
as shallow Conv Net, deep Conv Net and EEGNet while others
use Cross-Covariance (CCV) matrices as an alternative form of
signal representation. Our novel architecture combines EEGNet
with CCV matrices, extracting discriminative features from the
latter with the use of bilinear transformations as proposed
in the SPDNet architecture. Our method is validated on two
publicly available datasets and exhibits on par with State-of-
the-Art performance, while substantially surpassing EEGNet
performance on both datasets.

I. INTRODUCTION

Imagined speech (also known as inner, silent or covert
speech) is a form of thinking in terms of sound - one
imagines of articulating a prompt without actually moving the
articulators. Regarded as a fundamental aspect of conscious
life, the act of engaging in inner dialogue is a commonplace
practice among us, human beings. This internal discourse
serves the purpose of rehearsal, prepare our expressions in
anticipation of an impending speech or interview.

The process of capturing imagined speech through brain
signals and translating them into words or phrases has been a
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far-fetched yet intriguing scientific and technological ambition
for decades. Recent advances in technology involve deploying
imagined speech as a simple and intuitive paradigm in the
context of Brain-Computer Interface (BCI) applications [1].
This particular mental task stands out as an advantageous
option as it directly conveys the user’s intention and thus
suggests a natural way of controlling external devices. Thus, a
brain signals decoding paradigm based on imagined speech is
particularly suitable for systems that restore basic communica-
tion to individuals who are not capable of conventional speech
articulation due to an accident or a disorder of the Central Ner-
vous System (CNS). For this purpose, Electroencephalography
(EEG) signals are usually preferred to record brain activity
due to their non-invasive nature and low cost. Despite its low
spatial resolution compared to other neuroimaging methods
such as fMRI, EEG can capture brain activities that take place
within a time frame of a few milliseconds [2].

Preliminary attempts of decoding imagined speech from
EEG signals comprised extraction of statistical features (such
as mean, variance, skewness and kurtosis) [3], [4] or wavelet
transform coefficients and classification [5], [6], [7], [8],
[9], [10] with conventional machine learning algorithms such
as Support Vector Machines (SVM), Deep Belief Networks
(DBN) and Extreme Learning Machines (ELM). In another
approach, instead of working with raw EEG data, researchers
used Cross Covariance matrices (CCV) encoding statistical
correlation between EEG channels [11], [12], [13]. A ba-
sic characteristic of CCV matrices, namely being symmetric
positive definite, allows for alternative processing directions
utilizing basic manifold properties that originate from Rieman-
nian geometry. Recent approaches following this pathway have
achieved remarkable performance on similar BCI applications
[14], [15], [13], [16], [17]. These results motivated the integra-
tion of Riemannian geometry with deep learning techniques,
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one of the most prominent example of which is the SPDNet
[18]. More recent studies focused on implementing different
deep learning methods, mostly Convolutional Neural Network
(CNN) architectures, that demonstrated very promising results,
at least when examined on other BCI paradigms. Some of the
widely used architectures are the shallow ConvNet, the deep
ConvNet [19] and the EEGNet [20].

Our approach utilizes some basic concepts, stemming from
both CNNs and CCVs, in an effort to combine the best of the
two worlds towards building a novel, end-to-end, deep learning
architecture. Specifically, the first part of the introduced archi-
tecture consists of a convolutional layer of temporal filters as
implemented in EEGNet. The output feature maps (i.e., EEG
signals filtered in the temporal domain) correspond to selected
frequency bands where the most significant brain activation oc-
cured. The second part involves converting the resulting maps
into CCV matrices. Each matrix is then subjected to multiple
linear transformations such that the output matrices also lie
in Riemannian manifolds (potentially of varying dimensions)
in accordance with SPDNet architecture. Ultimately, the Log-
Euclidean metric is computed for each matrix and the informa-
tion is transferred to a fully connected layer for the purpose of
classification. As stated earlier, the combination of the above
mentioned parts constitute an end-to-end trainable network.
In essence, the proposed architecture calculates CCV matrices
that can capture the brain connectivity structure that underpins
the imagined speech paradigm at various frequency bands. The
motivation for employing this particular architecture for the
task at hand is related to the ”dual stream model” according
to which several brain regions are involved and interconnected
during speech formulation and understanding [21].

The introduced method is validated on two publicly avail-
able datasets that revolve around the intuitive paradigm of
inner speech decoding, namely the Kara One [4] and the
2020 BCI Competition [22]. The former contains multichannel
EEG data from 11 distinct imagined prompts, 7 phonemes
or syllables and 4 words, whereas the later consists of
data from 5 imagined words. Two common EEG decoding
approaches are also tested on the datasets, namely MFCC
features with SVM classifiers and EEGNet architecture. Their
performance is then compared with the proposed method.
In both cases, the EEGNet-SPDNet architecture significantly
outperformed the other two methods. For the first dataset, the
network achieved an average test accuracy exceeding 24% on
a classification task with 11 classes, a result comparable to
the top performing models of the particular problem. In the
second case, the introduced method exhibited performance
similar to the competition’s second place, reaching almost
67% average accuracy. Moreover, the substantial improvement
over EEGNet performance illustrates the effectiveness of the
SPDNet-based component within the proposed architecture,
extracting features that more accurately represent the imagined
prompts from the EEG signals.

II. DATASETS

A. Kara One

The dataset consists of 14 participants, with an average age
of 27, who were instructed to imagine pronouncing and con-
sequently to speak aloud 7 phonemes or syllables: (/iy/, /uw/,
/piy/, /tiy/, /diy/, /m/, /n/) and 4 words: ( pat, pot, knew, and
gnaw) over the course of 30 to 40 minutes. The participants
were seated in front of a computer monitor and a Microsoft
Kinect camera and a research assistant placed an EEG cap on
their heads. The data collected combine 3 modalities: EEG
signals, face tracking and audio. A 64-channel Neuroscan
Quick-cap was used, the electrode placement followed the 10-
20 rule and the data were sampled at 1kHz.

Each trial consisted of 4 states. At first, there is a 5-
second rest state where the participants were instructed to
relax. Next, in the stimulus state, the prompt text appeared
on the screen and its corresponding audio played from the
speakers. A 5-second imagined speech state follows where the
participants imagined pronouncing the prompt without moving
their articulators and finally they spoke the prompt aloud. In
this work, we only employed the EEG segments corresponding
to imagined speech. The data from 11 out of 14 participants
were utilized to maintain uniformity in the number of trials.
For each participant, 132 trials were conducted, 12 for each
prompt.

B. 2020 BCI Competition dataset

In this case, 15 participants, aged between 20-30 years, were
instructed to imagine pronouncing five words/phrases, namely:
(“hello,” “help me,” “stop,” “thank you,” and “yes”). During
the experiment, the subjects were seated in a comfortable chair
in front of a 24-inch LCD monitor screen and were asked to
solely focus on the given task without moving their articulators
nor making any sound. For the recording, 64 EEG electrodes
following a 10-20 international configuration were used.

An auditory cue of a randomly chosen prompt is introduced
to the participants for 2 s, followed by the visual cue of a cross
mark on the screen that lasted between 0.8-1.2 s. The subjects
imagined pronouncing the given prompt as soon as the cross
mark disappears. During this phase, the participants received
no stimulus at all in order to avoid any unwanted brain activity.
The cross mark presentation on the screen and the consequent
imagined speech phase (2s) were repeated 4 times in a row for
each random cue. Before proceeding to the next word/phrase,
the subjects were given 3s to relax and clear their minds.

Fig. 1. Timeline of the experimental procedure. Image source:https://osf.io/
ymvjz.
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In total, 400 trials were conducted for each subject, 80 trials
per prompt, out of which 300 are dedicated for training, 50
for validation and the remaining 50 for testing.

III. METHODOLOGY

A. Preprocessing

In the Kara One dataset, the raw EEG signals are filtered
using a 3rd order high-pass Butterworth filter with cut-off
frequency 1Hz. A wavelet ICA algorithm is then employed
for the purpose of artifact removal and denoising. The EEG
segments corresponding to the imagined speech stage are
ultimately fed to the classification algorithms.

No preprocessing steps are followed in the second dataset
since the 2020 BCI competition provided the signals in the
form of labelled EEG trial segments.

B. Network architecture

The proposed architecture is an end-to-end trainable net-
work that combines the convolutional temporal filters as imple-
mented in EEGNet with the linear Symmetric Positive Definite
(SPD) matrix transformations utilized in SPDNet architecture
as shown in Fig.2.

Fig. 2. EEGNet-SPDNet architecture.

Below we provide the key components of the network,
tailored to imagined speech decoding.

• The temporal filters are convolutional 2D filters with
shape (1, fs

2 ), where fs is the sample frequency. The
convolutional layer is followed by a batch normalization
layer, a non-linearity ReLU, a mean pooling layer of
size (1,4) and a dropout layer with probability 0.5. The
filters output feature maps containing the EEG signal
in different band-pass frequencies leaving the channel
dimension unaffected.

• The different versions (feature maps) of the EEG signal
are then converted to the corresponding covariance ma-
trices.

• Each matrix is then subjected to multiple bilinear trans-
formations that map SPD matrices to other SPD matrices
of different dimension. If the input matrix is denoted as:
X ∈ RN×N , the output matrix as: Y ∈ RM×M and the
transformation matrix as: W ∈ RM×N then the mapping
is as follows:

Y = WXWT . (1)

The trainable parameters in this part are the elements
of the transformation matrix. The output matrix Y is
symmetric positive definite if the transformation matrix
W is full rank on the rows. Thus, an exclusive optimizing
procedure take place here such that this essential matrix
property is preserved. The transformation is followed
by a non-linearity layer the function of which is the
rectification of the eigenvalues. Given the diagonalization
of Y as X = UΣUT and the output matrix denoted as:
Z, the rectification is:

Z = Umax(εI,Σ)UT (2)

where ε > 0 is the rectification threshold. The
max(εI,Σ) is a diagonal matrix where each diagonal
value (eigenvalue) of Σ is replaced by: max(ε, ei).
Essentially, this process prevents eigenvalues from ap-
proaching zero. Finally, the matrices are mapped to
Euclidean space via the implementation of Log-Euclidean
metric and consequently to a linear output layer through
flattening.

IV. CLASSIFICATION RESULTS

A. Kara One

Fig.3 (top) presents the overall accuracy of the proposed
architecture when tested with Kara One dataset as well as
the accuracy scores obtained for each subject. Both training
and validation are conducted on a personalized level, fitting
a different network for each subject. It is apparent from the
confusion matrix (Fig.3 - Top Right) that the network was
able to adequately distinguish phoneme from word prompts
but hardly disentangled phonetically similar words (pat/pot
and knew/gnaw). The best accuracy is measured in one letter
phonemes (/m/, /n/). The novel method implemented in this
work exhibits superior performance compared to the EEGNet
that barely exceeded random level (9.1%). When it comes
to intra-subject multi-classification of words and phonemes,
our approach outperforms handcrafted features (i.e. MFCC)
combined with SVMs [23] by 4%. It achieved similar overall
accuracy with inter-subject training and validation attempts
that employed CNN architectures as well [24]. The overall
performance of our approach as shown in Table I surpassed all
but one competitive approach found in the literature regarding
this particular classification task [8].
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Fig. 3. The overall and subject-wise performance on Kara One dataset (top), 2020 BCI Competition dataset (bottom). Left: Classification accuracy across all
participants for each imagined prompt. Middle: Classification accuracy per subject and overall (red line). Right: Total confusion matrix

TABLE I
MEAN ACCURACY FOR EACH CLASSIFICATION METHOD TESTED ON TWO DISTINCT DATASETS

Mean Accuracy (%)
Kara One 2020 BCI Comp.

MFCC - SVM 17.84 37.86
EEGNet 14.05 50.26

EEGNet - SPDNet 24.79 66.93

B. 2020 BCI Competition

Training and validation took place separately for each
subject in this case as well. A major observation from the
overall accuracies for each subject (Fig.3 - Bottom Left) is the
subject variability: there are subjects with accuracy as high as
80% (S11) while others that do not exceed 60% (S6,S15). The
complexity of the specific task (imagined speech) could be one
factor contributing to this. The novel architecture employed
significantly outperformed EEGNet in this case as well (Table
I). As mentioned earlier, the attained performance here is on
par with the top results of the competition, namely similar
to the competitor approach with the second highest average
accuracy [25].

V. DISCUSSION

In this paper, we proposed a novel architecture that com-
bines the temporal filters from EEGNet with the SPD matrix
transformations as implemented in SPDNet into an end-to-end
trainable network that extracts connectivity features from EEG
signals. The method was validated on two distinct imagined
speech datasets and substantially outperformed EEGNet, a

widely used convolutional network architecture in various
EEG decoding tasks. Moreover, the achieved performances
are close to the State-of-the-Art on the employed datasets.
This result implies that the aforementioned transformations
are capable of capturing important information from the EEG
signals, and thus it supports the hypothesis that correlation and
connectivity of distinct brain regions play a significant role as
far as the mental task of imagined speech is concerned. It may
also suggest that covariance matrix is more suitable form of
EEG signal representation for decoding and feature extraction
purposes (than raw signal form) as it allows for mappings in
Riemannian spaces that efficiently depict brain activity.

The broader subject of decoding imagined speech in a BCI
paradigm comes with several challenges, manifestations of
which are apparent in the above presented results as well.
Although promising, the classification performance of EEG
signals decoding is not yet sufficient in terms of developing
robust BCI systems, while the imagined prompts chosen are
relatively simple and short in number. Additionally, subject
variability signifies that the particular mental task is often not
adequately comprehensible from the participants. Future work
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is hence needed to examine the full potential of imagined
speech paradigm and EEG as a neuroimaging method in
particular.
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