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Abstract—The exponential growth in genomic data sequenced
has led to a greater need for efficient methods to reduce
data volume without loss of information. Data compression
emerges as a pivotal strategy to tackle this challenge, given
the inherent redundancy and substantial storage requirements
of genomic data. In this paper, we introduce a novel method
designed to enhance existing data compression techniques by
leveraging the sorting of collections of FASTA sequences based on
various criteria. This approach capitalizes on clustering similar
blocks together, thereby optimizing compression efficiency. We
conducted comprehensive benchmarking of our proposed tool,
evaluating the impact of sorting based on diverse characteristics
of the sequences, including the length and ratio of Guanine-
Cytosine present. Our evaluations involved testing the tool
across a spectrum of data compression tools using both nearly-
synthetic and real datasets. Our findings reveal insights into the
interplay between compressed size, the employed compressor, file
composition, and sorting technique, elucidating specific scenarios
where compression outcomes are influenced. The proposed tool,
coded in C++, is made freely available under the GPLv3 license,
accessible at https://github.com/cobilab/FASTA-ANALYSIS.

Index Terms—genomic sequences, data compression, FASTA
format, sorting techniques

I. INTRODUCTION

The recent advancements in the field of bioinformatics
have resulted in a rapid increase in the amount of sequenced
data available. However, this data needs to be stored and the
computational storage available is limited. To keep up with the
vast amounts of new data generated every day, more efficient
ways to store it are needed. As a result, several compression
algorithms and implementations have been developed in the
past few decades to address this issue.

The methods developed for genomic data compression fall
into two main categories: lossy and lossless compression.
Lossless compression algorithms aim to reduce storage space
while preserving all original data, making them essential for
genomic data, where any loss of information is unacceptable.

In the realm of lossless compression for genomic data, tools
can be broadly categorized into two groups: general-purpose
compressors and DNA-specific compressors.

General-purpose compressors offer versatility in handling
various data types, enhancing accessibility and ease of use.
However, their lack of specialization in the unique character-
istics of genomic data often results in suboptimal compression

compared to DNA-specific compressors tailored for FASTA
data. Among the commonly used general-purpose compressors
are gzip [1], zstandard [2], bzip2 [3] and LZMA [4].

DNA-specific compressors are compressors developed to
compress genome sequences and therefore, often achieve
better results when compressing this type of data in relation
to general-purpose compressors. On the other hand, specific
genomic compressors take into considerations specificity’s of
the data, such as inverted repeats, rearrangements, and higher
regions of mutational substitutions.

The first DNA-specific compressor created was Biocom-
press [5], developed in 1993 and based on dictionary-
based algorithms. This tool was improved by its successor,
Biocompress-2 [6]. After, many other tools have been devel-
oped, such as GenCompress [7], DNA-Compress [8], followed
by many other tools, including [9]–[15].

The ubiquitous presence of complete genomes has necessi-
tated the development of the FASTA format, enabling the co-
existence of genomic sequences and annotations. Specialized
compression algorithms, paired with straightforward header
coding, have been tailored to this format. Prominent examples
include Deliminate [16], MFCompress [17], LEON [18], NAF
[19], MBGC [20], and AGC [21].

For downstream analysis, the sequential order of FASTA
reads is typically irrelevant. Hence, there’s potential to explore
sorting these reads based on similarity. Our hypothesis sug-
gests that grouping together FASTA reads with shared similar-
ity could lead to significant reductions in data representability,
thus enhancing the effectiveness of existing data compressors
for genomic data.

While various sorting tools have been successfully em-
ployed to enhance the compression of FASTQ data formats,
such as those referenced in the literature [22]–[27], it is notable
that there is a lack of similar tools specifically tailored for
FASTA format. This presents an untapped opportunity for the
development of sorting techniques aimed at optimizing the
compression of FASTA files, potentially yielding significant
improvements in storage efficiency.

In this article, we introduce a novel tool designed to sort
FASTA reads based on specific features, filling the gap in the
field of genomic data compression for FASTA files. We then
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investigate the most effective features for enhancing compres-
sion efficiency by benchmarking them on both synthetic and
real datasets. To facilitate benchmarking on synthetic FASTA
data, we develop a simulation pipeline, which we also make
publicly available for use by the research community. This
comprehensive approach allows us to systematically evaluate
the impact of various sorting features on compression perfor-
mance, providing valuable insights into optimizing genomic
data compression strategies.

II. METHODS

Consider a set of FASTA sequences X constituted by
x1, x2, ..., xn. The goal is to sort the X set in order to
approximate similar sequences according to specific features
for improving the performance of a data compressor after this
transformation.

To carry out this transformation, we introduce FASTA
ANALYSIS (abbreviated as FAN). The methodology of FAN
is illustrated in Figure 1, delineating its three primary execu-
tion phases. Initially, the input FASTA file is parsed, and the
start and end positions of each DNA sequence are recorded
in a vector. In the second step, the input file undergoes
another reading process, during which its content is analyzed
to guide the proper sorting of the vector containing sequence
boundaries, based on the selected sorting strategy. Finally,
in the third reading iteration of the input file, sequences are
directly written to the output file according to the defined order
determined by the sorted positions vector.

Fig. 1. The four main phases of the FAN tool.

Notice that the first and second phases could be merged,
but we deliberately chose to separate them to facilitate ad-
ditional experiments and allow for flexibility in integrating
external tools for the extraction of other features. This ap-
proach enhances the versatility and extensibility of the FAN
methodology, accommodating potential future enhancements
and modifications with ease.

Regarding the features, FAN currently extracts the following
five features:

1) genomic sequence length;
2) absolute GC (Guanine and Cytosine) content;
3) absolute AT (Adenine and Thymine) content;
4) GC percentage;
5) AT percentage.

The rationale behind utilizing these characteristics is rooted
in the observation that similar genome sequences typically ex-
hibit comparable sizes and proportions of GC/AT nucleotides.
However, instances of closely related species may experi-
ence rearrangements, leading to duplications or deletions that
can alter the values of these features. Hence, to account
for variations in genome size, we employ relative measures
such as percentages (%) alongside absolute measures. This
approach ensures robustness in assessing sequence similarity
while accommodating potential variations arising from ge-
nomic rearrangements.

Indeed, the FAN framework is not restricted to the fea-
tures mentioned earlier. More sophisticated features can be
incorporated, including measures like Kolmogorov complexity,
which has been demonstrated to be a significant feature
for distinguishing or relating genomic sequences [28]. This
flexibility allows for the integration of advanced features to
further enhance the capabilities of FAN in analyzing genomic
data and potentially boot data compressors.

After extracting features, the X sequences are sorted using
the quicksort algorithm, which can consider either a single fea-
ture or a combination of multiple features. If a primary feature
is present, it takes precedence in the sorting process. However,
in cases where multiple features are involved and ambiguity
arises, the remaining features are utilized to determine the
sorting order. This approach ensures efficient and accurate
sorting of sequences, leveraging their distinctive characteristics
while accommodating different priorities.

The FAN algorithm concludes by producing the output of
sorted FASTA reads in a new file. This sorted file is then ready
for use by a data compressor, enabling optimized compression
of genomic data. Notably, the decompression of this file won’t
necessitate any additional computation, as the preservation
of the original order of the reads is deemed unimportant.
This streamlined process ensures efficient compression and
decompression workflows for genomic data analysis.

The FAN method is implemented in the C++ programming
language and is entirely self-contained, with no external
dependencies. The complete source code is freely available,
under the GNU Public License v3, in the repository hosted at
https://github.io/cobilab/FASTA-ANALYSIS.

III. BENCHMARK

A. Computer characteristics

All results presented here are automatically generated and
fully reproducible, encompassing the installation of all bench-
mark tools, performance comparisons, and plot generation.
Reproducing these outcomes is straightforward under a Linux
operating system, facilitated by the provided scripts within the
repository. In our study, a computer running Linux Ubuntu
equipped with 8 Intel® Core™ i7-6700 CPU cores operating
at 3.40GHz and 64 GB of RAM was used to execute the
benchmark.
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B. Datasets

To evaluate the effectiveness of the developed sorting tool
and assess the performance of the considered compressors, a
combination of real and nearly-synthetic datasets were utilized.

1) Nearly-synthetic sequences: By nearly-synthetic se-
quences, we refer to real sequences that have been altered
according to predefined mutation and transformation rates for
testing purposes. The nearly-synthetic sequences integrated
into this project were generated using the AlcoR toolkit [29]
through a specific process described below. The creation pro-
cess involves utilizing real sequences, such as a specific virus
sequence, as a reference to generate progressively mutated
sequences. These mutated sequences are concatenated and
merged into a single multi-FASTA file. Due to space con-
straints, results are provided for a mutation rate of one percent.
Nonetheless, the method is made available as open-source,
enabling the systematic generation of mutated sequences for
analysis and testing purposes.

2) Real (genomic) sequences: The real sequences consid-
ered in the benchmark can be divided into two groups. In
the first group, each FASTA file represents the sequenced
genome from a single organism. These genomes were retrieved
from the CNSG Sequence Archive [30] and represent the
species Tricitum aestivum [31] and Hellostoma-temmincki
[32]. In the second group, collections of related genomes
retrieved from the NCBI [33] database were considered for
the benchmark. These collections contained a selection of viral
and bacterial genomes. For the benchmark, four variations of
the genomes retrieved were considered. Table I contains the
name, constitution and size of each of the collection datasets
considered.

TABLE I
DEFINITION AND COMPOSITION OF THE DATASETS.

Dataset Name Constitution Size
Bacterial [34] Bacteria 3.7 GB

Viral [35] Viruses 5.7 GB
Viral-Bacterial Bacteria and Viruses 9.5 GB

Shuffled Viral-Bacterial Bacteria and Viruses (shuffled) 9.5 GB

Additionally, to harness the full potential impact of sorting
for enhancing file compression, we developed a module called
“shuffle”. This module pseudo-randomly rearranges the order
of reads to achieve a more uniform distribution. By doing so,
we gain insights into discerning the differences in aggregating
similar reads from the most complex cases.

C. Compression benchmark

The benchmark aimed to evaluate the impact of sorting
a multi-FASTA file on its compressibility and compare the
performance of different sorting techniques and data com-
pressors (general- and specific-purpose). In this benchmark,
we considered both general-purpose and DNA-specific com-
pressors. The compressors assessed were gzip, bzip2, LZMA,
NAF, MFCompress, JARVIS3, and MBGC. All datasets except
the one containing the genome for Tricitum aestivum were
benchmarked using versions sorted by sequence size, number

of AT/CG bases on a sequence, and percentage of AT/CG
bases on a sequence.

Table III-C presents some of the results obtained, highlight-
ing the best and worst results in terms of compression gain
for each compressor, providing some insights regarding the
impact of these factors on the results.

TABLE II
BEST AND WORST PERFORMANCES OBTAINED ON THE BENCHMARK.
GIVEN SPACE CONSTRAINS WE HAVE ONLY INCLUDED SOME OF THE

RESULTS THAT ARE MARKED WITH THE RANK LABEL (RANKING).

Rank Dataset Sort. Type Tool Gain (%)
1 Shuffled Viral-Bacterial CG JARVIS3 23.90%
5 Bacterial AT% MBGC 20.35%
7 Shuffled Viral-Bacterial size NAF 16.75%

10 Shuffled Viral-Bacterial size LZMA 15.45%
11 Shuffled Viral-Bacterial size MFCompress 8 14.85%
16 Shuffled Viral-Bacterial CG MFCompress 4 12.83%
26 Shuffled Viral-Bacterial AT bzip2 5.05%
56 Shuffled Viral-Bacterial size gzip 0.85%
149 Viral CG gzip -0.10%
156 Viral-Bacterial AT LZMA -0.20%
180 Viral AT bzip2 -1.80%
185 Viral AT% MFCompress 8 -2.80%
187 Viral CG% JARVIS3 -2.90%
188 Viral AT NAF -5.83%
190 Viral AT% MFCompress 4 -6%
200 Viral-Bacterial CG% MBGC -28.78%

Notice that the compression gain of a given dataset is
defined as the difference between the compression ratio in a
sorted dataset and the compression ratio in an unsorted dataset.
The instance examples on the table are ranked according to
their position in the complete benchmark results.

The results shown in Table III-C, with some cases of interest
depicted in Figure 2, indicate that there can be significant
differences between the performance of the compression tools
depending on the input file considered and the sorting method
considered.

The best gains for each compressor used were obtained
when compressing the “Shuffled Viral-Bacterial” dataset, ex-
cept for MBGC which obtained higher gains compressing the
“Bacterial” dataset. This may be because this tool is specially
designed to compress this type of genomes.

The compressor JARVIS3 has obtained the best overall
gains in compression when compressing the “Shuffled Viral-
Bacterial” dataset and sorting the sequences contained by
the number of CG. These gains are especially significant as
JARVIS3 is a tool designed and optimized to compress DNA
sequences and it run with smaller k-mer size which are usually
associated to lower memory capacities.

It’s worth noting that the most significant enhancements in
the performance of the general-purpose tools were observed
during compression of the “Shuffled Viral-Bacterial” dataset
and when sequences were sorted by their size. This observation
may stem from the fact that these compressors aren’t tailored
for genome sequence-specific patterns, yet sorting by size
facilitates the efficient clustering of similar sequences and its
further compression.

Regarding the worse results obtained, general-purpose com-
pressors have obtained smaller losses than DNA-specific ones.
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Fig. 2. Depiction of the two best compression gain cases (the figures on top), and two average cases (the figures on the bottom). The green and red line
points stand for the synthetic and real data, respectively. In each line points, the multiple points represent different parameters (compression levels) of each
compressor.

Additionally, MBGC has registered the most variance in
performance between best and worst results when using sort-
ing, which may indicate that this tool is particularly sensitive
to the order of the input sequences.

Figure 2 depicts some cases of interest, specifically the two
scenarios in which the compression gains are higher and the
two scenarios depicting two average cases on which gains
are obtained. Each figure contains two distinct executions:
the green line represents the execution using one of the
real datasets detailed previously and the red line represents
the execution using a nearly-synthetic dataset. For each case
represented, there is a set of points that represent the specific
level of execution of the compressor used. The values on
the x-axis represent the time used to perform a compression
command in seconds. The values on the y-axis represent
the difference between the compression ratio on the unsorted
version and the sorted version, designated as the compression
gain.

In the top two plots represented in Figure 2, it is possible
to see that there is a substantial difference between the gains
obtained using real data in relation to the gains obtained using
nearly-synthetic data. The compressors considered, JARVIS3
and MBGC, however, have relatively stable results throughout
the different compressor levels tested.

The two cases represented in the bottom two plots demon-

strate smaller gains in performance. Nevertheless, sorting still
provided the best compression gains on real datasets compared
to the nearly-synthetic datasets considered.

Although the examples presented here are relatively
straightforward to analyze it is not always the case. In some
instances, the variance of values throughout the different levels
does not allow for definitive conclusions to be drawn in terms
of the average value of gain.

We recommend employing FAN with sequence length as
the primary feature due to its consistent performance across
compression tools and datasets. However, optimizing sorting
is viable, especially considering real-world scenarios involving
single uploads for multiple downloads (hundreds of thousands
or millions), as decompression users typically do not need to
handle the sorting task.

IV. CONCLUSIONS

We have developed a tool that can sort FASTA files based
on various criteria. We have also demonstrated the potential of
this approach for optimizing currently available compression
methods.

The compressor benchmark developed was executed and it
was shown that sorting the FASTA files can lead to improve-
ments to the compression process of up to 23.9%. These gains
are particularly significant when considering DNA-specific
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tools, as these tools are already optimized for this type of
data. Moreover, the sorting feature that add the most consistent
improvement was the sequence length, although the best case
was given by the number of CG’s.

Furthermore, although it was found that not all sorting
options represented gains in performance for all datasets
considered, it is important to note that the top gains obtained
have often surpassed the worst losses for each compressor
considered.

Overall, it is also important to note that these gains in
performance are very significant given the massive amounts
of data that needs to be stored.
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