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Abstract—Prostate volume (PV) is an important factor in
prostate cancer (PC) patient management and diagnostic path-
way. Over the past years, efforts have been made to develop
artificial intelligence (AI) systems able to standardize and reduce
inter-reader variability in prostate segmentation and subsequent
PV estimation. In spite of the remarkable results of AI seg-
mentation architectures such as nnU-Net, most benchmarks and
prostate segmentation results neglect the uncertainty of the AI
segmentation system as part of their evaluation protocol. In
this study, we use conformal prediction (CP), a model-agnostic
uncertainty quantification method that provides strong statistical
guarantees to keep the error of a nnU-Net for prostate whole
gland (WG) segmentation bounded by a pre-specified level. Our
results show that nnU-Net coupled with CP and a confidence level
of 95.00% is able to significantly improve segmentation results
in terms of Volume Difference (VD) when compared to nnU-Net
without CP for two independent data cohorts (VD1 = 1.67±0.99
p<.001 and VD2 = 2.86±0.28 p<.001)

Index Terms—uncertainty, conformal prediction, MRI, seg-
mentation, prostate cancer

I. INTRODUCTION

At present, one of the main barriers in the diagnostic
pathway of prostate cancer (PC) is the high rate of over-
diagnosis, overtreatment and excessive invasive testing in the
form of biopsies [1]. Typically, decisions to refer subjects to
confirmatory tests are based on known PC risk factors such as
the prostate volume (PV), prostate specific antigen (PSA) or
age of the subject [2]. In some cases, PSA density (PSAD),
a combination of PV and PSA, might also be considered [3].
Despite the relevance of an accurate characterization of the
PV for PC diagnosis and management, typical PC diagnostic
workflows consider manual calculation of the PV from mag-
netic resonance imaging (MRI) [4]. Whilst the process can be
relatively accurate, it has been shown to be prone to being
reader-dependant and suffering from errors due to anatomical
challenges of the prostate [4].

Over the past years, there has been a proliferation of
artificial intelligence (AI) tools aiming to automatize and
standardize prostate whole gland (WG) segmentation [5], [6].
Among the proposed AI solutions, nnU-Net is commonly a
top performer in prostate WG challenges and considered a de
facto choice for the task [5], [7], [8]. In spite of the progress
in deep learning (DL) networks in prostate WG segmentation,
there is a growing evidence suggesting that AI models are
poorly calibrated and present overconfident predictions [9],
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Fig. 1: Breakdown of the steps included in our uncertainty quantifi-
cation framework based on conformal prediction (CP) and applied to
nnU-Net.

[10]. Nevertheless, most segmentation benchmarks present
systems with point predictions and neglect any assessment of
the uncertainty of the AI systems [7], [11].

In light of the significance of uncertainty quantification
(UQ), there has been an increase in the popularity of methods
to quantify it in DL architectures [12], [13]. Typical UQ
methods include confidence-based, Bayesian, and ensemble
methods [12]. In spite of their wide use, confidence-based
methods can be sensitive to poor calibration. Further, Bayesian
methods are built on subjective beliefs and assumptions [14],
and ensemble methods usually suffer from high computational
complexity, limiting their usage to light models [15].

Conformal prediction (CP) is a distribution-free and model-
agnostic UQ method [16], [17]. Compared to other UQ meth-
ods, CP provides strong statistical guarantees to keep the error
rate of a given AI system bounded by a pre-specified level
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Fig. 2: Technical approach to the project, depicting the main cohort used to train the nnU-Net, the external cohort and the different splits
used to calibrate the conformal predictor and to test the uncertainty quantification effect.

[18]. With CP, the end-user can set a desired confidence level
α such that the conformal predictor will then provide a region
around the point prediction that contains the true label with a
confidence level % probability. In the event were the prediction
does not reach the required α level, an empty prediction
{∅} is returned-flagging the prediction as too uncertain to be
reported.

In this study, we develop conformal predictors for AI-
assisted prostate WG segmentation (Figure 1). We show how
these predictors can be used for UQ to detect unreliable pixel
predictions in the WG segmentation. In particular, we make the
following contributions: (i) Systematic analysis of a nnU-Net
performance for WG segmentation in an internal and external
cohorts (ii) quantitative analysis of the performance of the
model without conformal prediction for UQ (iii) quantitative
analysis of the effect of CP and different α levels for UQ. Code
and model weights will be shared upon request on GitHub.

II. MATERIALS AND METHODS

A. Study cohorts

1) Main cohort: The ProstateX challenge data (Radboud
University, Netherlands) [7] is a collection of open-access
and retrospectively collected prostate MRI exams to validate
modern AI algorithms for the diagnostic classification of PC.
Subjects included in the ProstateX challenge were recruited
on the basis of suspicion of PC based on high PSA levels.
Following, PC diagnosis was confirmed through an MRI-
guided biopsy [19].

The ProstateX challenge cohort consisted of 204 subjects
(median age 66 years [range, 48-83]) with available prostate
volume (mL) and Gleason Score (GS) obtained from the
biopsy. In addition, the cohort had pixel-level annotations for
the WG obtained by two experienced board-certified radiolo-
gists with > 5 years of experience [20]. This cohort served as
the primary source to train the models and for in-distribution
(internal) testing.

2) External cohort: Data from Stavanger University Hospi-
tal (SUS, Norway) [21] was collected to assess the replicability
and generalisability of our proposed methods. The external
cohort consisted of 48 subjects (median age 68 years, [range,
49-83]) that were recruited under the basis of PC suspicion
based on high PSA levels. All diagnosis of all subjects were
confirmed by biopsies.

Clinical and demographic available data included prostate
volume (mL) and Gleason Score (GS) obtained from the
biopsy. Manual annotations of the WG were also available
for the external cohort, obtained by a radiologist in training
with < 2 years of experience. All annotations were obtained
with ITK-SNAP v.380 software (http://www.itksnap.org/).

B. Magnetic resonance Imaging

1) Acquisition: We used 3.0 Tesla (T) axial T2-weighted
(T2w) spin sequences together with their paired prostate WG
gland masks for model training and testing. Images were
acquired with either Siemens (Siemens Health Engineerns,
Erlangen, Germany) or Philips (Philips & Co, Endhoven,
The Netherlands). Additionally, the T2w MRI exams had
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an in-plane resolution of [0.5-0.562mm]x[0.5-0.562mm]x[3.0-
3.15mm] and 0.50mm x 0.50mm x 3.0mm for the main and
external cohorts, respectively.

Inclusion criteria limited the cohort to those with T2w MRI
exams with a biopsy-confirmed (systematic, MRI-guided or
both) diagnosis consisting of low-grade PC (GS <= 6) or
high-grade PC (GS >= 7). After application of the inclusion
criteria, 204 participants from the main cohort and 41 from
the external cohort were included in the study (Figure 2).

2) Data splitting: We split the main cohort in 80/20%,
resulting in 163 subjects used to train the DL model and for
UQ and 41 subjects used to test. The splitting was performed
at the subject level to avoid cross-contamination. We keep
the entire external cohort (41 subjects) for external testing
purposes. Data characteristics of the whole cohort and the
resulting splits are depicted in Table I and in Figure 2.

TABLE I: Main and external cohorts characteristics after matching
by diagnostic criteria.

Main Main (train) Main (calib.) Main (test) External
Subjects 204 130(63.70) 33(16.17) 41(20.13) 41

GS <= 6 65 42(32.31) 10(30.31) 13(31.70) 14(34.15)
GS >= 7 139 88(67.69) 23(69.69) 28(68.30) 27(65.85)

Volume (mL) 89.52±49.99 88.08±22.37 90.08±43.99 86.08±35.05 73.46±46.30

† GS = Gleason Score, Calib. = Calibration set.

C. Conformal Prediction

We applied a CP framework for the segmentation of prostate
WG from prostate MRI images. A description of the DL
system that provides the prostate masks is provided in the next
section. Conformal predictions can be constructed in different
ways, and for the purpose of the study, we implemented a
Mondrian type of CP which guarantees the error rate per class
[16].

In order to train the CP framework, we split the previously
obtained training data in 80% and a CP calibration set of 20%,
resulting in 130 subjects used to train the DL system and
33 subjects used to calibrate the CP framework (Figure 2).
Once the CP framework is trained, we explore different α
confidence levels (75%, 90% and 95%) and their effect on the
UQ performance.

Given the high dimension nature of the data (320x320 pixels
per slice), we reduce the amount of pixels used in training the
CP by extracting the region of interest of the calibration set. In
particular, we crop around the prostate gland with a 20 pixel
margin to ensure that there is enough representation of pixels
assigned to class 0 and pixels assigned to class 1. At inference
time, we use the entire prostate slice.

D. Deep learning for whole gland segmentation

We choose nnU-Net based on its wide adoption and positive
results in previous WG segmentation challenges[19], [21].
Briefly, nnU-Net provides a framework that includes automatic
pre-processing, automatic configuration and training of U-Net
architecture and post-processing of the results.

As part of the pre-processing, the pixel intensity range
of the images is normalized followed by a center cropping,
re-ordering of the axis and re-sampling of the T2w MRI

TABLE II: Effect of different confidence levels in nnU-Net segmenta-
tion performance and conformal predictor uncertainty quantification.

confidence level DSC↑ VD(%) ↓ Efficiency(%) ↑ Validity(%) ↑
α = 0.75 0.89±0.15 10.70±4.60 99.33±1.68 99.34±1.11
α = 0.90 0.96±0.05 2.98±1.65 99.60±1.13 99.61±0.97
α = 0.95 0.98±0.01 1.67±0.99 99.78±0.83 99.80±0.59

† DSC = Dice Score Coefficient, VD = Volume difference.

sequence. We select a 2D nnU-Net as the base architecture,
based on experimentation with the other variants and omit
post-processing options. More details about post-processing
options or data augmentation techniques can be found in the
original article [5].

1) Training: Training is performed with the default con-
figuration of the 2D nnU-Net, as exploration of architecture
modfications is considered out of the scope of the work. We
train the architecture to minimize a combination of dice loss
and cross-entropy. The architecture is trained with an SGD
optimizer and for 1000 epochs for every fold. The validation
loss is monitored for every fold, and we keep the weights
for the epoch were the minimum is reached. As part of nnU-
Net framework, an automatic selection of data augmentation
techniques are applied on the fly [5]. Model training and
evaluation were carried out on an NVIDIA A100-80G GPU
(NVIDIA Corporation, Santa Clara, USA).

2) Evaluation: At test time, we consider nnU-Net without
UQ application as the baseline of the work. Following, we
applied the CP framework to the baseline nnU-Net, and
characterize the segmentation results. We compare the results
in terms of segmentation and UQ performance.

In terms of metrics, we resort to VD (%) and dice score
coefficient (DSC) for segmentation purposes. Volume differ-
ence (VD) is defined as the coefficient between the estimated
prostate volume obtained from the segmentation result, and
the original prostate volume from the ground truth. In the UQ
case, we employ efficiency (%) and validity (%). Efficiency
is defined as the amount of pixels assigned to a single
class whilst validity is defined as the fraction of correct
pixel predictions. Calculation of DSC and VD is based on
pixel predictions that are not flagged as uncertain, under the
assumption that those pixels predictions would be flagged by
the system and a posterior human intervention would correct
them.

E. Statistical testing

All analyses were performed in Python 3 (www.python.org/
downloads) with the open-sourced statsmodels 0.14.0 module
(www.statsmodels.org). We reported continuos variables as
mean and standard deviation (mean ± SD) and categorical
variables as number of ocurrences and percentage (N[%]). We
performed unpaired t-test and Mann-Whitney U tests where
appropriate to assess the differences between nnU-Net with
and without CP for UQ and for the different α confidence
levels (75%, 90% and 95%). A P value <0.05 was considered
statistically significant.
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TABLE III: nnU-Net results without uncertainty quantification and after applying conformal prediction with a confidence level of 95%, for
the main and external cohort test set.

DSC ↑ VD(%) ↓ p valueV D Efficiency(%) ↑ Validity(%) ↑cohort method

main nnU-Net 0.92±0.48 2.46±1.20
<.001 - -

nnU-Net w/ CP (α = 0.95) 0.98±0.01 1.67±0.99 99.78±0.83 99.80±0.59

external nnU-Net 0.89±0.65 3.47±1.81
<.001 - -

nnU-Net w/ CP (α = 0.95) 0.94±0.08 2.86±0.28 99.46±0.43 99.51±0.46
† DSC = Dice Score Coefficient, VD = Volume difference, w/ CP = with Conformal Prediction.

0 1 uncertain

Ground truth Ground truth

predic1on predic1on𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟗𝟓 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎. 𝟗𝟓

Fig. 3: Effect of applying conformal prediction with α = 0.75 and α = 0.95 to two different prostate segmentation slices.

III. RESULTS

A total of 130 participants of the main cohort were consid-
ered for nnU-Net model training, whilst 33 participants were
used to calibrate the conformal predictors. Table I depicts a
summary of some of the available participants characteristics.
At test time, we considered 41 participants from the main
cohort and 41 participants from the external cohort with
biopsy-confirmed PC who were not included in the model
training stage. The external cohort participants were the result
of matching the original cohort to the main cohort based
on PC diagnosis. As depicted in Table I, both the different
splits and cohorts had a similar distribution in terms of PC
diagnosis and prostate WG volume. Specifically, the external
cohort presented a smaller WG when compared to the main
cohort.

As part of our sensitivity analysis, we compared the
effect of CP different confidence levels (α) in the seg-
mentation results of the main and external cohorts. As
shown in Table II, CP(α = 0.95) largely improves the
DSC(0.98±0.01), VD(1.67±0.99%) and provides a large
efficiency(99.78±0.83%) and validity(99.80±0.59%). Hereby,
we considered CP(α = 0.95) for the rest of the evaluation.

Table III shows the results of the nnU-Net architecture with
and without CP(α = 0.95). When using CP(α = 0.95), we
observe a statistically significant reduction in VD for the main
(1.67±0.99%) and external cohorts test set (2.86±0.28%).

Furthermore, we also observe a significant improvement in
terms of DSC for the main (0.98±0.01) and external cohorts
(0.94±0.08). In that regard, figure 3 shows the effect of CP in
a qualitative way in the predicted segmentation of two different
slices of different subjects.

IV. DISCUSSION

In our retrospective study, we proposed CP as a UQ method
for prostate WG segmentation. Our study provides some
degree of evidence of the positive effect of using CP to
flag uncertain pixel predictions in terms of VD and DSC
in the main cohort. Furthermore, our results in the external
cohort matched by diagnosis support the results observed in
the main cohort and the improvement in terms of DSC and
VD when incorporating CP as an UQ method in prostate WG
segmentation.

When compared to other UQ methods, our approach lever-
aging CP presents the advantage of being model-agnostic,
distribution-free and as depicted by our results, strong sta-
tistical guarantees that ensure the error of the AI system is
bounded by a pre-specified confidence level (α). As depicted in
other works [6], [19], prostate segmentation is a crucial aspect
in advanced computer aided detection (CAD) pipelines and the
flexibility of the CP framework used in our work allows for
integration in different stages of CAD prostate systems.

The results presented in our study have some limitations.
First, our study was limited by its retrospective nature and
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small sample size of the test sets of both cohorts. Future
studies including a larger sample size are required to verify
our findings. Furthermore, quantification of the calibration of
the architecture with and without CP is not included. Finally,
some of the annotations used for the purpose of the study
were obtained by one expert. Future studies should reflect the
variability present in the annotations when multiple experts
are accounted for.

V. CONCLUSION

We present a prostate segmentation framework that ac-
counts for uncertainty quantification with a model-agnostic,
distribution-free and with strong statistical guarantees that
keep the error of the system bounded. We show that our
approach can improve prostate segmentation results by flag-
ging uncertain pixel predictions. Our approach could poten-
tially serve to mark pixel predictions that require human-
supervisions, effectively leading to a human-AI collaboration
and reduction of time spent on the task by experts.
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