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Abstract—In recent decades, extensive research has been
conducted on the analysis of Electromyography (EMG) signals,
aiming to establish a novel communication pathway that utilizes
the electrical activity generated by muscle contractions to control
external devices. However, determining the optimal configuration
for such systems in a given scenario remains as a challenging
task. The challenges arise from two main factors: the growing
number of available feature extraction methods and classification
algorithms, and the necessity of designing control systems that
prioritize user comfort, with considerations such as a reduced
number of electrodes and fast reaction times. In this paper we
propose a method to determine the most suitable configuration
for an EMG system by considering three crucial parameters
in control systems: reaction time, accuracy, and the required
number of channels.

Index Terms—Control systems, Electromyography, Hand ges-
tures

I. INTRODUCTION

Electromyography (EMG) is a widely used technique for
evaluating and recording the electrical activity generated by
skeletal muscles. This technique enables the analysis of EMG
signals to detect abnormalities, assess muscle activation levels,
and investigate the biomechanics of human or animal move-
ments. To human-computer interaction, surface EMG (sEMG)
has emerged as a valuable tool for designing interfaces that
facilitates seamless interaction between humans and computers
[1], [2].

The main objective of utilizing sEMG in Human-Machine
Interfaces (HMI) is to accurately discern the user’s intended
actions by distinguishing between distinct electrical patterns
generated by various muscle contractions [3]. This opens
up new possibilities for creating user-friendly and efficient
interfaces that cater to a diverse range of individuals and their
unique needs.

Numerous studies have focused on evaluating the perfor-
mance of feature extraction methods and classifier algorithms
[4]. Many of these methods rely on well-known statistics such
as standard deviation, root mean square, and mean absolute
value, which are relatively straightforward to implement [5].
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However, alternative approaches for signal characterization,
such as wavelet analysis and principal component analysis
have also been explored in previous studies [6]–[8]. For feature
classification, the use of supervised and unsupervised algo-
rithms to determine hand movements based on the extracted
features has been widely studied. There is a wide range
of options available [9], including Support Vector Machines
(SVM) [10], and Linear and Quadratic Discriminant Analysis
(LDA) [11], among others [12].

Although classifier accuracy is a primary concern in HMI, it
is equally important to assess and optimize the time response
of the system and consider user comfort to create a reliable
and user-friendly system. The response time refers to the
speed at which the HMI system can detect and interpret the
user’s intended movements based on the EMG signals. A fast
response time is crucial for real-time applications to ensure
smooth and seamless interaction between the user and the
machine. Furthermore, comfortable and ergonomic interfaces
can enhance the user experience and reduce fatigue or dis-
comfort during prolonged use. Factors such as the number
of electrodes, electrode placement, sensor size and weight, or
the overall design of the interface play a significant role in
ensuring user comfort.

In this work, a systematic approach to optimize the param-
eters involved in the training step of an sEMG-based HMI
system is proposed. Our optimization methodology is focused
on three key parameters:

• Utilization of a reduced number of sensors: It is crucial to
minimize the number of sensors employed in the sEMG
system. This reduces the overall complexity, cost, and
potential discomfort for the user.

• Balance between accuracy and computational complexity.
This can be achieved through the use of efficient feature
extraction algorithms and classification methods.

• Detection of muscle movements using a reduced number
of samples: this implies the use of robust feature extrac-
tion methods and machine learning algorithms that can
effectively capture the essential information from EMG
signals in a concise time frame. This reduces overall
complexity, cost and reaction time.

This paper is organized as follows. Section II presents the
review of the feature extraction methods and classification
algorithms used in this paper. In this section, we also propose
the procedure for selecting the most suitable configuration
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Fig. 1. Proposed system. First, the most suitable combination of feature extraction method and classification algorithm that achieves a higher accuracy than
threshold T1 is computed in the exploring stage. Then, the reduction step is performed if the desired accuracy is not reached, i.e., is is lower than threshold
T2.

of the sEMG-based HMI system. Section III presents the
results obtained from a series of tests conducted to evaluate
the performance and effectiveness of the proposed system.
The results are then analyzed and interpreted in Section IV,
providing insights into the strengths, limitations, and potential
areas for system improvement. Finally, in Section V, the paper
concludes with the most significant and relevant conclusions
derived from this work.

II. METHODS

Fig. 1 plots the diagram of the proposed system. The method
for selecting the most suitable configuration of an sEMG-based
HMI system involves two key stages:

• Exploring Stage. In this stage, features are computed from
the raw EMG data using various methods. These ex-
tracted features are then processed by different classifica-
tion algorithms. A selection criterion based on comparing
the accuracy with a threshold is employed to determine
the best feature extraction method for each classifier and
the minimum number of channels required for accurate
gesture recognition.

• Reduction Stage. Once the best configuration from the
exploring stage (i.e., the most suitable combination of
feature extraction method and classifier algorithm) is
obtained, the system analyzes whether this configuration
achieves the desired accuracy. If the desired accuracy is
not attained, a reduction in the number of hand gestures to
be detected is implemented, and the accuracy is computed
again.

A. Feature Extraction

Feature selection methods have garnered significant atten-
tion in the classification field. Numerous studies have focused
on developing and evaluating various techniques to identify
the most informative and discriminative features for improving
classification performance. In our study, we consider seven

different statistics to extract features from the raw data, some
of which have been used in previous works [13]–[15].

Let xm be the sample at the discrete instant m of the M -
length signal x. We define the following statistics:

• Root Mean Square (RMS):
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• Simple Square Integral (SSI):
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• Difference Variance Value (DVARV):
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• Log Difference Absolute Standard Mean Value
(LDAMV):

LDAMV = log
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)
• Log Difference Absolute Standard Deviation Value

(LDASDV):

LDASDV = log
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)
• Integrated EMG (IEMG):

IEMG =

M∑
n=1

|xn|
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B. Classification Algorithm

Four well-known classifiers were used and tested for an-
alyzing the effects of the seven feature selection algorithms
(see [16]):

• Gaussian Naive Bayes (GaussianNB) is a probabilistic
classifier that applies Bayes’ theorem with strong in-
dependence assumptions. It assumes that the presence
or absence of a specific feature is unrelated to other
features, given the class variable. This classifier simplifies
computations and is efficient for high-dimensional data.
It models class distributions using Gaussian distributions.

• Quadratic Discriminant Analysis (QDA) is a modified
version of Linear Discriminant Analysis (LDA) that takes
into account the assumption that the covariance matrix
can vary for each class. This modification makes QDA a
more flexible classifier when dealing with datasets where
the covariance structures of different classes significantly
differ.

• Decision Tree Classifier (TREE) utilizes a classification
or regression decision tree as a predictive model for
analyzing a set of features. It operates by partitioning the
feature space based on certain conditions and drawing
conclusions accordingly. In this work, a maximum depth
of 5 is employed.

• k-Neighbors Classifier (KNN) is a classification strategy
that assigns a class label to a test point based on the
majority vote of its nearest neighbors. Each test point is
classified by considering the class labels of its k nearest
neighbors. In this work, the value of k is set to 3,
meaning that the three closest neighbors of a test point
will contribute to the final classification decision.

C. Sequential Feature Selector

In our study, we employ a Sequential Feature Selector
(SFS) to carefully select a subset of features from our dataset
based on their relevance to the target variable. This iterative
algorithm evaluates the performance of the chosen classifier
and different feature extraction methods for each channel. We
implemented a forward selection, where we begin with an
empty set of features and iteratively add features based on
the specified evaluation metric, which in our case is accuracy.
For this purpose, a K-fold cross-validation approach is used
with K = 5. In order to reduce the computational load,
a tolerance parameter determines if the inclusion of a new
feature represents an improvement in the accuracy (we set
t = 0.05 in our experiments).

The inclusion of SFS serves two primary purposes in our
research. Firstly, it helps us to identify the most effective fea-
ture extraction-classification algorithms. Secondly, SFS allows
us to reduce the number of channels used in our analysis.
This not only helps in reducing computational complexity but
also enhances interpretability by prioritizing the most relevant
channels.

III. EXPERIMENT

A. Dataset

For experimental purposes, we use the dataset from the
UCI-Machine Learning Repository [17]. For recording pat-
terns, they used a MYO Thalmic bracelet worn on a user’s
forearm, and a PC with a Bluetooth receiver [18], [19]. The
bracelet is equipped with eight sensors equally spaced around
the forearm that simultaneously acquire myographic signals
while subjects performed series of static hand gestures with
a sampling frequency of 200Hz. Due to the computational
complexity derived from the SFS algorithm, we decided to
employ a reduced number of subjects to test the proposed
system. Hence, 8 randomly selected subjects were used in the
experiments.

The subject performs two series, each of which consists of
six (seven) basic gestures. Each gesture was performed for 3
seconds with a pause of 3 seconds between gestures. In this
work, we marked as (0) hand at rest, (1) hand clenched in a
fist, (2) wrist flexion, (3) wrist extension, (4) radial deviations
and (5) ulnar deviations.

In the sequel, we present the mean and standard deviation
(STD) of the results after performing cross-validation.

B. Results from Exploring Stage

The experiment involved conducting comparisons of classi-
fiers using different window sizes, namely 256, 512, 768, and
1024. For each window size, the system computed statistics
for eight channels, which were enumerated from 0 to 7. To
determine the best combination, the SFS method was utilized.

Table I shows the results obtained for a window size of 256
samples, which is equivalent to 1.28 s. It is evident that for
three statistics (RMS, LDAMV, and LDASDV), the highest
accuracy is achieved using the QDA classifier. Conversely,
for four statistics (VAR, SSI, DVARV, and IEMG), the KNN
classifier yields the best accuracy. The number of selected
channels varies depending on the specific feature selection
process. Notably, the most favorable overall performance is
observed when QDA is trained using LDASDV. In this partic-
ular case, the system achieves an accuracy of 0.794± 0.046,
utilizing four channels (1, 3, 4 and 6).

Table II presents the results obtained for a window size of
512 samples. Comparing these results to those obtained with
a window size of 256 samples, we observe an improvement
in accuracy. However, it is important to note that the mean
accuracy for all cases remains below 0.9. The best overall
performance is achieved when QDA is trained using LDASDV.
In this particular scenario, the system achieves an accuracy of
0.842±0.069 by utilizing five channels (2, 3, 4, 5, 6). Notably,
this configuration includes an additional channel compared to
the setup with a window size of 256 samples.

The same strategy was employed for window sizes of
768 and 1024 samples. To summarize the overall process,
Table III presents the configurations that yielded the best
accuracy for each window size. It is noteworthy that the
optimal configuration consistently involves the utilization of
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TABLE I
RESULTS OBTAINED FROM EXPLORING STAGE FOR WINDOWS OF 256

SAMPLES: ACCURACY (MEAN ± STD) AND CHANNELS SELECTED FOR
EACH STATISTIC AND CLASSIFICATION METHOD. THE SELECTION WITH

THE BEST ACCURACY IS MARKED IN BOLD LETTERS.

Explored mehtods Results
Statistic Classifier Mean ± STD Selected channels
RMS GANB 0.533± 0.043 3, 6

QDA 0.781± 0.050 1, 3, 4, 5, 6
TREE 0.654± 0.064 2. 4. 6
KNN 0.748± 0.053 1, 2, 4, 6

VAR GANB 0.542± 0.044 3, 6
QDA 0.542± 0.035 3, 6
TREE 0.035 0
KNN 0.634± 0.048 1, 4, 6

SSI GANB 0.543± 0.046 3, 6
QDA 0.543± 0.037 3, 6
TREE 0.631± 0.025 0, 3, 4, 6
KNN 0.633± 0.043 1, 4, 6

DVARV GANB 0.544± 0.056 3, 6
QDA 0.547± 0.050 3, 6
TREE 0.167 0
KNN 0.724± 0.025 0, 2, 3, 5, 6

LDAMV GANB 0.707± 0.094 1, 3, 4, 6
QDA 0.789± 0.047 1, 3, 4, 6
TREE 0.571± 0.065 2, 6
KNN 0.755± 0.030 0, 3, 4, 6

LDASDV GANB 0.717± 0.090 1, 3, 4, 6
QDA 0.794± 0.046 1, 3, 4, 6
TREE 0.578± 0.053 2, 6
KNN 0.751± 0.033 0, 3, 4, 6

IEMG GANB 0.548± 0.041 3, 6
QDA 0.724± 0.039 1, 3, 4, 6
TREE 0.684± 0.053 1, 3, 4, 6
KNN 0.768± 0.026 0, 1, 3, 4, 6

the QDA classifier with either LDASDV statistics for window
sizes of 256, 512, and 1024 samples, or LDAMV statistics for
a window size of 768 samples. Interestingly, the increase in
the number of samples only leads to improved performance
when transitioning from 256 to 512 samples. However, it is
important to mention that in all cases, the achieved accuracy
remains below 0.9.

C. Results from Reduction Stage

Given that the accuracy achieved during the exploration
stage remains below 0.9, the reduction stage is employed to
identify a new configuration that involves classifying a reduced
number of hand movements. Fig. 1 illustrates the process of
systematically eliminating individual hand movements (from 0
to 5) and measuring the resulting classification accuracy. The
best result is obtained, and this hand gesture is removed for
the next iteration. The procedure continues until the accuracy
reaches a value equal to or greater than 0.9, at which point
it stops (i.e., we remove one additional movement at each
iteration).

Table IV presents the results obtained for each configuration
in the reduction stage. This table shows information on the
achieved accuracy, the number of iterations required to reach
the desired accuracy threshold (0.9), the selected channels, and
the removed gesture. For the first iteration, the configuration
LDAMV-QDA with 768 samples and LDASDV-QDA with
1024 samples achieve the desired accuracy by eliminating the

TABLE II
RESULTS OBTAINED FROM EXPLORING STAGE FOR WINDOWS OF 512

SAMPLES: ACCURACY (MEAN ± STD) AND CHANNELS SELECTED FOR
EACH STATISTIC AND CLASSIFICATION METHOD. THE SELECTION WITH

THE BEST ACCURACY IS MARKED IN BOLD LETTERS.

Explored mehtods Results
Statistic Classifier Mean ± STD Selected channels
RMS GANB 0.557± 0.049 3, 6

QDA 0.817± 0.052 1, 3, 4, 5, 6
TREE 0.628± 0.086 2, 4, 6
KNN 0.770± 0.589 1, 2, 4, 6

VAR GANB 0.554± 0.056 3, 6
QDA 0.555± 0.038 3, 6
TREE 0.167 0
KNN 0.686± 0.058 1, 2, 4, 6

SSI GANB 0.554± 0.056 3, 6
QDA 0.555± 0.041 3, 6
TREE 0.636± 0.063 3, 4, 6
KNN 0.677± 0.076 1, 2, 4, 6

DVARV GANB 0.55± 0.057 3, 6
QDA 0.554± 0.049 3, 6
TREE 0.167 0
KNN 0.662± 0.03 0, 3, 6

LDAMV GANB 0.712± 0.102 1, 3, 4, 6
QDA 0.836± 0.065 2, 3, 4, 5, 6
TREE 0.559± 0.071 2, 6
KNN 0.783± 0.053 1, 3, 4, 6

LDASDV GANB 0.725± 0.098 1, 3, 4, 6
QDA 0.843± 0.069 2, 3, 4, 5, 6
TREE 0.575± 0.08 2, 6
KNN 0.796± 0.045 1, 3, 4, 6

IEMG GANB 0.555± 0.043 3, 6
QDA 0.807± 0.033 1, 2, 4, 6
TREE 0.704± 0.047 1, 3, 4, 6
KNN 0.765± 0.050 1, 2, 4, 6

TABLE III
BEST RESULTS OBTAINED FROM EXPLORING STAGE FOR WINDOWS OF
256, 512, 768 AND 1024 SAMPLES AND QDA CLASSIFIER: ACCURACY
(MEAN ± STD) AND CHANNELS SELECTED FOR EACH WINDOW SIZE.

Explored mehtods Results
Statistic Win. size Mean ± STD Selected channels
LDASDV 256 0, 794± 0, 046 1, 3, 4, 6
LDASDV 512 0, 843± 0, 069 2, 3, 4, 5, 6
LDAMV 768 0, 839± 0, 070 2, 3, 4, 5, 6
LDASDV 1024 0, 843± 0, 072 2, 3, 4, 5, 6

hand gesture corresponding to ulnar deviation. Note also that
the system proposes to use only four sensors. However, for
LDASDV-QDA with 256 samples and 512 samples, we need
to remove two hand gestures corresponding to radial deviations
and ulnar deviations. This reduction of hand gestures allows
us to use only three sensors.

IV. DISCUSSION

The experimental results demonstrate the effectiveness of
our system in achieving an optimized configuration. There is
redundancy within the EMG signal when eight channels are
used. For example, we found that it is possible to detect three
hand gestures using a cost-effective configuration with only
256 samples and three channels. However, when it comes to
identify four hand gestures, it becomes necessary to utilize
768 samples and four channels. The final decision regarding
the configuration should be based on application requirements.
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TABLE IV
BEST RESULTS OBTAINED FOR WINDOWS OF 256, 512, 768 AND 1024

SAMPLES IN THE REDUCTION STAGE: ACCURACY (MEAN ± STD),
CHANNELS SELECTED AND REMOVED HAND GESTURES FOR

CONFIGURATIONS OBTAINED IN THE EXPLORING STAGE. CONFIGURATION
1: LDASDV-QDA; CONFIGURATION 2: LDAMV-QDA

Conf. Win. Iter. Results
Mean ± STD Channels Removed ges.

1 256 1 0.869± 0.043 1, 3, 4, 6 5
2 0.919± 0.041 0, 3, 4 5, 4

1 512 1 0.895± 0.036 1, 3, 4, 6 5
2 0.939± 0.04 0, 3, 4 5, 4

2 768 1 0.900± 0.041 1, 3, 4, 6 5
1 1024 1 0.920± 0.023 1, 3, 4, 6 5

Furthermore, the results demonstrate that the QDA classifier
method, in combination with either LDASDV or LDAMV
feature extraction methods, is the one that works best on this
dataset. However, it is important to note that our system is
versatile and can explore various classification algorithms and
feature extraction methods. This flexibility allows for experi-
mentation and adaptation to different datasets and application
scenarios.

V. CONCLUSIONS

We have proposed a systematic approach to optimize the
parameters involved in the training step of an EMG-based HMI
system. Our investigation focused on exploring various feature
extraction techniques and evaluating different classification
algorithms. By systematically evaluating these combinations,
our goal was to identify the optimal configuration for each
classifier, ultimately maximizing the accuracy of hand move-
ment recognition.

In cases where the desired accuracy threshold was not
achieved through the initial exploration, our system employed
an additional analysis. By selectively removing certain hand
gestures from the dataset, we assessed the impact on perfor-
mance and accuracy. This step allowed us to further refine the
system’s configuration and determine the most suitable setup
that would achieve the desired accuracy with the minimum
number of sensors.

As a consequence, by carefully considering both accuracy
and practical constraints, our approach aims to strike a bal-
ance between performance and usability in EMG-based HMI
systems.
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[12] V. M. Gallón, S. M. Vélez, J. Ramı́rez, and F. Bolaños, “Comparison
of machine learning algorithms and feature extraction techniques for
the automatic detection of surface emg activation timing,” Biomedical
Signal Processing and Control, vol. 94, p. 106266, 2024.

[13] D. Tkach, H. Huang, and T. A. Kuiken, “Study of stability of time-
domain features for electromyographic pattern recognition,” NeuroEngi-
neering Rehabil., vol. 21, 2010.

[14] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-
Bernard, and Y. Laurillau, “Feature extraction of the first difference of
EMG time series for EMG pattern recognition,” Computer Methods and
Programs in Biomedicine, vol. 117, no. 2, pp. 247–256, 2014.

[15] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction
and selection for EMG signal classification,” Expert Systems with
Applications, vol. 39, no. 8, pp. 7420–7431, 2012.

[16] E. Keogh, Instance-Based Learning. Boston, MA: Springer US, 2017,
pp. 672–673.

[17] S. Lobov, N. Krilova, I. Kastalskiy, V. Kazantsev, and V. Makarov,
“Latent factors limiting the performance of sEMG-interfaces,” Sensors,
vol. 18, no. 4, p. 1122, Apr 2018.

[18] C. Tepe and M. C. Demir, “The effects of the number of channels and
gyroscopic data on the classification performance in emg data acquired
by myo armband,” Journal of Computational Science, vol. 51, p. 101348,
2021.

[19] H. A. Javaid, M. I. Tiwana, A. Alsanad, J. Iqbal, M. T. Riaz, S. Ahmad,
and F. A. Almisned, “Classification of hand movements using myo
armband on an embedded platform,” Electronics, vol. 10, no. 11, p.
1322, 2021.

1645


