
Symbolic representation for time series
Sylvain W. Combettes, Charles Truong, Laurent Oudre

Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli
Gif-sur-Yvette, France

{firstname.name}@ens-paris-saclay.fr

Abstract—This study proposes a novel symbolic representation
method for time series data called ASTRIDE. Unlike conventional
symbolization techniques, our approach exhibits adaptability in
two critical phases: firstly, during the temporal segmentation
process, where it dynamically detects change-points in the signals,
and secondly, in the sample quantization step, where it leverages
quantiles. Additionally, we develop a data-driven edit distance
measure for assessing the similarity of our symbolic represen-
tations. We demonstrate the performance of our representation
compared to standard symbolizations on classification tasks. Our
algorithm is evaluated on 86 univariate time series data sets with
equal length sourced from the UCR Time Series Classification
Archive. An open source GitHub repository is made available to
reproduce the experiments in Python.

Index Terms—Symbolic representation, time series, change-
point detection, classification

I. INTRODUCTION

Over the past decades, the increasing amount of available
time series data has led to a rising interest in time series
data mining. In many applications, the collected data take
the form of complex time series which can be multivariate,
multimodal, or noisy. A fundamental issue is to adopt an
actionable representation that takes into account temporal
information. In this regard, symbolic representations constitute
a tool of choice [1]. Symbolic representations of time series
are used for data mining tasks such as classification [1], [2],
clustering [1], indexing [1], and anomaly detection [3], [4].
The domain applications include finance [5] or healthcare [6].

Briefly, most symbolization techniques follow two steps: a
segmentation step where a real-valued signal y = (y1, . . . , yn)
of length n is split into w segments, then a quantization step
where each segment is mapped to a discrete value ŷi taken
from a set {a1, . . . ,aA} of A symbols. The resulting sym-
bolic representation is the discrete-valued signal (or symbolic
sequence) ŷ = (ŷ1, . . . , ŷw). The set of symbols {a1, . . . ,aA}
is usually called an alphabet or dictionary, and A is the
alphabet size; the length w of the symbolic representation
is called the word length. While there exist many high-level
representations for time series, the two main advantages of
symbolic representations are reduced memory usage, and often
a better score on data mining tasks thanks to the smoothing
effect induced by compression [1].

Related work: One of the most popular symbolic rep-
resentations for time series is Symbolic Aggregate approX-

S. Combettes is supported by the IDAML chair (ENS Paris-Saclay) and
UDOPIA (ANR-20-THIA-0013-01). C. Truong is funded by the PhLAMES
chair (ENS Paris-Saclay).

0 50 100 150 200 250 300 350 400

0

2

0
1
2

3

1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

11 1

3

11 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

1
1 1

3

11 1

3

1
1 1

3

1
1 1

3

1

normalized signal
segmentation bins
mean per segment
quantization bins

0 50 100 150 200 250 300 350 400

0

2

0
1
2

3

1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0

normalized signal
segmentation bins
mean per segment
quantization bins

Fig. 1. Example of a SAX (top) and our method ASTRIDE (bottom)
representations of a signal. The resulting symbolic sequence is 1131 for
SAX, and 1230 for ASTRIDE.

imation (SAX) [1]. In SAX, each signal is centered and
scaled to unit variance, then split into w segments of equal
length. Next, the means of all segments are grouped to-
gether in bins and each segment is represented by the bin
where its mean falls into. The bin boundaries are chosen so
that all symbols are equiprobable under the assumption that
the means follow a standard Gaussian distribution. A SAX
transformation of a signal taken from the UCR Time Series
Classification Archive [7] is shown in Figure 1. However,
uniform segmentation has flaws. As can be seen on the SAX
representation of Figure 1, the two peaks around timestamps
280 and 330 are not detected. Uniform segmentation does not
depend on the specific signal or data set at hand, but only on
the input word length w. As for quantization, the Gaussian
assumption of SAX can be inappropriate for some data sets.
SAX considers that the symbols obtained after quantization
will be equiprobable because all normalized time series follow
a Gaussian distribution. While normalized time series that are
independent and identically distributed do tend to follow a
Gaussian distribution, this is not the case for the means per
segment [8].

Since the introduction of SAX, many variants and symbol-
ization techniques have been proposed. Some variants focus
on the feature(s) per segment. ENhanced SAX (EN-SAX) [5]
builds a vector for each segment with the minimum, maximum,
and mean values. These vectors are then clustered and a
symbol is attributed to each cluster. 1d-SAX [9] represents
two features with only one symbol per segment. It uses linear
regression to compute the mean and the slope of each segment
then discretizes the mean and the slope separately using the
same Gaussian assumption as in SAX. The final segment
symbol is the combination of the mean symbol and the

1962ISBN: 978-9-4645-9361-7 EUSIPCO 2024



slope symbol. Complexity-invariant SAX (CSAX) [10] uses the
symbolized mean and the real-valued complexity estimate, and
thus holds two values per segment. The complexity estimate
corresponds to the L2-norm of the finite differences vector and
quantifies a notion of dispersion.

Some symbolization procedures perform a non-uniform
segmentation in order to better adjust to the signal. For
instance, in Adaptive Segmentation Based Symbolic Repre-
sentations (SBSR) [11], segment lengths adapt to the shape
of the signal. Adaptive SAX based on the Sum of Absolute
Errors (ASAX SAE) [12] detects changes in the mean: it
uses a bottom-up approach to reduce the approximation error
of the PAA representation. Adaptive SAX based on ENtropy
(ASAX EN) [12] focuses on entropy and uses a top-down
approach to find informative segments with high entropy.

Another category of symbolic representations use an adap-
tive quantization step in order to relax the Gaussian assumption
on the data. Genetic Algorithms-based SAX (GASAX) [13]
works as SAX, but the bin boundaries are determined through
a genetic algorithm. Adaptive SAX (aSAX) [3] uses a uniform
segmentation and K-means clustering for the quantization.
Adaptive Brownian Bridge-based Aggregation (ABBA) [4] is
adaptive for both the segmentation and quantization steps.
For the segmentation, an adaptive piecewise linear continuous
approximation of the signal is used. Each linear piece is chosen
given a user-specified tolerance tol: when the value of tol
increases, the resulting number of segments w decreases. The
quantization step consists of a K-means clustering of the
increments over the segment and the segment lengths. No
distance is proposed on ABBA’s symbolic sequences.

Rather than using a predefined distribution, some methods
have tried to estimate it in a data-adaptive fashion. Symbolic
Fourier Approximation (SFA) [14] is based on the Discrete
Fourier transform (DFT). First, SFA selects the w Fourier
coefficients of the lowest frequencies, and second, uses a
procedure called Multiple Coefficient Binning (MCB) to quan-
tize them. No distance on SFA’s symbolic representations is
introduced. Distribution-Wise SAX (dwSAX) [15] tackles non-
Gaussian distributions. dwSAX estimates a data distribution
of the PAA values using Kernel Density Estimation (KDE).
KDE requires the choice of a kernel function and a bandwidth
parameter. After KDE, dwSAX finds the quantization bins
using the Probability Density Function (PDF) so that they
create equal-sized areas under the curve. An improved version
called edwSAX [16] has been proposed by the same authors.

Contributions: We describe a symbolic representa-
tion with adaptive segmentation and quantization, de-
noted ASTRIDE (Adaptive Symbolization for Time seRIes
DatabasEs) as well as a compatible distance measure. Instead
of using uniform segmentation, ASTRIDE performs adaptive
segmentation, a.k.a. change-point detection [17], in order to
capture salient events. Moreover, ASTRIDE does not rely on
the Gaussian assumption for the quantization. Altogether, our
approach circumvents the limitations of the methods described
above. We also developed the Dynamic General Edit Distance
(D-GED), a new distance measure on symbolic representations

which is based on the general edit distance.

II. METHOD

In this section, we decribe step-by-step the symbolization
procedure (ASTRIDE) as well as the distance measure (D-
GED). In the following, we consider as input a data set of N
univariate time series with equal lengths n.

A. Adaptive segmentation step

As a preprocessing step, all times series in the data set are
centered and scaled to unit variance. Then, the N signals
of length n are segmented. To that end, all signals are
stacked, producing a single multivariate signal of length n and
dimension N . ASTRIDE applies multivariate change-points
detection with a fixed number of segments on this high-
dimensional signal. When w segments are chosen, the seg-
mentation provides w− 1 change-points that are the same for
each univariate signal. Since the change-points are common to
all (univariate) signals, this allows ASTRIDE to be memory-
efficient. The lengths of each resulting symbolic sequence
are the same (equal to w). For a given multivariate signal
y = (y1, . . . , yn) with n samples, change-point detection finds
the w − 1 unknown instants t∗1 < t∗2 < . . . < t∗w−1 where
some characteristics (here, the mean) of y change abruptly. A
recent review of such methods is given in [17]. In the context
of ASTRIDE, the number of changes w − 1 is chosen by the
user: it is the desired number of regimes, meaning the length of
the resulting symbolic sequences. The change-point algorithm
estimates t̂1, . . . , t̂w−1 which are the minimizers of a discrete
optimization problem:

(
t̂1, . . . , t̂w−1

)
= argmin

(w,t1,...,tw−1)

w+1∑
k=0

tk+1−1∑
t=tk

∥yt − ȳtk:tk+1
∥2,

(1)
where ȳtk:tk+1

is the empirical mean of {ytk , . . . , ytk+1−1}.
By convention, t0 = 0 and tw = n. Formulation (1) seeks
to reduce the error between the original signal and the best
piecewise constant approximation. This problem is solved
using dynamic programming which has a time complexity of
O
(
Nwn2

)
where N is the number of signals in the data set.

Figure 1 displays an example of an ASTRIDE representa-
tion of a signal, along with the SAX representation (for the
same parameters w and A). Visually, compared to uniform
segmentation, adaptive segmentation leads to more meaningful
segments. For example, it detects that one segment is sufficient
to approximate the signal from timestamp 0 to 250 and
that there is a peak around timestamp 280 and another one
around timestamp 330. It shows the importance of our adaptive
segmentation scheme.

B. Adaptive quantization step

After segmentation, the means of all segments are computed
and grouped into bins based on the empirical quantiles. Each
segment is then symbolized by the bin it belongs to. This
quantization step is similar to the MCB (Multiple Coefficient
Binning) procedure of SFA [14]. Since the segments found

1963



during the segmentation step correspond to mean shifts, it is
reasonable to represent each segment by its mean value. The
A − 1 quantiles are calculated on the means of all segments
of all signals in the data set, leading to A symbols. The time
complexity of the quantization step (computing the means,
the quantiles, and applying the binning) is O (Nw), where
N is the number of signals in the data set. By design, all
symbols are equiprobable. Figure 1 shows an example of
an ASTRIDE representation. Compared to SAX, the bins of
ASTRIDE represent the quantiles of the means per segment
and are quite different from the ones of SAX. Recall that
ASTRIDE is fitted on the whole training set and not on the
displayed signal only.

C. The D-GED distance measure

We introduce Dynamic General Edit Distance (D-GED), a
novel distance measure on symbolic representations. D-GED
is compatible with symbolic sequences of equal or varying
lengths. The distance measure D-GED is based on the general
edit distance also known as the Levenshtein distance [18].
For two strings, the general edit distance is the minimal
cost of a sequence of operations (insertions, deletions, and
substitutions) that transform one string into the other. Note
that D-GED is not necessarily a metric.

D-GED sets the operation costs of the general edit distance
so that they incorporate the distance between individual sym-
bols as follows. The substitution cost sub(a,b) for individual
symbols a and b is the Euclidean distance between the mean
µa of the mean values attributed to symbol a and the mean
µb of the mean values attributed to symbol b:

sub(a,b) = ∥µa − µb∥2 . (2)

For all characters, the insertion and deletion costs are set to
submax, where submax is the maximum value of the modified
substitute costs given in (2). For the substitution cost, the
intuition is that if symbols a and b are ”very different”,
then the difference between µa and µb will be wider, and
substituting them will have a larger cost in D-GED. Note
that, by setting the insertion and deletion costs to submax,
D-GED favors substitutions over insertions and deletions. The
worst-case complexity to compute the D-GED of two symbolic
sequences of lengths w1 and w2 is O(w1w2).

The D-GED measure is not applied directly to the sym-
bolic representation but to a replicated version. Indeed, when
a method uses a non-uniform segmentation, the segments
can have different lengths. Without taking into account the
varying segment sizes, D-GED would compare (substitute or
delete/insert) symbols corresponding to segments of different
lengths. To prevent ASTRIDE from losing this information,
we propose the following procedure. Denote by ℓ1, . . . , ℓw
the segment lengths obtained with our adaptive segmentation.
By design, they are the same for all signals in the data set.
Each segment length is divided by the minimum of all segment
lengths and rounded to its nearest integer to obtain the normal-
ized segment lengths ℓ̂1, . . . , ℓ̂w. Then, the symbolic sequences
are modified by replicating the symbol of the first segment

ℓ̂1 times, then the symbol of the second segment ℓ̂2 times,
etc. Finally, the D-GED measure between these replicated
symbolic sequences is computed. As an example, consider
the symbolic sequence from ASTRIDE depicted in Figure 1.
The symbolic sequence without incorporating information
about the segment lengths is 1230. The segment lengths are
(266, 47, 40, 95) before normalization. The smallest segment
has length 40 samples and, as a result, the normalized segment
lengths are (7, 1, 1, 2).

III. EXPERIMENTAL RESULTS

A. Experimental setup

Our method ASTRIDE is compared to SAX, 1d-SAX, and
CSAX. One-Nearest Neighbor (1-NN) classification is used
to compare the quality of both the symbolizations and the
distance measures, as often done in the literature [19]. For
ASTRIDE, the change-points and the quantization bins are
learned on the training set. The adaptive segmentation step
of ASTRIDE is implemented with the ruptures Python
package [17]. The general edit distance in D-GED uses the
weighted-levenshtein Python package1. SAX and 1d-
SAX are implemented in the tslearn Python package [20].
CSAX is implemented from scratch.

Our comparison is limited to classification techniques di-
rectly based on symbolizations since our objective is to
evaluate the relevance of this step itself and not to achieve the
state-of-the-art time series classification. Hence, we exclude
classifiers that are built on top of symbolic representations:
bag-of-words and ensemble-based algorithms. More details on
these techniques can be found in a recent review [19].

SAX, 1d-SAX, CSAX, and ASTRIDE all hold the following
hyperparameters: the word length w and the alphabet size
A. For all methods, we fix A = 9 as done in [4]. For 1d-
SAX, it corresponds to Amean = 3 and Aslope = 3. For
fair comparison between methods, the value of w depends
upon a fixed normalized space complexity, as some methods
have a higher storage cost than others. The normalized space
complexity is defined as the total number of bits to store all the
symbolic sequences in the dataset, divided by the total number
of time series in the dataset times the number of samples in a
time series, for normalization purposes. Table I provides the
normalized space complexities for each method. Note that,
for ASTRIDE, contrary to SAX, 1d-SAX, and CSAX, the
normalized space complexity of a dataset differs from the
space complexity of a single symbolic sequence, because the
change-points are shared across signals and thus memory-
efficient. In our experiments, the normalized space complexity
nsc is chosen in {0.8, 0.9, 1, 1.1, 1.2}, and, with A = 9 being
fixed, this leads to different values of w per method and per
dataset.

The evaluation metric for the classification is the test
accuracy: percentage of correctly classified signals. The larger
the accuracy for a given normalized space complexity and
alphabet size, the better the symbolic representation. We use

1https://github.com/infoscout/weighted-levenshtein

1964



TABLE I
NORMALIZED SPACE COMPLEXITIES FOR EACH SYMBOLIZATION

METHOD, WITH r = 64 BITS THE NUMBER OF BITS TO STORE A REAL
VALUE, N THE TOTAL NUMBER OF TIME SERIES IN THE DATASET, AND n

THE NUMBER OF SAMPLES IN A TIME SERIES.

Method Normalized space complexity

SAX
w⌈log2(A)⌉

n

1d-SAX
w⌈log2(A)⌉

n

CSAX
w(⌈log2(A)⌉+ r)

n

ASTRIDE
w(N⌈log2(A)⌉+ r)

Nn

1234

3.03491d-SAX
2.8605SAX 2.6047 CSAX

1.5000 ASTRIDE

Normalized space complexity: 0.8. Alphabet size: 9.

1234

3.05231d-SAX
2.8895SAX 2.6628 CSAX

1.3953 ASTRIDE

Normalized space complexity: 0.9. Alphabet size: 9.

1234

3.08721d-SAX
2.8488SAX 2.5000 CSAX

1.5640 ASTRIDE

Normalized space complexity: 1.0. Alphabet size: 9.

1234

3.05811d-SAX
2.9709SAX 2.4186 CSAX

1.5523 ASTRIDE

Normalized space complexity: 1.1. Alphabet size: 9.

1234

3.09301d-SAX
2.9186SAX 2.4186 CSAX

1.5698 ASTRIDE

Normalized space complexity: 1.2. Alphabet size: 9.

Fig. 2. Critical difference diagrams showing the pairwise statistical difference
comparison of ASTRIDE and some popular symbolic representations on 86
datasets from the UCR archive.

statistical tests to compare the symbolizations methods. More
precisely, we display critical difference diagrams2 based on
the Wilcoxon-Holm method to compare the test accuracies, as
done in [21] to compare classifiers.

The scope of our comparisons concerns 86 data sets of
the UCR Times Series Classification Archive [7] that have
equal-length univariate signals. A Python implementation of
ASTRIDE can be found in a GitHub repository3 to reproduce
the experiments.

B. Results

a) Comparing the methods: Figure 2 displays the results
of our benchmark through critical difference diagrams that
order classifiers by rank and where thick horizontal lines
group into cliques sets of classifiers that are not significantly
different. For all considered normalized space complexities,
ASTRIDE is the best symbolization on average over the

2https://github.com/hfawaz/cd-diagram
3https://github.com/sylvaincom/symb-rep

2

0

2

SAX

original signal
reconstructed signal

1d-SAX

0 100 200 300 400

2

0

2

CSAX

0 100 200 300 400

ASTRIDE

Fig. 3. Example of symbolization of a single signal from the Beef data set
(UCR archive) of length n = 470 for several methods, with A = 9 and
nsc = 0.8. For CSAX, the scaled complexity estimate values are: 0.005,
0.006, 0.003, 0.010, 0.016, and 0.017. Note that ASTRIDE is fitted on the
whole training set (and not on the displayed signal only).

1234

2.8372A=4
2.4942A=25 2.4593 A=9

2.2093 A=16

Method: ASTRIDE. Normalized space complexity: 1.

Fig. 4. Critical difference diagrams showing the influence of ASTRIDE’s
alphabet size on 86 datasets from the univariate UCR archive, for nsc = 1.

considered datasets. ASTRIDE performs better than SAX, 1d-
SAX, and CSAX on the classification task. This shows that
the proposed adaptive symbolization process, combined with
the D-GED distance measure, is relevant in this classification
context. For nsc ∈ {0.8, 0.9}, SAX, 1d-SAX, and CSAX are
not significantly different as they are grouped into cliques. For
nsc ∈ {1, 1.1, 1.2}, SAX and 1d-SAX, as well as 1d-SAX and
CSAX are not significantly different. The same experiment
was conducted for A ∈ {4, 16, 25} and nsc ∈ {0.8, 0.9, 1} on
the 86 datasets (not shown here for lack of space) and leads
to the same conclusion: ASTRIDE performs better.

An example of a symbolization of a single time series
is given in Figure 3. The plotted symbolization corresponds
to the reconstructed signal: approximating the original time
series from its symbolized version. For SAX and 1d-SAX,
the sample values on each segment of the reconstructed signal
are based on the Gaussian bins, as done in tslearn [20]45.
For CSAX, it corresponds to the same reconstruction as the
one done in SAX (with its corresponding word length), and
we provide the real values of the scaled complexity estimate
per segment separately. For ASTRIDE, it corresponds to the
average of the mean values of the attributed symbols. As can
be seen in Figure 3, CSAX is allowed less segments than SAX,
1d-SAX, and ASTRIDE, due to its additional real-value per
segment. For ASTRIDE, we can see that the segmentation
phase allows us to focus on the phenomenon of interest in the
signal, thus to devote more memory to the encoding of salient
events.

b) Influence of the parameters: For each method, we
look into the influence of the normalized space complexity
nsc (nsc ∈ {0.8, 0.9, 1} with a fixed A = 9), and of the

4https://tslearn.readthedocs.io/en/stable/gen modules/piecewise/tslearn.
piecewise.SymbolicAggregateApproximation.html

5https://tslearn.readthedocs.io/en/stable/gen modules/piecewise/tslearn.
piecewise.OneD SymbolicAggregateApproximation.html

1965



TABLE II
PROCESSING TIMES ON THE SYMBOLIZATION AND 1-NN CLASSIFICATION

ON THE ECG200 DATA SET COMPOSED OF 100 TRAINING SIGNALS AND
100 TEST SIGNALS OF LENGTH n = 96, WITH w = 10 AND A = 9.

Method Symbolization (s) 1-NN classification (s)
SAX 0.02 0.11

1d-SAX 0.41 0.21
CSAX 0.58 0.25

ASTRIDE 0.29 0.17

alphabet size A (A ∈ {4, 9, 16, 25} with a fixed nsc = 1).
For ASTRIDE, the results of the influence of A are plotted on
Figure 4: there is no value of A that strikes out. For A = 9
and nsc ∈ {0.8, 0.9, 1}, the null hypothesis (no difference in
performance) over the entire classifiers (corresponding to each
value of nsc) cannot be rejected. There is no value of A or
nsc that leads to a significantly better performance (among
the studied values), hence ASTRIDE seems to be quite robust
to the value of its parameters. In the following, for SAX, 1d-
SAX, and CSAX, we only report the significant differences.
For SAX and for a fixed nsc = 1: the larger the value of
A, the better the performance. For 1d-SAX and for a fixed
nsc = 1: A = 16 or A = 25 perform better than A = 4 or
A = 9. For CSAX and for a fixed A = 9, nsc = 1 performs
better than nsc = 0.8 or nsc = 0.9.

C. Computational complexity

The processing times of the different methods are compared
on the 1-NN classification task applied to the ECG200 data
set, and are reported in Table II. We ran the experiments using
Python 3.10.6 on a laptop under macOS 13.0.1 with Apple
M1 Chip 8-Core CPU. Two durations are reported: the time
to compute the symbolization for all time series in the data set,
and the time to perform the actual 1-NN classification from the
symbolized time series. As expected, ASTRIDE symbolization
is more time-consuming than the non-adaptive ones (SAX for
example).

IV. CONCLUSION

In this work, we have introduced a new symbolic representa-
tion of time series, ASTRIDE, as well as a novel distance mea-
sure on symbolic sequences, D-GED. Our experiments showed
the quality of our symbolic representations on a classification
task. ASTRIDE could also be employed as an intermediate
step in classifiers such as BOSS [2] that uses SFA in the
symbolization step, and involves overlapping sliding windows
that increase the time and space complexities. ASTRIDE could
also be employed for more advanced data mining tasks, such as
pattern mining or anomaly detection. A multivariate extension,
called dsymb [22], has recently been published by the authors.

REFERENCES

[1] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel
symbolic representation of time series,” Data Mining and Knowledge
Discovery, vol. 15, pp. 107–144, 2007.

[2] P. Schäfer, “The boss is concerned with time series classification in the
presence of noise,” Data Mining and Knowledge Discovery, vol. 29, pp.
1505–1530, 2014.

[3] N. D. Pham, Q. L. Le, and T. K. Dang, “Hot asax: A novel adaptive
symbolic representation for time series discords discovery,” in Asian
Conference on Intelligent Information and Database Systems. Springer,
2010, pp. 113–121.

[4] S. Elsworth and S. Güttel, “Abba: adaptive brownian bridge-based
symbolic aggregation of time series,” Data Mining and Knowledge
Discovery, vol. 34, pp. 1175–1200, 2020.

[5] P. M. Barnaghi, A. A. Bakar, and Z. A. Othman, “Enhanced symbolic
aggregate approximation method for financial time series data repre-
sentation,” in 2012 6th International Conference on New Trends in
Information Science, Service Science and Data Mining (ISSDM2012).
IEEE, 2012, pp. 790–795.

[6] A. Sant’Anna and N. Wickström, “A symbol-based approach to gait
analysis from acceleration signals: Identification and detection of gait
events and a new measure of gait symmetry,” IEEE Transactions on
Information Technology in Biomedicine, vol. 14, no. 5, pp. 1180–1187,
2010.

[7] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, pp. 1293–1305,
2019.

[8] M. Butler and D. Kazakov, “Sax discretization does not guarantee
equiprobable symbols,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 4, pp. 1162–1166, 2015.

[9] S. Malinowski, T. Guyet, R. Quiniou, and R. Tavenard, “1d-sax: A novel
symbolic representation for time series,” in International Symposium on
Intelligent Data Analysis. Springer, 2013, pp. 273–284.

[10] X.-M. T. Le, T. M. Tran, and H. T. Nguyen, “An improvement of sax
representation for time series by using complexity invariance,” Intell.
Data Anal., vol. 24, pp. 625–641, 2020.

[11] B. Hugueney, “Adaptive segmentation-based symbolic representations
of time series for better modeling and lower bounding distance mea-
sures,” in Knowledge Discovery in Databases: PKDD 2006. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 545–552.

[12] L. Djebour, R. Akbarinia, and F. Masseglia, Variable-Size Segmentation
for Time Series Representation. Springer Berlin Heidelberg, 2023, pp.
34–65.

[13] M. M. Muhammad Fuad, “Genetic algorithms-based symbolic aggre-
gate approximation,” in Data Warehousing and Knowledge Discovery,
A. Cuzzocrea and U. Dayal, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 105–116.

[14] P. Schäfer and M. Högqvist, “Sfa: A symbolic fourier approximation and
index for similarity search in high dimensional datasets,” in Proceedings
of the 15th International Conference on Extending Database Technology,
ser. EDBT ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 516–527.

[15] M. Kloska and V. Rozinajova, “Distribution-wise symbolic aggregate
approximation (dwsax),” in Intelligent Data Engineering and Automated
Learning – IDEAL 2020. Cham: Springer International Publishing,
2020, pp. 304–315.

[16] V. R. Matej Kloska, Towards Symbolic Time Series Representation
Improved by Kernel Density Estimators. Springer Berlin Heidelberg,
2021, pp. 25–45.

[17] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, vol. 167, p. 107299, Feb
2020.

[18] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10. Soviet
Union, 1966, pp. 707–710.

[19] M. Middlehurst, P. Schäfer, and A. Bagnall, “Bake off redux: a review
and experimental evaluation of recent time series classification algo-
rithms,” Data Mining and Knowledge Discovery, 2024.

[20] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz,
M. Payne, R. Yurchak, M. Rußwurm, K. Kolar, and E. Woods, “Tslearn,
a machine learning toolkit for time series data,” Journal of Machine
Learning Research, vol. 21, no. 118, pp. 1–6, 2020.

[21] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[22] S. W. Combettes, C. Truong, and L. Oudre, “An interpretable distance
measure for multivariate non-stationary physiological signals,” in 2023
IEEE International Conference on Data Mining Workshops (ICDMW),
2023, pp. 533–539.

1966


