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Abstract—In this work, we propose to utilize a recently
developed covariance matrix interpolation technique in order
to improve noise reduction in multi-microphone setups in the
presence of a moving, localized noise source. Based on the
concept of optimal mass transport, the proposed method induces
matrix interpolants implying smooth spatial displacement of the
noise source, allowing for physically reasonable reconstructions
of the noise source trajectory. As this trajectory is constructed
as to connect two observed, or estimated, covariance matrices,
the proposed method is suggested for offline applications. The
performance of the proposed method is demonstrated using
simulations of a speech enhancement scenario.

Index Terms—Noise reduction, speech enhancement, optimal
mass transport, covariance interpolation

I. INTRODUCTION

The problem of multi-microphone noise reduction finds
many applications in both online and offline audio processing,
such as in speech enhancement for hearing aids and for human-
machine interaction [1], [2]. In multi-microphone setups, a
commonly utilized technique is applying the minimum vari-
ance distortion less response (MVDR) beamformer [3] to the
signal measured by the microphone array [4] in order to allow
for suppressing unwanted interference while at the same time
not distorting the desired signal component, such as a speech
signal. Seen as a spatial filter, the MVDR beamformer requires
a reliable estimate of the noise-only spatial covariance matrix
in order to efficiently suppress any power associated with
the noise source. Commonly, the noise covariance matrix is
estimated using exponentially smoothed outer products of the
measured microphone signals (see, e.g., [5]), thereby adapting
to a possible spatial non-stationarity of the noise covariance,
i.e., changes in the location of the noise. However, in order
to be robust to the problem of self-nulling due to, e.g., array
calibration errors, this technique requires the updating of the
noise covariance estimate to be restricted to time instances
where only noise is present in the measured signal [6]. In
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practice, such periods are detected using so-called voice ac-
tivity detection algorithms [7] or by using the speech presence
probability [8]. The MVDR approach to noise reduction may
thus be summarized as determining spatial filters defined by
covariance matrix estimates obtained during times where only
the noise is present in the signal, and applying these filters
at times where also the desired signal is present. The success
of such a strategy thus relies on the assumption that the noise
covariance matrix during periods where the speech component
is present is equal to the covariance at times when actual
estimates may be formed, i.e., it is assumed that the interferer
does not move during voice activity periods. Violations of
these assumptions may render the MVDR filter ineffective,
as the locations of the nulls of the filter and the location of
the interferer may then not coincide.

In this work, we propose to address this issue by means of
a matrix interpolation strategy using recently developed tools
from optimal mass transport (OMT) [9]. Originally introduced
for modeling the problem of efficiently supplying construction
sites with building material, the topic of OMT has lately gained
interest in the fields of signal processing [10], automatic
control [11], and machine learning [12], [13], with applications
including convex clustering [14], sensor fusion [15], [16],
smooth morphing of speech signals [17], spectral estimation
[18], and graph signal processing [19].

Recently, OMT was used to define a measure of distance
between covariance matrices [20] by relating these matrices
to an underlying spectral domain. In this framework, the
distance between two covariance matrices is defined in terms
of the cost of morphing their spectral representations to each
other. For spatial covariance matrices, this implies that the
matrix distance directly corresponds to the distance between
different source locations. In addition, the OMT framework
presented in [20] provides a way of finding the most probable
path of movement, as well as a way of defining interpolating
covariance matrices.

In this work, we propose to utilize these ideas in order to
improve the MVDR based noise reduction in time intervals in
which the noise covariance matrix cannot be estimated directly
from the data. Specifically, we propose to use two covariance
matrix estimates, one estimated from data measured before
the voice activation period, and one estimated from data
measured after the voice activation period, in order to find
an OMT induced covariance matrix interpolant, defining a
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sequence of matrices connecting the two estimates. Implicitly,
this corresponds to reconstructing the spatial path taken by
the interfering source during the non-observable period. As
the proposed method constitutes a strategy for interpolating
the noise covariance matrix, it is primarily intended for offline
noise reduction applications. We demonstrate the performance
of the proposed method using simulations of a speech enhance-
ment scenario, demonstrating the viability of approach even if
simplified models are used to construct the OMT interpolant.

II. BACKGROUND

A. Speech enhancement

Consider a scenario where p ∈ N microphones measure a
mixture of a desired signal, e.g., speech, and additive noise,
with the objective being to reduce the interference of the noise.
We will herein address the problem in the short-time Fourier
transform (STFT) domain. Specifically, considering frequency
f and time t, let the signal measured by the microphone array
be modeled as

y(f, t) = h(f, t)s(f, t) + n(f, t),

where the signal vector is detailed as

y(f, t) =
[
y1(f, t) y2(f, t) . . . yp(f, t)

]T
. (1)

Here, s(t, f) denotes the desired speech signal, n(f, t) denotes
the additive noise component, and h(f, t) denotes the acoustic
transfer function corresponding to the source. Dropping the
dependence on the frequency f for notational brevity1, let
R(t) denote the spatial noise covariance matrix at time t, i.e.,

R(t) , E
(
n(t)n(t)H

)
,

where E(·) is the expectation operator. A common approach
to performing noise reduction is then to estimate the speech
signal s(t) as ŝ(t) = w(t)Hy(t), where the spatial filter w(t)
is the MVDR beamformer, i.e.,

w(t) = arg min
w

wHR(t)w subject to wHh(t) = 1. (2)

In practice, the noise covariance R(t) is replaced by an esti-
mate R̂(t), commonly obtained using the recursively defined
exponentially smoothed estimator

R̂(t) = (1− η)R̂(t− 1) + ηn(t)n(t)H ,

for some user-specified forgetting factor η ∈ [0, 1]. However,
in order to introduce robustness to the phenomenon of self-
nulling [6], i.e., cancelling of the desired signal, estimates of
R(t) have to be formed from signal samples in (1) wherein
only the noise component is active. Thus, in practice, noise
cancellation at time t, i.e., when the desired signal is present,
relies on the assumption that R(t) = R(t′) for some other
time t′ at which an estimate of R(t′) can be formed from the
measured signal. This assumption may be violated in scenarios
wherein the noise source is moving, potentially leading to

1We will throughout this work treat each frequency f independently. Thus,
we omit the explicit frequency dependence in the considered quantities.

severe performance degradation of the noise suppression due
to the mismatch between the assumed and actual covariances.

In this work, we aim to mitigate such effects by exploiting
the spectral representation of the noise covariance matrix
and utilize recent results on matrix interpolation building
on the concept of optimal mass transport [20]. Specifically,
we will consider improving the performance of the MVDR
beamformer in (2) on a time interval [t0, t1] during which the
speech component is active. Assuming that we have access to
covariance matrix estimates R̂(t0) and R̂(t1), corresponding
to the times just before and just after the speech activity period,
respectively, we will construct interpolating matrices R̂(t), for
t ∈ (t0, t1), using tools from OMT.

B. Spectral Representations

Assume that the space under consideration, i.e., the room
in which the signal is observed, can be considered to be well
described by the spatial domain X ⊂ R3. Then, the spatial
spectrum, Φ ∈ M+(X ), where M+(X ) is the space of non-
negative measures on X , describes the distribution of noise
power on X . Also, there is a function a : X → Cp such that
the noise covariance matrix may be expressed as R = Γ(Φ),
where Γ :M+(X )→ Cp×p is the operator

Γ(Φ) ,
∫
X
a(x)Φ(x)a(x)Hdx, (3)

where dx is the integration measure on X . The function
a is the array manifold vector, encoding the properties of
the acoustic environment. The spectral representation of co-
variance matrices directly explains performance degradations
caused by covariance mismatch: shifts in the distribution
of spectral power, corresponding to movement of the noise
source, implies that the nulls of the spatial filter w are not
placed such that the resulting filter will effectively suppress
the noise. It may be noted that for X = T , [−π/2, π/2) and

a(θ) =
[

1 e−i2π
d sin(θ)
λ . . . e−i2π(p−1)

d sin(θ)
λ

]T
, (4)

we get the far-field, uniform linear array (ULA) scenario in
anechoic environment [21], with d and λ corresponding to the
sensor spacing and signal wavelength, respectively, implying
that the covariance matrix is in the range of the Toeplitz
operator

Γ(Φ) =

∫
T
a(θ)Φ(θ)a(θ)H

dθ

2π
.

We will utilize this close connection between covariance
matrices R and power spectra Φ in order to improve the
estimate of the noise covariance.

C. Optimal Mass Transport and Matrix Interpolation

The Monge-Kantorovich problem of optimal mass transport
is concerned with finding the most cost-efficient way of
morphing one distribution of mass to another [9]. Considering
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two power spectra Φ0,Φ1 ∈ M+(X ), one may define their
distance as the minimum value of [18]

minimize
M∈M+(X 2)

Ψc(M)

subject to
∫
X
M(·, x1)dx1 = Φ0,∫

X
M(x0, ·)dx0 = Φ1,

(5)

where Ψc :M+(X 2)→ R+ is detailed as

Ψc(M) =

∫
X 2

c(x0, x1)M(x0, x1)dx0dx1, (6)

with the cost function c : X 2 → R+ detailing the cost of trans-
porting spectral mass between points of X , and the transport
plan M describes the amount of mass transported between
different points. By relating covariance matrices to spectral
representations, distances between covariance matrices have
recently been defined in terms of transport problems [20].
Specifically, the distance between two covariance matrices
R(0) and R(1) may be defined as the minimum value of

minimize
M∈M+(X 2)

Ψc(M)

subject to Γ

(∫
X
M(·, x1)dx1

)
= R(0),

Γ

(∫
X
M(x0, ·)dx0

)
= R(1).

(7)

This formulation does not only allow for describing distances
between matrices in terms of the geometry of the underlying
space of interest, as reflected in the cost function c, it also
directly provides the means for defining intermediate matrices
R(τ), for τ ∈ (0, 1), in terms of the obtained transport
plan M . As in [20], we herein consider the interpolant
R(τ) = Γ

(
ΦMτ

)
where

ΦMτ (x)=

∫
X 2

δ (x0+τx1− x)M(x0, x0 + x1)dx0dx1, (8)

with δ denoting the Dirac delta, i.e., the mass transported
from x0 to x1 is at interpolation time τ ∈ (0, 1) located at
(1 − τ)x0 + τx1. This interpolant is implied by imposing
minimal assumptions on the structure of change in the spectral
distribution power; in effect, any movement implied by the
transport plan M is considered to be performed along straight
lines. If no prior knowledge of, e.g., movement speed or
acceleration is available, this is a reasonable assumption.

III. PROPOSED METHOD

Recalling, for a time interval [t0, t1] where the speech signal
is present, one wishes to suppress the noise using the MVDR
beamformer in (2), despite not being able to estimate the
noise covariance matrix R(t), for t ∈ [t0, t1], directly from
the data. Without loss of generality, one may normalize the
time axis such that the time interval of interest is indexed by
τ ∈ [0, 1]. Assuming that one is able to form estimates R̂(0)
and R̂(1) corresponding to the times just before and after
speech activation period, we propose to form estimates of the
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Fig. 1. Measurement setup consisting of 4 microphones arranged as a ULA,
a target speech source, and a moving noise source.

unobservable noise covariance matrix R(τ), for τ ∈ (0, 1), as
the OMT induced interpolating matrix. That is, we propose to

1) obtain a transport plan M by solving (7) using R̂(0)
and R̂(1) as data,

2) compute interpolating covariance matrices as
R(τ) = Γ

(
ΦMτ

)
, for τ ∈ (0, 1), with ΦMτ defined

in (8),
3) use the obtained R(τ) to determine the MVDR filter

in (2).
Assuming that the interval [t0, t1] is relatively short, e.g.,
corresponding to a few seconds, we argue that the linear
interpolation on the underlying space X is a reasonable ap-
proximation, as it corresponds to the smoothest displacement
of the noise source, i.e., minimal acceleration. This may
be contrasted with the interpolant induced by the Euclidean
metric, i.e., convex combinations of R̂(0) and R̂(1), that,
instead of modeling displacement, implies fading in and fading
out of the interfering source (see also [20]).

From a practical point of view, it may be noted that due to
imperfections in the assumed model, or even, simplifications of
the model2, reflected in the choice of X and a, the estimated
covariance matrices, as well as the actually true covariance
matrices, may not be in the range of the chosen operator Γ.
Also, in practical implementations of the method, we consider
a discretization of the problem (7), i.e., the transport plan M
and cost function c are represented by matrices M and C,
respectively. In order to efficiently compute the transport plan
M used to define the interpolating covariance matrices, we
propose to augment the objective function Ψc by an entropy
regularization term D(M), defined as

D(M) = ε
N∑

k,`=1

(mk,` log(mk,`)−mk,` + 1)

2One may, for example choose X = T and use a far-field model.

2019 27th European Signal Processing Conference (EUSIPCO)



0 0.2 0.4 0.6 0.8 1
-5

0

5

10

15

20

25
 S

N
R

 (
d

B
)

proposed interpolant

benchmark (first matrix)

benchmark (second matrix)

convex combination

Riemanninan metric

Fig. 2. Increase in SNR throughout the speech segment using different noise
covariance matrix interpolants, with the time index τ being normalized to
τ ∈ [0, 1]. The reverberation time is 0 ms.

where ε > 0 is a regularization parameter, N is the number of
points used in the discretization of X , and where mk,` denotes
the entries of the transport plan matrix M, i.e., mk,` is the
mass transported from discretization point k to discretization
point `. This type of regularization was in [22] proposed
for regularizing problems of the form (5), as it allows for
computationally efficient solvers based on Sinkhorn iterations.

As D(M) introduces some smearing to the solution, the
regularization parameter ε should be chosen small as to not
greatly affect the obtained transport plan M. However, the
numerical precision used in the computations introduces a
lower bound for the choice of ε (see [22] for a discussion
on this). We have recently extended such iterations as to
generalize to inverse problems on the form (7) (see [23] for
details), and we will in the numerical examples herein use
these in order to solve

minimize
M,∆0,∆1

〈M,C〉+D(M) + γ
(
‖∆0‖2F + ‖∆1‖2F

)
subject to Γ

(
MT1

)
= ∆0 + R̂(0), (9)

Γ (M1) = ∆1 + R̂(1),

where γ > 0 is a regularization parameter, 〈·, ·〉 is the matrix
inner product, i.e., the discrete counterpart of (6), and 1 is a
vector of ones of appropriate dimension. This problem is, with
the addition of some additional terms, a direct discretization of
the problem in (7). It may be noted that, in effect, augmenting
the linear constraints by the deviation variables ∆0,∆1, along
with the penalization of their Frobenius norm, amounts to
projecting the estimates R̂(0) and R̂(1) onto the range of Γ,
allowing for model mismatch. The operator Γ should in this
context be interpreted as the discretized counterpart of (3).

IV. NUMERICAL RESULTS

To illustrate the behavior of the proposed method, we
consider the measurement setup illustrated in Figure 1. It
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Fig. 3. Increase in SNR using different noise covariance matrix interpolants
for different reverberation times.

consists of a ULA consisting of p = 4 microphones with
spacing 0.05 meters, placed in a room of dimensions 4.3 ×
6.9 × 2.6 meters. The speech source is placed in the end-
fire direction of the array. The speech source is active during
1.6 seconds, during which the localized noise source moves
with constant speed between the two indicated locations along
the detailed trajectory. The speech source consists of a male
speaker uttering a phrase from the HINT database [24] and
the noise source consists of a babble noise excerpt from [25].
The measured signals are constructed using acoustic impulse
responses computed using the randomized image method [26].
We use the weighted overlap and add method [27] using 256
frequency bins and a sampling frequency of 16 kHz. Denoting
the times just before and just after the voice activity period
by τ = 0 and τ = 1, we estimate the spatial noise covariance
matrix using the sample covariance matrix from the noise-only
signal samples, thus obtaining two estimates R̂(0) and R̂(1)
per temporal frequency. We then construct matrix interpolants
R̂(τ), for τ ∈ (0, 1), using the proposed method, where we
for simplicity utilize a far-field model for the operator Γ, i.e.,
X = T, and use the cost function c(θ, ϕ) =

∣∣eiθ − eiϕ∣∣2
for θ, ϕ ∈ T. When solving (9), the spatial domain was
discretized into a uniform grid of N = 250 grid points, and the
parameters ε = 10−3 and γ = 100/p2 were used. The obtained
interpolants R̂(τ) are then used in (2) to obtain an MVDR
filter used to suppress the noise. The array steering vector used
in the MVDR constraint corresponds to the simplified far-field
model in (4). Figure 2 presents the resulting increase in signal-
to-noise ratio (SNR) between the measured and filtered signals
corresponding to the right-most microphone throughout the
interpolation period for a non-reverberant scenario. Here, the
increase in SNR in dB, at time τ , is defined as

∆SNR(τ) = 10 log10

σ̃2
s (τ)

σ̃2
n (τ)

− 10 log10

σ2
s (τ)

σ2
n (τ)
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where σ̃2
s and σ̃2

n are the powers of the filtered speech and
noise components, and σ2

s and σ2
n are the powers of the

measured speech and noise components.
As comparison, we include results obtained using fixed

interpolants, i.e., interpolants identical to either R̂(0) or
R̂(1), as well as their (time-varying) convex combination
(1 − τ)R̂(0) + τR̂(1). Also included is the time-varying
interpolant induced by the intrinsic Riemannian metric on the
cone of positive definite matrices [28]. As can be seen, the
performance of the comparison interpolants vary significantly
throughout the considered period due to the movement of the
noise source. It may be noted that the output SNR of the
fixed interpolants R̂(0) and R̂(1) are strictly decreasing and
increasing, respectively. In contrast, the proposed method is
able to achieve a more consistent output SNR due to its ability
to model spatial displacement of spectral power, even though
a simplified model is considered here.

Considering the effect of increasing the deviation from
the assumed model, Figure 3 presents the output SNR for
different levels of reverberation. Here, the presented SNR
is computed using the complete speech segment, excluding
the beginning and the end of the speech segment, as to
focus on intervals where interpolation is required. As may be
noted, the performance of all considered interpolants decrease
rapidly as the reverberation time increases. Interestingly, the
performance of the fixed interpolant R̂(0) actually increases,
likely due to the smearing of the spatial spectrum induced
by the reverberation. It may also be noted that the proposed
method performs better than the comparison interpolants for
moderate levels of reverberation, even though the presence of
any form of reverberation is not taken into consideration in the
utilized model. Audio samples from these simulations may be
heard at [29]. V. CONCLUSION

In this work, we have proposed to utilize a matrix interpola-
tion technique based on the concept of optimal mass transport
in order to improve the performance of the MVDR beam-
former in offline multi-microphone noise reduction, specif-
ically addressing scenarios featuring moving interferers. In
time intervals where the noise covariance matrix cannot be
estimated directly from the microphone measurements, the
proposed method uses two end point matrix estimates in order
to reconstruct the spatial path taken by the interfering source
during the non-observable period. Using realistic simulations,
the proposed method has been shown to yield improved
performance, even when using simplified signal models in the
construction of the OMT interpolant.
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