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Abstract—Advances in data-driven signal processing have re-
sulted in impressively accurate signal and parameter estimation
algorithms in many applications. A common element in such
algorithms is the replacement of hand-crafted features extracted
from the signals, by data-driven representations. In this paper, we
discuss low-dimensional representations obtained using spectral
methods and their application to binaural sound localization.
Our work builds upon recent studies on the low-dimensionality
of the binaural cues manifold, which postulate that for a given
acoustic environment and microphone setup, the source locations
are the primary factors of variability in the measured signals.
We provide a study of selected linear and non-linear spectral
dimensionality reduction methods and their ability to accurately
preserve neighborhoods, as defined by the source locations. The
low-dimensional representations are then evaluated in a nearest-
neighbor regression framework for localization using a dataset
of dummy head recordings.

Index Terms—binaural source localization, dimensionality re-
duction, manifold learning

I. INTRODUCTION

Binaural sound localization consists of estimating the loca-
tion of a source, using signals captured by microphones at the
ear canal entrance of the human auditory system. Although al-
gorithms for hearing aids and humanoid robots are the leading
applications, the concepts are equally relevant for localization
with arbitrary two-microphone configurations as well [1], [2].
Typically binaural localization starts by extracting spatial cues,
such as interaural level, phase, and time differences [2]–[5],
with the objective to map these cues to the source Direction-
of-Arrival (DOA) that consist of azimuth and/or elevation.
Researchers have argued that a data-driven approach is crucial
to accurately model the complex relationship between source
locations and interaural cues in reverberant environments.
Several algorithms based on parametric statistical models,
typically Gaussian mixtures, were developed in this line of
research [2], [3], [5].

In recent literature, the intrinsic geometric structure of
binaural signals was exploited to design different data-driven
localization algorithms [1], [6], [7]. The common paradigm is

This research work was carried out at the ESAT Laboratory of KU Leuven,
in the frame of a Postdoctoral Research Fellowship of the Research Foundation
Flanders - FWO-Vlaanderen (no. 12X6719N) and KU Leuven Internal Funds
C2-16-00449 and VES/19/004. The research leading to these results has
received funding from the European Research Council under the European
Union’s Horizon 2020 research and innovation program / ERC Consolidator
Grant: SONORA (no. 773268). This paper reflects only the authors’ views
and the Union is not liable for any use that may be made of the contained
information.

that for a given environment and microphone setup, the source
DOA is the primary factor of variability in the binaural signals.
As a result, high-dimensional feature vectors constructed from
binaural cues are bound to lie near a low-dimensional manifold
embedded in the feature space. An ensuing implication is that
localization algorithms can be more effective in a suitable
low-dimensional domain consistent with the manifold geom-
etry. Note that dimensionality reduction, manifold learning,
and representation learning are synonymous in this context.
Acoustic source localization approaches that benefit from such
geometric insights range from parametric and probabilistic [4],
[6], to non-parametric and deterministic [1].

In this paper, we conduct a study of selected spectral
methods for dimensionality reduction and their applicability
to binaural source localization. The resulting low-dimensional
representations, referred to as spectral embeddings, are ob-
tained from the eigenvectors of certain symmetric matrices
derived from the data [8]. Typical spectral methods include
Principal Component Analysis (PCA), Laplacian Eigenmaps
(LEM) [9], and diffusion maps [10]. The latter were studied
in [1], [7] for source localization with simulated recordings,
providing some encouraging results. In this work, we discuss
several linear and non-linear spectral methods, emphasizing
the importance of non-linearities for accurate localization.
Our discussion is supported by experiments with the CAMIL
dataset of real dummy head recordings [4], [6]. The paper
is organized as follows: in Section II we formalize the non-
parametric, supervised binaural source localization problem.
In Section III, we discuss the selected spectral embeddings,
and in Section IV we present our experimental results.

II. SUPERVISED BINAURAL SOURCE LOCALIZATION

Let sl(τ) and sr(τ) denote short-duration signals captured
at the left and right microphones in a reverberant environment,
during activity of an acoustic source with arbitrary frequency
content. The goal is to estimate the position tuple r = (θ, φ)
of azimuth and elevation with respect to the microphones. For
this study, we assume that a single source is active at a time,
and impose no assumptions on the level of background noise.

A. Binaural data model

The first step in the source localization pipeline is trans-
forming time-domain signals sl(τ) and sr(τ) to a suitable
feature vector that preserves the relevant spatial cues. This
is generally achieved using time-frequency (TF) transforms
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Fig. 1: The supervised source localization pipeline: binaural feature extraction, low-dimensional embedding, and nearest-neighbor regression.

with an appropriate resolution [1], [3], [5], [6]. We consider
the Short-time Fourier Transform (STFT) with a length of
512 samples and 50% overlap, at 8 kHz sampling rate. Let
Sl(t, k) and Sr(t, k) denote the STFT coefficients of the
microphone signals, for a given TF bin (t, k). The relevant
spatial cues, namely, the Interaural Level Difference (ILD) αtk
and Interaural Phase Difference (IPD) φtk are computed as

αtk = 20 log10

|Sl(t, k)|
|Sr(t, k)| , φtk = ∠

Sl(t, k)

Sr(t, k)
. (1)

Assuming that a single source is active, we compute the time-
averaged ILDs and IPDs across T frames, as done in [4]

ak =
1

T

T∑

t=1

αtk, pk =
1

T

T∑

t=1

exp(jφtk). (2)

A feature vector x ∈ RD is obtained by concatenating the
ILDs, and the real and imaginary parts of the IPDs in selected
frequency ranges [k1, k2] and [k3, k4], as follows

x = [ak1 , . . . ak2 , R{pk3}, I{pk3}, . . . ,R{pk4}, I{pk4}]T.
(3)

While IPDs carry reliable location cues at frequencies below
2 kHz [11], ILDs have been shown to contribute to localization
accuracy at both low and high frequencies [4]. Therefore,
we choose the frequency ranges accordingly: 100 - 2000 Hz
for IPDs, and 100 - 3800 Hz for ILDs, resulting in a 481-
dimensional feature vector x.

B. Non-parametric supervised localization

The framework in our study consists of two stages: an
unsupervised training stage for learning a low-dimensional
representation of x, and a supervised regression stage for
localization. Given a labeled training set of N samples,
T = {(xi, ri)}Ni=1, the two stages are defined as follows:
i) Training: Use the samples {xi}Ni=1 to learn an embedding
map Ψ : RD → Rd, with d << D, such that to each xi ∈ RD,
a new representation zi = Ψ(xi), zi ∈ Rd is assigned. The
criteria for a suitable map Ψ shall become clear shortly.
ii) Localization: Given a new observation x, find its represen-
tation z = Ψ(x) using the map learned in the training stage.
The sound source is then localized by a Nearest-Neighbor

(NN) regression in Rd using the training set labels {ri}Ni=1

as follows

r̂ =
N∑

i=1

wi ri, with wi =
‖z − zi‖−1

∑N
j=1 ‖z − zj‖−1

. (4)

It is clear from (4) that the map Ψ should preserve neighbor-
hoods as defined by the source locations, while being insensi-
tive to variations caused by noise, reverberation, and spectral
content. We note that the choice of regression weights in (4) is
not critical: although our weights are inverse-proportional to
the distance, exponentially decaying weights as in [1], would
not change the conclusions of our study. The complete signal
processing pipeline of this section is illustrated in Figure 1.

III. SPECTRAL EMBEDDINGS UNDER STUDY

Given the standard supervised framework in Section II, our
objective is to investigate the ability of different spectral meth-
ods to provide a low-dimensional embedding map Ψ with the
aforementioned properties. Spectral methods provide Ψ using
the eigenvectors of suitable symmetric matrices constructed
from the data [8]. We consider PCA and Locality-Preserving
Projection (LPP) as representatives from the linear methods,
and Laplacian Eigenmaps (LEM), as a non-linear method.

A. Principal components analysis

Classical PCA learns a linear map Ψ using the eigenvectors
of the sample covariance matrix of the data [12]. Assuming
that the feature vectors in the training set are zero-mean, the
covariance matrix is given by

C =
1

N

N∑

i=1

xix
T
i , C ∈ RD×D. (5)

Let {vi}di=1 denote the d largest eigenvectors of C. The d-
dimensional PCA embedding is given by

zi = Ψpca(xi) = AT
pca xi, Apca = [v1,v2, . . . ,vd]. (6)

Given a new feature vector x outside of the training set, its
embedding z is easily obtained by z = AT

pca x.
As the relationship between source locations and binaural

feature vectors is typically non-linear, PCA is not well-suited
for learning efficient low-dimensional representations of the
latter. To better illustrate the relationship of PCA to the spectral
methods discussed in the following sections, we note that
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PCA leads to the same embedding as metric multidimensional
scaling. As such, it provides an embedding that optimally
preserves Euclidean distances within the training set [8], [13].

B. Laplacian eigenmaps and diffusion maps
LEM, proposed in [14], belongs to the class of non-linear

spectral approaches. In contrast to PCA, where the objective
is to optimally preserve Euclidean distances, LEM seeks to
preserve similarities as measured by a positive semi-definite,
exponentially-decaying kernel function k : RD ×RD → R. A
theoretically motivated choice for a kernel function k [14] is
the isotropic Gaussian kernel, given by

kε(xi,xj) = exp

(
−‖xi − xj‖

2

ε

)
, (7)

where ε is the kernel bandwidth. The choice of ε is data-
dependent and can be crucial in determining the neighborhood-
preserving properties of the embedding.

The kernel gives rise to an N ×N matrix K with entries
K[i, j] = k(xi,xj). Let D denote a diagonal matrix with
entriesD[i, i] =

∑N
j=1K[i, j], and let L = D−K (this is the

graph Laplacian, well-known in spectral graph theory [15]). If
Z ∈ RN×d denotes the matrix with rows{zTi }Ni=1, LEM em-
beddings are obtained by minimizing the following cost [14]

J (Z) =
∑

i,j

‖zi − zj‖2K[i, j] = trace{ZT LZ}. (8)

The locality-preserving property is clear from (8): points xi
and xj with large similarity K[i, j] must be mapped to nearby
points zi and zj . To avoid arbitrary scaling, Z is obtained by
including a constraint in the optimization problem as follows

arg min
Z

trace{ZT LZ}, subject to ZTDZ = I. (9)

The columns of the optimal Z are given by the d smallest
eigenvectors of the generalized eigenvalue problem

Lψ = λDψ. (10)

If {ψi}Ni=1 denote the eigenvectors, with eigenvalues 0 =
λ1 < λ2 ≤ . . . ,≤ λN , the d-dimensional LEM is given by the
smallest eigenvectors (excluding ψ1 which is constant) [14]

zi = Ψ(xi) = [ψ2[i], ψ3[i], . . . , ψd+1[i]]
T
. (11)

It is straightforward from (10) that the embedding can
instead be obtained from the largest eigenvectors of D−1K.
In fact, this approach is preferred when implementing LEM
with iterative eigenvector solvers [16], and is also used in the
related diffusion maps algorithm [10]. Therefore we solve for
the eigenvectors of D−1K in our experiments as well.

A crucial difference between PCA, and non-linear spectral
methods lies in the extension of the embedding to points
outside of the training set. To extend LEM without solving
a new eigenvalue problem, the embedding z of a new feature
vector x is obtained as a linear combination of the embeddings
{zi}Ni=1 from the training set [17]

z = Ψ(x) =
N∑

i=1

kε(x,xi)∑N
j=1 kε(x,xj)

zi. (12)

C. Locality-preserving projection

Linear embeddings can also be constructed with a
neighborhood-preserving property. This notion is used in
Locality-Preserving Projection (LPP), by minimizing a cost
function similar to (8), while constraining zi to be a linear
transformation of xi [18]. The LPP map is obtained using
the eigenvectors of the following problem [18] (notice the
similarity to the LEM problem in (10))

XLXTψ = λXDXTψ. (13)

The smallest eigenvectors {ψi}di=1 are the columns of LPP
map Alpp and the d-dimensional embedding is given by

zi = Ψlpp(xi) = AT
lpp xi, Alpp = [ψ1,ψ2, . . . ,ψd]. (14)

LPP is attractive due to its linearity, allowing for easy exten-
sion to new samples, and its neighborhood-preserving property
inherited by the LEM-like cost function.

IV. EXPERIMENTAL ANALYSIS

To evaluate the spectral embeddings, we used the CAMIL
dataset [4] of binaural recordings made with a dummy head,
mounted onto a turntable system in a reverberant room. The
source location is fixed at 2.7 m distance from the dummy
head, and signals are recorded for 10.800 pan-tilt states of the
dummy head, corresponding to source azimuth in the range
[−180◦, 180◦], and elevation in the range [−60◦, 60◦], with 2◦

resolution. To provide meaningful results, realistic mismatch
between training and test sets must be ensured, including
differences due to source spectral content, random noise, and
source location. Therefore, we used white noise recordings
(1 s per recording) for training and speech utterances from the
TIMIT database (1-5 s per recording) for testing. In addition,
white noise was added to the speech signals (Signal-to-Noise
Ratio (SNR) specified in the experiments below). Training was
done with only 50% of the pan-tilt states, which amounts to
sampling of the azimuth-elevation space with 4◦ resolution. In
this manner, we ensure that the test set contains DOAs that
are not encountered during training.

In all experiments, we used a kernel bandwidth of ε = 0.1.
Note that the choice of bandwidth is an interesting research
question by itself, and is often influenced by the sampling
distribution of data in the training set.

A. Experiment 1: Neighborhood analysis

In this experiment, we evaluate the ability of PCA, LPP,
and LEM to preserve neighborhoods in terms of the source
location, as a function of the number of neighbors. White noise
with SNR of 10 dB was added to the test signals. Given a low-
dimensional embedding Ψ, the experiment consists of
i) For each test point x and its embedding z = Ψ(x), compute
the Euclidean distances ‖z−zi‖, from training points zi ∈ T .
Find the M nearest neighbors as defined by these distances.
ii) If θ and φ are the azimuth and elevation of the test point,
consider the azimuths θ1, . . . , θM and elevations φ1, . . . , φM
of the neighbors. Compute the mean absolute differences

2019 27th European Signal Processing Conference (EUSIPCO)



1 10 20 30 40 50
Number of neighbors

0

10

20

30

40
A

n
gl

e
[d

eg
.]

Azimuth neighborhood

1 10 20 30 40 50
Number of neighbors

0

10

20

30

40

A
n

gl
e

[d
eg

.]

Elevation neighborhood

PCA

LPP

LEM

mean
(train)

mean
(test)

std.
(test)

PCA

LPP

LEM

mean
(train)

mean
(test)

std.
(test)

Fig. 2: Results from Experiment 1: average distance within neighborhoods for the different spectral embeddings.
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Fig. 3: True locations of sources in the training/test set plotted versus the locations of their respective nearest neighbor in the training set.

∆θ,x =
∑M
i=1 M

−1|θ− θi| and ∆φ,x =
∑M
i=1 M

−1|φ− φi|.
iii) Finally, compute the mean and the standard deviation of
∆θ,x and ∆φ,x across the 10800 samples x from the test set.

The procedure is applied to Ψpca, Ψlpp, and Ψlem, for
M ∈ [1, 50], and the results for 4-dimensional maps are
shown in Figure 2, (we observed similar trends for all tested
d ∈ [2, 20]). The superior neighborhood preservation of LEM
over the linear methods is demonstrated for both azimuth and
elevation. Notably, LEM exhibits similar behavior on the test
set as on the training set. Moreover, the standard deviation
similar to the sample mean indicates absence of outliers and
consistent behavior independent of the source location. None
of these desirable properties are observed for the linear meth-
ods. We note however that LPP provides smaller neighborhood
variance than PCA, as expected from its cost function. A
qualitative illustration of the neighborhoods is provided by
the scatter plots in Figure 3. Each point corresponds to one

sample from the training or test set, with the true source angle
in the x-axis, and the angle of its first nearest neighbor from
the training set in the y-axis. These plots provide the useful
insight that performance deteriorates for broadside azimuth
and large (positive or negative) elevation angles.

B. Experiment 2: Localization accuracy

In this experiment, PCA, LPP, and LEM with dimensional-
ity of 2, 3, 4, 5, and 20, were employed for supervised source
localization using the framework described in Section II. Each
of the 10800 speech samples in the test set was localized for
SNR of 10 dB and 0 dB. To capture the error variability across
the dataset, we illustrate the results using box-plots in Figure 4.
Although PCA and LPP approach the performance of LEM
as the dimensionality increases beyond 20, the advantage of
LEM over the linear methods is remarkable. In particular, 2-
dimensional LEM result in a median azimuth error of 4.6◦
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Fig. 4: Localization accuracy of the spectral embeddings for different dimensionality. The figure illustrates median error (thick line), the first
and third quartiles (boxes), and the interquartile ranges (whiskers).

and 4.2◦, and median elevation error of 3.1◦ and 1.8◦, for
the different SNRs. The same error figures for PCA and
LPP exceed 50◦ for azimuth, and 40◦ for elevation. The
ability to recover source locations with 2-dimensional spectral
embeddings has been suggested in previous research [1], [6].
Our experiments support this finding for LEM as well, while
indicating that localization accuracy can be further improved
by increasing the dimensionality. In particular, the accuracy
for near end-fire azimuth, and large elevation could benefit
from a larger dimensionality. The results demonstrate a clear
relationship between the neighborhood-preserving properties
of an embedding and its robustness to noise. Besides the
remarkable noise robustness of LEM, we note that while
PCA outperforms LPP at moderate SNR, the neighborhood-
preserving properties of LPP make the latter more accurate
than PCA at low SNRs.

V. CONCLUSIONS

In this paper, we studied spectral embeddings in the context
of supervised binaural source localization. We showed that
although linear methods can be applied for embedding with
sufficiently high dimensionality, they are unable to capture the
mapping from binaural cues to source locations with only a
few coordinates. Non-linearity and neighborhood-preservation
emerged as two key prerequisites if low-dimensionality, accu-
racy, and robustness to noise are desired. Starting from these
insights, the applicability of spectral embeddings needs to be
investigated in time-varying acoustic conditions. In particular,
the challenging problem is to find a robust embedding which
remains consistent with the source DOA, even when the
acoustic channels in the test set are significantly different from
those in the training set.
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