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Context
Baseline scenario: x1, . . . , xn ∈ Rp (or Cp) i.i.d. with E[x1] = 0, E[x1xT

1 ] = Cp:

I If x1 ∼ N (0, Cp), ML estimator for Cp is the sample covariance matrix (SCM)

Ĉp =
1
n

n∑
i=1

xix
T
i .

I If n→∞, then, strong law of large numbers

Ĉp
a.s.−→ Cp.

or equivalently, in spectral norm∥∥Ĉp − Cp∥∥ a.s.−→ 0.

Random Matrix Regime
I No longer valid if p, n→∞ with p/n→ c ∈ (0,∞),∥∥Ĉp − Cp∥∥ 6→ 0.

I For practical p, n with p ' n, leads to dramatically wrong conclusions
I Even for n = 100× p.
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The Large Dimensional Fallacies

Setting: xi ∈ Rp i.i.d., x1 ∼ CN (0, Ip)

I assume p = p(n) such that p/n→ c > 1
I then, joint point-wise convergence

max
1≤i,j≤p

∣∣∣[Ĉp − Ip]
ij

∣∣∣ = max
1≤i,j≤p

∣∣∣ 1
n
Xj,·X

T
i,· − δij

∣∣∣ a.s.−→ 0.

I however, eigenvalue mismatch

0 = λ1(Ĉp) = . . . = λp−n(Ĉp) ≤ λp−n+1(Ĉp) ≤ . . . ≤ λp(Ĉp)

1 = λ1(Ip) = . . . = λp−n(Ip) = λp−n+1(Ĉp) = . . . = λp(Ip)

⇒ no convergence in spectral norm.
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The Marc̆enko–Pastur law
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Figure: Histogram of the eigenvalues of Ĉp for c = 1/4, Cp = Ip.
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The Marc̆enko–Pastur law

Definition (Empirical Spectral Distribution)
Empirical spectral distribution (e.s.d.) µp of Hermitian matrix Ap ∈ Rp×p is

µp =
1
p

p∑
i=1

δλi(Ap).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpXT

p satisfies

µp
a.s.−→ µ(c)

in distribution (i.e.,
∫
f(t)µp(dt) a.s.−→

∫
f(t)µ(c)(dt) for all bounded continuous f),

where
I µc({0}) = max{0, 1− c−1}
I on (0,∞), µ(c) has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).

8 / 151



Basics of Random Matrix Theory (Romain COUILLET)/Motivation: Large Sample Covariance Matrices 8/151

The Marc̆enko–Pastur law

Definition (Empirical Spectral Distribution)
Empirical spectral distribution (e.s.d.) µp of Hermitian matrix Ap ∈ Rp×p is

µp =
1
p

p∑
i=1

δλi(Ap).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpXT

p satisfies

µp
a.s.−→ µ(c)

in distribution (i.e.,
∫
f(t)µp(dt) a.s.−→

∫
f(t)µ(c)(dt) for all bounded continuous f),

where
I µc({0}) = max{0, 1− c−1}

I on (0,∞), µ(c) has continuous density fc supported on [(1−
√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).

8 / 151



Basics of Random Matrix Theory (Romain COUILLET)/Motivation: Large Sample Covariance Matrices 8/151

The Marc̆enko–Pastur law

Definition (Empirical Spectral Distribution)
Empirical spectral distribution (e.s.d.) µp of Hermitian matrix Ap ∈ Rp×p is

µp =
1
p

p∑
i=1

δλi(Ap).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpXT

p satisfies

µp
a.s.−→ µ(c)

in distribution (i.e.,
∫
f(t)µp(dt) a.s.−→

∫
f(t)µ(c)(dt) for all bounded continuous f),

where
I µc({0}) = max{0, 1− c−1}
I on (0,∞), µ(c) has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).

8 / 151



Basics of Random Matrix Theory (Romain COUILLET)/Motivation: Large Sample Covariance Matrices 9/151

The Marc̆enko–Pastur law

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

x

D
en

sit
y
f
c
(x

)

c = 0.1
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The Stieltjes transform

Definition (Stieltjes Transform)
For µ real probability measure of support supp(µ), Stieltjes transform mµ defined, for
z ∈ C \ supp(µ), as

mµ(z) =
∫

1
t− z

µ(dt).

Property (Inverse Stieltjes Transform)
For a < b continuity points of µ,

µ([a, b]) = lim
ε↓0

1
π

∫ b

a

=[mµ(x+ ıε)]dx

Besides, if µ has a density f at x,

f(x) = lim
ε↓0

1
π
=[mµ(x+ ıε)].

11 / 151



Basics of Random Matrix Theory (Romain COUILLET)/The Stieltjes Transform Method 11/151

The Stieltjes transform

Definition (Stieltjes Transform)
For µ real probability measure of support supp(µ), Stieltjes transform mµ defined, for
z ∈ C \ supp(µ), as

mµ(z) =
∫

1
t− z

µ(dt).

Property (Inverse Stieltjes Transform)
For a < b continuity points of µ,

µ([a, b]) = lim
ε↓0

1
π

∫ b

a

=[mµ(x+ ıε)]dx

Besides, if µ has a density f at x,

f(x) = lim
ε↓0

1
π
=[mµ(x+ ıε)].

11 / 151



Basics of Random Matrix Theory (Romain COUILLET)/The Stieltjes Transform Method 11/151

The Stieltjes transform

Definition (Stieltjes Transform)
For µ real probability measure of support supp(µ), Stieltjes transform mµ defined, for
z ∈ C \ supp(µ), as

mµ(z) =
∫

1
t− z

µ(dt).

Property (Inverse Stieltjes Transform)
For a < b continuity points of µ,

µ([a, b]) = lim
ε↓0

1
π

∫ b

a

=[mµ(x+ ıε)]dx

Besides, if µ has a density f at x,

f(x) = lim
ε↓0

1
π
=[mµ(x+ ıε)].

11 / 151



Basics of Random Matrix Theory (Romain COUILLET)/The Stieltjes Transform Method 12/151

The Stieltjes transform

Property (Relation to e.s.d.)
If µ e.s.d. of Hermitian A ∈ Rp×p, (i.e., µ = 1

p

∑p

i=1 δλi(A))

mµ(z) =
1
p

tr (A− zIp)−1

Proof:

mµ(z) =
∫

µ(dt)
t− z

=
1
p

p∑
i=1

1
λi(A)− z

=
1
p

tr (diag{λi(A)} − zIp)−1

=
1
p

tr (A− zIp)−1 .

Fundamental object: the resolvent of A

QA(z) ≡ (A− zIp)−1.
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The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X ∈ Cp×n, and
I µ e.s.d. of XXT

I µ̃ e.s.d. of XTX

Then

mµ(z) =
n

p
mµ̃(z)−

p− n
p

1
z
.

Proof:

mµ(z) =
1
p

p∑
i=1

1
λi(XXT)− z

=
1
p

n∑
i=1

1
λi(XTX)− z

+
1
p

(p− n)
1

0− z
.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A,B ∈ Rp×p invertible,

A−1 −B−1 = A−1(B −A)B−1.

Proof: Simply left-multiply by A and right-multiply by B on both sides.

Corollary
For t ∈ C, x ∈ Rp, A ∈ Rp×p, with A and A+ txxT invertible,

(A+ txxT)−1x =
A−1x

1 + txTA−1x
.

Proof Intuition: Left-multiply by (A+ tccT) on both sides.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For A,B ∈ Rp×p Hermitian nonnegative definite, e.s.d. µ of A, t > 0, x ∈ Rp,
z ∈ C \ supp(µ),∣∣∣1

p
trB
(
A+ txxT − zIp

)−1
−

1
p

trB (A− zIp)−1
∣∣∣ ≤ 1

p

‖B‖
dist(z, supp(µ))

In particular, as p→∞, if lim supp ‖B‖ <∞,

1
p

trB
(
A+ txxT − zIp

)−1
−

1
p

trB (A− zIp)−1 → 0.

Proof Intuition: Based on Weyl’s interlacing identity (eigenvalues of A and A+ txxT

are interlaced).
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For
I x ∈ Rp with i.i.d. entries with zero mean, unit variance, finite 2k order moment,
I A ∈ Rp×p deterministic (or independent of x),

then

E

[∣∣∣1
p
xTAx−

1
p

trA
∣∣∣k] ≤ K ‖A‖p

pk/2
.

In particular, if lim supp ‖A‖ <∞, and x has entries with finite eighth-order moment,

1
p
xTAx−

1
p

trA a.s.−→ 0

(by Markov inequality and Borel Cantelli lemma).
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Proof of the Marc̆enko–Pastur law

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpXT

p satisfies

µp
a.s.−→ µ(c)

weakly, where
I µ(c)({0}) = max{0, 1− c−1}

I on (0,∞), µ(c) has continuous density fc supported on [(1−
√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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Proof of the Marc̆enko–Pastur law

Stieltjes transform approach.

Proof
I With µp e.s.d. of 1

n
XpXT

p ,

mµp (z) =
1
p

tr
( 1
n
XpX

T
p − zIp

)−1
=

1
p

p∑
i=1

[( 1
n
XpX

T
p − zIp

)−1
]
ii

.

I Write

Xp =
[
yT

Yp−1

]
∈ Rp×n

so that, for =[z] > 0,( 1
n
XpX

T
p − zIp

)−1
=
(

1
n
yTy − z 1

n
yTYp−1

1
n
Yp−1y

1
n
Yp−1Y T

p−1 − zIp−1

)−1

.
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Proof of the Marc̆enko–Pastur law

Proof (continued)
I From block matrix inverse formula(

A B
C D

)−1
=
(

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(A−BD−1C)−1CA−1 (D − CA−1B)−1

)
we have[( 1

n
XpX

T
p − zIp

)−1
]

11

=
1

−z − z 1
n
yT( 1

n
Y T
p−1Yp−1 − zIn)−1y

.

I By Trace Lemma, as p, n→∞[( 1
n
XpX

T
p − zIp

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
Y T
p−1Yp−1 − zIn)−1

a.s.−→ 0.
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Proof of the Marc̆enko–Pastur law

Proof (continued)
I By Rank-1 Perturbation Lemma (XT

pXp = Y T
p−1Yp−1 + yyT), as p, n→∞[( 1

n
XpX

T
p − zIp

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
XT
pXp − zIn)−1

a.s.−→ 0.

I Since 1
n

tr ( 1
n
XT
pXp − zIn)−1 = 1

n
tr ( 1

n
XpXT

p − zIp)−1 − n−p
n

1
z

,[( 1
n
XpX

T
p − zIp

)−1
]

11

−
1

1− p
n
− z − z 1

n
tr ( 1

n
XpXT

p − zIp)−1
a.s.−→ 0.

I Repeating for entries (2, 2), . . . , (p, p), and averaging, we get (for =[z] > 0)

mµp (z)−
1

1− p
n
− z − z p

n
mµp (z)

a.s.−→ 0.
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Proof of the Marc̆enko–Pastur law

Proof (continued)
I Then mµp (z) a.s.−→ m(z) solution to

m(z) =
1

1− c− z − czm(z)

i.e., (with branch of
√
f(z) such that m(z)→ 0 as |z| → ∞)

m(z) =
1− c
2cz

−
1
2c

+

√(
z − (1 +

√
c)2
) (
z − (1−

√
c)2
)

2cz
.

I Finally, by inverse Stieltjes Transform, for x > 0,

lim
ε↓0

1
π
=[m(x+ ıε)] =

√(
(1 +

√
c)2 − x

) (
x− (1−

√
c)2
)

2πcx
1{x∈[(1−

√
c)2,(1+

√
c)2]}.

And for x = 0,

lim
ε↓0

ıε=[m(ıε)] =
(
1− c−1

)
1{c>1}.
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai’95])
Let Yp = C

1
2
p Xp ∈ Rp×n, with

I Cp ∈ Cp×p nonnegative definite with e.s.d. νp → ν weakly,
I Xp ∈ Cp×n has i.i.d. entries of zero mean and unit variance.

As p, n→∞, p/n→ c ∈ (0,∞), µ̃p e.s.d. of 1
n
Y T
p Yp ∈ Rn×n satisfies

µ̃p
a.s.−→ µ̃

weakly, with mµ̃(z), =[z] > 0, unique solution with =[mµ̃(z)] > 0 of

mµ̃(z) =
(
−z + c

∫
t

1 + tmµ̃(z)
ν(dt)

)−1

.

Moreover, µ̃ is continuous on R+ and real analytic wherever positive.

Immediate corollary: For µp e.s.d. of 1
n
YpY T

p = 1
n

∑n

i=1 C
1
2
p xix

T
i C

1
2
p ,

µp
a.s.−→ µ

weakly, with µ̃ = cµ+ (1− c)δ0.
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Sample Covariance Matrices

1 3 7
0

0.2

0.4

0.6

(i)

e.s.d.

f

1 3 4
0

0.2

0.4

0.6

(ii)

e.s.d.

f

Figure: Histogram of the eigenvalues of 1
nYpY

T
p , n = 3000, p = 300, with Cp diagonal with

evenly weighted masses in (i) 1, 3, 7, (ii) 1, 3, 4.
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Further Models and Deterministic Equivalents

Sometimes, µp does not converge!

I if νp does not converge
I if p/n does not converge
I if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence µ̄p of deterministic measures, with

µp − µ̄p
a.s.−→ 0

or equivalently, deterministic sequence of mp with

mµp −mp
a.s.−→ 0.
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Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)
Let Bp = C

1
2
p XpTpX

T
pC

1
2
p , with e.s.d. µp, Xp ∈ Rp×n with i.i.d. entries of zero mean,

variance 1/n, Cp Hermitian nonnegative definite, Tp diagonal nonnegative,
lim supp max(‖Cp‖, ‖Tp‖) <∞. Denote c = p/n.
Then, as p, n→∞ with bounded ratio c, for z ∈ C \ R−,

mµp (z)−mp(z) a.s.−→ 0, mp(z) =
1
p

tr (−zIp + ēp(z)Cp)−1

with ē(z) unique solution in {z ∈ C+, ēp(z) ∈ C+} or {z ∈ R−, ēp(z) ∈ R+} of

ep(z) =
1
p

trCp (−zIp + ēp(z)Cp)−1

ēp(z) =
1
n

trTp (In + cep(z)Tp)−1 .
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Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

I Information-plus-noise: Yp = Ap +Xp, Ap deterministic
I Variance profile: Yp = Pp �Xp (entry-wise product)

I Per-column covariance: Yp = [y1, . . . , yn], yi = C
1
2
p,ixi

I etc.
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No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
Let Yp = C

1
2
p Xp ∈ Rp×n, with

I Cp ∈ Rp×p nonnegative definite with e.s.d. νp → ν weakly,

I Xp ∈ Rp×n has i.i.d. entries of zero mean and unit variance,
I E[|Xp|4ij ] <∞,
I maxi dist(λi(Cp), supp(ν))→ 0.

Let µ̃ be the limiting e.s.d. of 1
n
Y T
p Yp as before. Let [a, b] ⊂ RT \ supp(ν̃). Then,{

λi

( 1
n
Y T
p Yp

)}n
i=1
∩ [a, b] = ∅

for all large n, almost surely.

In practice: This means that eigenvalues of 1
n
Y T
p Yp cannot be bound at macroscopic

distance from the bulk, for p, n large.
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Spiked Models

Breaking the rules. If we break
I Rule 1: Infinitely many eigenvalues may wander away from supp(µ).

0 1 2 3
0

0.2

0.4

0.6

0.8
{λi}

n
i=1

µ

0 1 2 3
0

0.2

0.4

0.6

0.8
{λi}

n
i=1

µ

E[X4
ij ] <∞ E[X4

ij ] =∞
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Spiked Models
If we break:
I Rule 2: Cp may create isolated eigenvalues in 1

n
YpY T

p , called spikes.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8
{λi}

p
i=1

µ

Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−4

, 2, 3, 4, 5), p = 500, n = 2000.
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Spiked Models: The phase transition phenomenon
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1
p/n = 1/4 (p = 500)

Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−4

, 2, 3, 4, 5).
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Spiked Models: The phase transition phenomenon
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Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−4

, 2, 3, 4, 5).
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Spiked Models: The phase transition phenomenon
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Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−4

, 2, 3, 4, 5).
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, E[|Xp|4ij ] <∞.
I Cp = Ip + P , P = UΩUT, where, for K fixed,

Ω = diag (ω1, . . . , ωK) ∈ RK×K , with ω1 ≥ . . . ≥ ωK > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), denoting λi = λi( 1
n
YpY T

p ),
I if ωm >

√
c,

λm
a.s.−→ 1 + ωm + c

1 + ωm

ωm
> (1 +

√
c)2

I if ωm ∈ (0,
√
c],

λm
a.s.−→ (1 +

√
c)2
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Spiked Models

1 + ω2 + c
1+ω2
ω2

, 1 + ω1 + c
1+ω1
ω1
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0.8
{λi}

n
i=1

µ

Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−2

, 2, 3), p = 500, n = 1500.
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Spiked Models

Proof
I Two ingredients: Algebraic calculus + trace lemma

I Find eigenvalues away from eigenvalues of 1
n
XpXT

p :

0 = det
( 1
n
YpY

T
p − λIp

)
, Yp = C

1
2
p Xp

= det(Cp) det
( 1
n
XpX

T
p − λC−1

p

)
= det

( 1
n
XpX

T
p − λIp + λ(Ip − C−1

p )
)

= det
( 1
n
XpX

T
p − λIp

)
det
(
Ip + λ(Ip − C−1

p )
( 1
n
XpX

T
p − λIp

)−1
)
.

I Use low rank property: (Cp = Ip + P = Ip + UΩUT)

Ip − C−1
p = Ip − (Ip + UΩUT)−1 = U(IK + Ω−1)−1UT, Ω ∈ CK×K .

Hence

0 = det
( 1
n
XpX

T
p − λIp

)
det
(
Ip + λU(IK + Ω−1)−1UT

( 1
n
XpX

T
p − λIp

)−1
)
.
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Spiked Models

Proof (2)
I Sylverster’s identity (det(I +AB) = det(I +BA)),

0 = det
( 1
n
XpX

T
p − λIp

)
det
(
IK + λ(IK + Ω−1)−1UT

( 1
n
XpX

T
p − λIp

)−1
U

)

I No eigenvalue outside the support [Bai,Sil’98]: det( 1
n
XpXT

p − λIp) has no zero
beyond (1 +

√
c)2 for all large n a.s.

I Extension of Trace Lemma: for each z ∈ C \ supp(µ),

UT
( 1
n
XpX

T
p − zIp

)−1
U

a.s.−→ mµ(z)IK .

(Xp being “almost-unitarily invariant”, U made of “i.i.d.-like” random vectors)
I As a result, for all large n a.s.,

0 = det
(
IK + λ(IK + Ω−1)−1UT(

1
n
XpX

T
p − λIp)−1U

)
'

K∏
k=1

(
1 +

λ

1 + ω−1
k

mµ(λ)
)

=
K∏
k=1

(
1 +

ωk

1 + ωk
λmµ(λ)

)
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Spiked Models

Proof (3)
I Limiting solutions: zeros of

λmµ(λ) = −
1 + ωm

ωm
.

I Marc̆enko–Pastur law properties
(mµ(z) = (1− c− z − czmµ(z))−1):
I λ 7→ λmµ(λ) =

∫
λ
t−λµ(dt) maps

((1 +
√
c)2,∞) onto (− 1+

√
c√
c
, 0−)

I Solution only when ωm >
√
c:

λ = 1 + ωm + c
1 + ωm

ωm
.
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Spiked Models

Theorem (Eigenvectors [Paul’07])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, finite fourth order moment entries
I Cp = Ip + P , P =

∑K

i=1 ωiuiu
T
i , ω1 > . . . > ωM > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), for a, b ∈ Rp deterministic and ûi eigenvector
of λi( 1

n
YpY T

p ),

aTûiû
T
i b−

1− cω−2
i

1 + cω−1
i

aTuiu
T
i b · 1ωi>

√
c

a.s.−→ 0

In particular,

|ûT
i ui|

2 a.s.−→
1− cω−2

i

1 + cω−1
i

· 1ωi>
√
c.

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

aTûiû
T
i b =

1
2πı

∮
Ci

aT
( 1
n
YpY

T
p − zIp

)−1
b dz

for Cm contour circling around λi only.
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T
i b−

1− cω−2
i

1 + cω−1
i

aTuiu
T
i b · 1ωi>

√
c

a.s.−→ 0

In particular,

|ûT
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Spiked Models
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|û
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Figure: Simulated versus limiting |ûT
1u1|2 for Yp = C

1
2
p Xp, Cp = Ip + ω1u1u

T
1 , p/n = 1/3,

varying ω1.
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Spiked Models
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Tracy–Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. real or complex Gaussian zero mean, unit variance entries,
I Cp = Ip + P , P =

∑K

i=1 ωiuiu
T
i , ω1 > . . . > ωK > 0 (K ≥ 0).

Then, as p, n→∞, p/n→ c < 1,
I If ω1 <

√
c (or K = 0),

p
2
3
λ1 − (1 +

√
c)2

(1 +
√
c)

4
3 c

1
2

L−→ T, (real or complex Tracy–Widom law)

I If ω1 >
√
c,(

(1 + ω1)2

c
−

(1 + ω1)2

ω2
1

) 1
2

p
1
2

[
λ1 −

(
1 + ω1 + c

1 + ω1

ω1

)]
L−→ N (0, 1).
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Tracy–Widom Theorem
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Figure: Distribution of p
2
3 c−

1
2 (1 +
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c)−

4
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[
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nXpX
T
p )− (1 +

√
c)2
]

versus real
Tracy–Widom (T ), p = 500, n = 1500.
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Other Spiked Models

Similar results for multiple matrix models:

I Yp = 1
n
XXT + P , P deterministic and low rank

I Yp = 1
n
XT(I + P )X

I Yp = 1
n

(X + P )T(X + P )
I Yp = 1

n
TXT(I + P )XT

I etc.
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The Semi-circle law

Theorem
Let Xn ∈ Rn×n Hermitian with e.s.d. µn such that 1√

n
[Xn]i>j are i.i.d. with zero

mean and unit variance. Then, as n→∞,

µn
a.s.−→ µ

with µ(dt) = 1
2π

√
(4− t2)+dt. In particular, mµ satisfies

mµ(z) =
1

−z −mµ(z)
.
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The Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for n = 500
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The Circular law

Theorem
Let Xn ∈ Cn×n with e.s.d. µn be such that 1√

n
[Xn]ij are i.i.d. entries with zero mean

and unit variance. Then, as n→∞,

µn
a.s.−→ µ

with µ a complex-supported measure with µ(dz) = 1
2π δ|z|≤1dz.
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The Circular law
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From classical applications...

Large range of applications:

I Wireless communications: capacity of large communication channels H ∈ Cp×n,
optimal precoding in mu-MIMO, power allocation in large networks, sensing in
cognitive radios, etc.

I Array processing: improved MUSIC methods for large arrays (p ∼ n), optimal
beamforming (MVDR), detection filters (ANMF), etc.

I Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios
and short time windows.

I Brain signal processing: EEG covariance estimation on short windows.

Any application where p ∼ n “rather large”
(convergence speed in up to O(n) and not O(

√
n) as usual!)

BUT mostly linear settings...
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... to machine learning!

Specificities in statistical and machine learning:
I Matrix of non-linear entries: kernel matrices K = {κ(xi, xj)}ni,j=1, activation

functions in neural nets xl+1 = σ(Wxl), non-linear features, etc.

I Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin
constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for
large n, p, what happens to machine learning methods?
I we will see that small-dimensional intuitions dramatically fail
I some classical and widely-used algorithms become ineffective
I BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and change paradigm.
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change paradigm.
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Motivation example: EEG-based clustering

I Hard classification on raw data Xi:
Need Features

I Relevant Feature: Covariance Ci
I Distance between features: D(Ci, Cj)

EE
G

Xi = [x(i)
1 , . . . , x

(i)
p ]T

Ci = E[XiXT
i ]

Cj = E[XjXT
j ]

D(Ci, Cj)
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Context

Observations:
I two data vector classes x(1)

i ∈ C1 and x(2)
i ∈ C2

I Xa = [x(a)
1 , . . . , x

(a)
na ], x(a)

i ∈ Rp with E[x(a)
i ] = 0, E[x(a)

i x
(a)T
i ] = Ca.

Objective:
I From the data x(a)

i , estimate some distance function

D ≡ D(C1, C2).

I Classical approach:

D̂ ≡ D(Ĉ1, Ĉ2), with Ĉa =
1
na

na∑
i=1

x
(a)
i x

(a)T
i =

1
na
XaX

T
a .

−→ Often justified by Law of Large Numbers: D̂ a.s.−→ D as n→∞.
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In practice though...

Example:
I The Fisher distance

D(C1, C2) =
1
p

∥∥∥log2(C−
1
2

1 C2C
− 1

2
1 )

∥∥∥2

F

=
1
p

p∑
i=1

log2
(
λi(C−1

1 C2)
)

=
∫

log2(t)νp(dt)

with νp = 1
p

∑p

i=1 δλi(C
−1
1 C2).

I for n1 = 1024, n2 = 2048, different p (here [C−
1
2

1 C2C
− 1

2
1 ]ij = .3|i−j|):

p Fisher distance Classical estimator

RMT estimator

2 0.0980 0.1002

0.0973

4 0.1456 0.1520

0.1461

8 0.1694 0.1820

0.1703

16 0.1812 0.2081

0.1845

32 0.1872 0.2363

0.1886

64 0.1901 0.2892

0.1920

128 0.1916 0.3955

0.1934

256 0.1924 0.6338

0.1942

512 0.1927 1.2715

0.1953

(error < 5%) (error > 50%) (error > 100%) (error > 500%)
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Explanation for failure
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Figure: Population and Sample Eigenvalues for n1 = 1024, n2 = 2048, varying p, C1 = C2.
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1 Ĉ2 (p = 64)

Eigenvalues of C−1
1 C2

Figure: Population and Sample Eigenvalues for n1 = 1024, n2 = 2048, varying p, C1 = C2.

56 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Covariance Distance Inference 56/151

Explanation for failure

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Eigenvalues of Ĉp
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Setup
Assumptions

I [Spatial independence] x(a)
i = C

1
2
a x̃

(a)
i , x̃(a)

i ∈ Rp with i.i.d. zero mean, unit
variance, finite 4 + ε order moment.

I [RMT regime] As na →∞,
p

na
= ca → c∞a ∈ (0, 1).

I [Studied distances] for f a complex-analytic extensible function,

D(C1, C2) =
∫

f(t)νp(dt), νp =
1
p

p∑
i=1

δ
λi(C

−1
1 C2).

Examples
I Fisher geodesic distance: f(t) = log2(t)
I Bhattacharyya distance: f(t) = − 1

4 log(t) + 1
2 log(1 + t)− 1

2 log(2)
I Kullback-Leibler divergence for Gaussian: f(t) = 1

2 t−
1
2 log(t)− 1

2
I Rényi divergence for Gaussian: f(t) = −1

2(α−1) log(α+ (1− α)t) + 1
2 log(t)
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RMT-improved estimator
Notations:

I Population eigenvalue distribution: νp = 1
p

∑p

i=1 δλi(C
−1
1 C2)

I Sample eigenvalue distribution: µp = 1
p

∑p

i=1 δλi(Ĉ1
−1
Ĉ2) ≡

1
p

∑p

i=1 δλi
I Recall Stieltjes transform mθ(z), z ∈ C \ Supp(θ), of measure θ:

mθ(z) =
∫

1
λ− z

dθ(λ)

e.g., mµp (z) = 1
p

∑p

i=1
1

λi−z
.

Theorem (Estimation via contour integral)
For z ∈ C \ Supp(µp), let

ϕp(z) ≡ z + c1z
2mµp (z)

ψp(z) ≡ 1− c2 − c2zmµp (z).

Then, for any (positively oriented) contour Γ ⊂ {z ∈ C,<[z] > 0} surrounding
Supp(µp).∫

fdνp −
1

2πı

∮
Γ
f

(
ϕp(z)
ψp(z)

)(
ϕ′p(z)
ϕp(z)

−
ψ′p(z)
ψp(z)

)
ψp(z)
c2

dz
a.s.−→ 0.
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Ĉ2)

≡ 1
p

∑p

i=1 δλi
I Recall Stieltjes transform mθ(z), z ∈ C \ Supp(θ), of measure θ:

mθ(z) =
∫

1
λ− z

dθ(λ)

e.g., mµp (z) = 1
p

∑p

i=1
1

λi−z
.

Theorem (Estimation via contour integral)
For z ∈ C \ Supp(µp), let

ϕp(z) ≡ z + c1z
2mµp (z)

ψp(z) ≡ 1− c2 − c2zmµp (z).

Then, for any (positively oriented) contour Γ ⊂ {z ∈ C,<[z] > 0} surrounding
Supp(µp).∫

fdνp −
1

2πı

∮
Γ
f

(
ϕp(z)
ψp(z)

)(
ϕ′p(z)
ϕp(z)

−
ψ′p(z)
ψp(z)

)
ψp(z)
c2

dz
a.s.−→ 0.

58 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Covariance Distance Inference 58/151

RMT-improved estimator
Notations:
I Population eigenvalue distribution: νp = 1

p

∑p

i=1 δλi(C
−1
1 C2)

I Sample eigenvalue distribution: µp = 1
p

∑p

i=1 δλi(Ĉ1
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Idea of proof

From [Bai-Silverstein’95]1, limiting spectra of C and Ĉ related through Stieljes
transform.

Besides, by Cauchy’s integral,∫
f(t)νp(dt) =

∫ [
−1
2πı

∮
Γ

f(z)
t− z

dz

]
νp(dt) =

−1
2πı

∮
Γ
f(z)

[∫
1

t− z
νp(dt)

]
︸ ︷︷ ︸

=mνp (z)

dz.

∫
f(t)νp(dt)

∫
h(t)µp(dt)

∮
F (mµp (z))dz

∮
H(mνp (z))dz

∮
G(mζp (z))dz

8

C
− 1

2
2 C1C

− 1
2

2 Ĉ
− 1

2
2 C1Ĉ

− 1
2

2 Ĉ
− 1

2
2 Ĉ1Ĉ

− 1
2

2

1SIL95.
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Evaluation of the complex integrals

Object of interest: Evaluate in closed-form

1
2πı

∮
Γ
f

(
ϕp(z)
ψp(z)

)(
ϕ′p(z)
ϕp(z)

−
ψ′p(z)
ψp(z)

)
ψp(z)
c2

dz.

Reminder: functions of interest
I Fisher geodesic distance: f(t) = log2(t)
I Bhattacharyya distance: f(t) = − 1

4 log(t) + 1
2 log(1 + t)− 1

2 log(2)
I Kullback-Leibler divergence for Gaussian: f(t) = 1

2 t−
1
2 log(t)− 1

2
I Rényi divergence for Gaussian: f(t) = −1

2(α−1) log(α+ (1− α)t) + 1
2 log(t)

Cases of interest:
I Entire functions (e.g., f(t) = t): residue calculus
I Functions with branch cuts: f(t) = log(t), f(t) = log(1 + st), f(t) = log2(t), etc.
−→ Much more technical!
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Sketch of Proof

The case f(t) = logk(t)
I Much less trivial due to branch cuts of log(z)!!

log(z) ≡ log(|z|) + ı arg(z), arg(z) ∈ (−π, π].

I Singularities arise when log(ϕp(z)/ψp(z)) discontinuous.

I The situation in image...

with
I ζi zeros of ψp
I ηi zeros of ϕp.
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Sketch of proof

The case f(t) = logk(t) (continued)
I Integration method: avoid branch cuts:

I Detailed method:
I careful control of integrals on circles IAi , ICi , IEi (Jordan’s identity does not apply!)
I linear integrals on segments, up to integrability... easy for log(t), difficult for log2(t)!
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Application to specific functions

Corollary (Case f(t) = t)
Under the same assumptions,∫

tνp(dt)− (1− c1)
∫

tµp(dt) a.s.−→ 0.

(i.e., 1
p trC−1

1 C2 ' (1− p
n1

) 1
p tr Ĉ−1

1 Ĉ2)

−→ Just a scaling factor!

Corollary (Case f(t) = log(t))
Under the same assumptions,∫

log(t)νp(dt)−
[∫

log(t)µp(dt)−
1− c1
c1

log(1− c1) +
1− c2
c2

log(1− c2)
]

a.s.−→ 0.

(i.e., 1
p log det(C−1

1 C2) ' 1
p log det(Ĉ−1

1 Ĉ2)− n1−p
n1

log(1− p
n1

) + n2−p
n2

log(1− p
n2

))

−→ Just a bias term!
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1 Ĉ2)

−→ Just a scaling factor!

Corollary (Case f(t) = log(t))
Under the same assumptions,∫

log(t)νp(dt)−
[∫

log(t)µp(dt)−
1− c1
c1

log(1− c1) +
1− c2
c2

log(1− c2)
]

a.s.−→ 0.

(i.e., 1
p log det(C−1

1 C2) ' 1
p log det(Ĉ−1
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1 Ĉ2)
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c2

log(1− c2)
]

a.s.−→ 0.

(i.e., 1
p log det(C−1

1 C2) ' 1
p log det(Ĉ−1

1 Ĉ2)− n1−p
n1

log(1− p
n1

) + n2−p
n2

log(1− p
n2

))

−→ Just a bias term!
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Application to specific functions

Corollary (Case f(t) = log(1 + st))
Denoting κ0 < 0 unique negative solution to 1 + s

ϕp(x)
ψp(x) = 0,∫

log(1 + st)dνp(t)−
[
c1 + c2 − c1c2

c1c2
log
(

c1 + c2 − c1c2
(1− c1)(c2 − sc1κ0)

)
+

1
c2

log (−sκ0(1− c1)) +
∫

log
(

1−
t

κ0

)
dµp(t)

]
a.s.−→ 0.

−→ Highly non-trivial!
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Application to specific functions

Corollary (Case f(t) = log2(t))

1
2πı

∮
Γ

log2
(
ϕp(z)
ψp(z)

)(
ϕ′p(z)
ϕp(z)

−
ψ′p(z)
ψp(z)

)
ψp(z)
c2

dz

=
c1 + c2 − c1c2

c1c2

[
p∑
i=1

{
log2 ((1− c1)ηi)− log2 ((1− c1)λi)

}
+2

∑
1≤i,j≤p

{
Li2

(
1−

ζi

λj

)
− Li2

(
1−

ηi

λj

)
+ Li2

(
1−

ηi

ηj

)
− Li2

(
1−

ζi

ηj

)}]

−
1− c2
c2

[
log2(1− c2)− log2(1− c1) +

p∑
i=1

{
log2 (ηi)− log2 (ζi)

}]

−
1
p

[
2
∑

1≤i,j≤p

{
Li2

(
1−

ζi

λj

)
− Li2

(
1−

ηi

λj

)}
−

p∑
i=1

log2 ((1− c1)λi)

]

−→ Involves dilogarithm functions!
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Spectral clustering with feature Ci

Setting:
I “m” observations, X1, . . . , Xm with Xi = [x(i)

1 , ..., x
(i)
ni ]

I Two classes: Ci = C(1) for i ≤ m/2, Ci = C(2) for i > m/2.

Objective:
I Classify observations Xi based on C(1) and C(2).

Method:
I Spectral clustering with kernel

Kij = D(Ci, Cj)

estimated by D(Ĉi, Ĉj) versus RMT estimator.
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Simulation: random ni

eigv 1

eigv 2

Figure: Eigenvectors 1 and 2 of K for traditional (red circles) versus RMT estimator (blue crosses).

Classical
I Wide spread of eigenvectors
I Small inter space
I → Poor clustering

RMT estimator
I Well centered eigenvector
I Large inter space
I → Good clustering
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Simulation: outlier n1 = ... = nm−1, nm = n1/2

far outlier

eigv 1

eigv 2

Figure: Eigenvectors 1 and 2 of K for traditional (red circles) versus RMT estimator (blue crosses).

Classical
I Isolated outlier
I Adversarial effect of outlier

(“draws” eigenvector to itself)
I Effect increased by more outliers

RMT estimator
I No outlier effect
I Large inter space
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Application to covariance matrix estimation

Observations:
I X = [x1, . . . , xn], xi ∈ Rp with E[xi] = 0, E[xixT

i ] = C.

Objective:
I From the data xi, estimate C.

State of the Art:
I Sample Covariance Matrix (SCM):

Ĉ =
1
n

n∑
i=1

xix
T
i =

1
n
XXT.

−→ Often justified by Law of Large Numbers: n→∞.
I Numerical inversion of asymptotic spectrum (QuEST).

1. Bai-Silverstein equation: Estimate λ(Ĉ) from λ(C) in “large p, n” regime.
2. Need for non trivial inversion of the equation.
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Application to covariance matrix estimation (continued)

I Elementary idea
C ≡ argminM�0 δ(M,C)

where δ(M,C) can be the Fisher, Bhattacharyya, KL, Rényi divergence.

I Divergence δ(M,C) =
∫
f(t)dνp(t) inaccessible, νp ≡ 1

p

∑p

i=1 δλi(M−1C).

I Random Matrix improved estimate δ̂(M,X) of δ(M,C) using
µp ≡ 1

p

∑p

i=1 δλi(M−1Ĉ).∫
f(t)νp(dt)

∫
h(t)µp(dt)

∮
G(mµp (z))dz

∮
H(mνp (z))dz

8

I δ̂(M,X) < 0 with non zero probability.
I RMT estimation

Č ≡ argminM�0 h(M), h(M) = δ̂(M,X)2
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Application to covariance matrix estimation (continued)

I Gradient descent over the Positive Definite manifold.

Algorithm 1 RMT estimation algorithm.
Require M0 ∈ C++

n .

Repeat M ←M
1
2 exp

(
−tM−

1
2∇hX(M)M−

1
2

)
M

1
2 .

Until Convergence.
Return Č = M .
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Application to covariance matrix estimation (continued)

I 2 Data classes x(1)
1 , . . . , x

(1)
n1 ∼ N(µ1, C1) and x(2)

1 , . . . , x
(2)
n2 ∼ N(µ2, C2).

I Classify point x using Linear Discriminant Analysis based on the sign of

δLDA
x = (µ̂1 − µ̂2)TČ−1x+

1
2
µ̂T

2 Č
−1µ̂2 −

1
2
µ̂T

1 Č
−1µ̂1.

I Estimate Č ≡ n1
n1+n2

Č1 + n2
n1+n2

Č2.

2 3 4 5 6

0.8

0.85

0.9

0.95

1

n1+n2
p

Ac
cu

ra
cy

B/E A/E B/D A/D B/C A/C

0.75

0.8

0.85

0.9

0.95

1

(Healthy/Epileptic)

SCM
QuEST1
QuEST2
Proposed

Figure: Mean accuracy obtained over 10 realizations of LDA classification. (Left) C1 and C2
Toeplitz-0.2/Toeplitz-0.4, and (Right) real EEG data.
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Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

71 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Revisiting Motivation 72/151

Reconsider clustering

I Hard classification on raw data xi:
Need Features

I Relevant Feature: Covariance Ci
→Learn features from data

I D(Ci, Cj)↔ ϕ(xi)Tϕ(xj)
I Kernel trick
ϕ(xi)Tϕ(xj)→ f(‖xi − xj‖2) or
f(xiTxj)

I Asymptotic performance of kernel
methods?

EE
G

((((((((
Xi = [x(i)

1 , . . . , x(i)
p ]T

xi = vec[x(i)
1 , . . . , x(i)

p ]T

((((((
Ci = E[XiXT

i ]

ϕ(xi)

((((((Cj = E[XjXT
j ]

ϕ(xj)
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Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
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Kernel Spectral Clustering

Problem Statement
I Dataset x1, . . . , xn ∈ Rp

I Objective: “cluster” data in k similarity classes C1, . . . , Ck.

I Kernel spectral clustering based on kernel matrix

K = {κ(xi, xj)}ni,j=1

I Usually, κ(x, y) = f(xTy) or κ(x, y) = f(‖x− y‖2)
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Kernel spectral clustering
Intuition (from small dimensions)

I K essentially low rank with class structure in eigenvectors.

I Ng–Weiss–Jordan key remark: D−
1
2KD−

1
2 (D

1
2 ja) ' D

1
2 ja (ja canonical

vector of Ca)
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Kernel Spectral Clustering
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Figure: Leading four eigenvectors of D−
1
2 KD−

1
2 for MNIST data, RBF kernel

(f(t) = exp(−t2/2)).

I Important Remark: eigenvectors informative BUT far from D
1
2 ja!
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Model and Assumptions
Gaussian mixture model:
I x1, . . . , xn ∈ Rp,
I k classes C1, . . . , Ck,
I x1, . . . , xn1 ∈ C1, . . . , xn−nk+1, . . . , xn ∈ Ck,
I xi ∼ N (µgi , Cgi ).

Assumption (Growth Rate)
As n→∞,

1. Data scaling: p
n
→ c0 ∈ (0,∞), na

n
→ ca ∈ (0, 1),

2. Mean scaling: with µ◦ ,
∑k

a=1
na
n
µa and µ◦a , µa − µ◦, then ‖µ◦a‖ = O(1)

3. Covariance scaling: with C◦ ,
∑k

a=1
na
n
Ca and C◦a , Ca − C◦, then

‖Ca‖ = O(1), trC◦a = O(√p), trC◦aC◦b = O(p)

For 2 classes, this is

‖µ1 − µ2‖ = O(1), tr (C1 − C2) = O(√p), ‖Ci‖ = O(1), tr ([C1 − C2]2) = O(p).

Remark: [Neyman–Pearson optimality]
I x ∼ N (±µ, Ip) (known µ) decidable iif ‖µ‖ ≥ O(1).
I x ∼ N (0, (1± ε)Ip) (known ε) decidable iif ‖ε‖ ≥ O(p−

1
2 ).
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Model and Assumptions

Kernel Matrix:
I Kernel matrix of interest:

K =
{
f

(1
p
‖xi − xj‖2

)}n
i,j=1

for some sufficiently smooth nonnegative f (f( 1
p
xT
i xj) simpler).

I We study the normalized Laplacian:

L = nD−
1
2

(
K −

ddT

dT1n

)
D−

1
2

with d = K1n, D = diag(d).
(more stable both theoretically and in practice)
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Random Matrix Equivalent

I Key Remark: Under growth rate assumptions,

max
1≤i 6=j≤n

{∣∣∣1
p
‖xi − xj‖2 − τ

∣∣∣} a.s.−→ 0.

where τ = 1
p

trC◦.

⇒ Suggests that (up to diagonal) K ' f(τ)1n1T
n!

I In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor
expansion of K:

K = f(τ)1n1T
n︸ ︷︷ ︸

O‖·‖(n)

+
√
nK1︸ ︷︷ ︸

low rank, O‖·‖(
√
n)

+ K2︸︷︷︸
informative terms, O‖·‖(1)

Clearly not the (small dimension) expected behavior.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
As n, p→∞,

∥∥L− L̂∥∥ a.s.−→ 0, where

L = nD−
1
2

(
K −

ddT

dT1n

)
D−

1
2 , avec Kij = f

(1
p
‖xi − xj‖2

)
L̂ = −2

f ′(τ)
f(τ)

1
p
PWTWP +

1
p
JBJT + ∗

et W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1
n

1n1T
n,

J = [j1, . . . , jk], jT
a = (0 . . . 0, 1na , 0, . . . , 0)

B = −2
f ′(τ)
f(τ)

MTM +
(
f ′′(τ)
f(τ)

−
5f ′(τ)2

4f(τ)2

)
ttT + 2

f ′′(τ)
f(τ)

T + ∗.

Recall M = [µ◦1, . . . , µ◦k], t = [ 1√
p

trC◦1 , . . . ,
1√
p

trC◦k ]T, T =
{

1
p

trC◦aC◦b
}k
a,b=1

.

Fundamental conclusions:
I asymptotic kernel impact only through f ′(τ) and f ′′(τ), that’s all!
I spectral clustering reads MTM , ttT and T , that’s all!
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Isolated eigenvalues: Gaussian inputs

0 1 2 3 4

Eigenvalues of L

0 1 2 3 4

Eigenvalues of L̂

Figure: Eigenvalues of L and L̂, k = 3, p = 2048, n = 512, c1 = c2 = 1/4, c3 = 1/2,
[µa]j = 4δaj , Ca = (1 + 2(a− 1)/√p)Ip, f(x) = exp(−x/2).
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Theoretical Findings versus MNIST
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0

5 · 10−2

0.1
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Eigenvalues of L

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L̂ (white), MNIST data, p = 784,
n = 192.
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Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L̂ (white), MNIST data, p = 784,
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Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of D−
1
2 KD−

1
2 for MNIST data (red) and theoretical findings

(blue).
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Theoretical Findings versus MNIST
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Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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The surprising f ′(τ) = 0 case
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p = 512

Figure: Polynomial kernel with f(τ) = 4, f ′′(τ) = 2, xi ∈ N (0, Ca), with C1 = Ip,
[C2]i,j = .4|i−j|, c0 = 1

4 .

I Trivial classification when t = 0, M = 0 and ‖T‖ = O(1).
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Figure: Polynomial kernel with f(τ) = 4, f ′′(τ) = 2, xi ∈ N (0, Ca), with C1 = Ip,
[C2]i,j = .4|i−j|, c0 = 1
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I Trivial classification when t = 0, M = 0 and ‖T‖ = O(1).
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Spectral Clustering: The case f ′(τ) = 0
Position of the problem

Problem: Cluster large data x1, . . . , xn ∈ Rp based on “spanned subspaces”.

Method:
I Still assume x1, . . . , xn belong to k classes C1, . . . , Ck.
I Zero-mean Gaussian model for the data: for xi ∈ Ck,

xi ∼ N (0, Ck).

I Performance of L = nD−
1
2

(
K − 1n1T

n

1T
nD1n

)
D−

1
2 , with

K =
{
f
(
‖x̄i − x̄j‖2

)}
1≤i,j≤n

, x̄ =
x

‖x‖

in the regime n, p→∞.
(alternatively, we can ask 1

p
trCi = 1 for all 1 ≤ i ≤ k)
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Spectral Clustering: The case f ′(τ) = 0
Model and Reminders

Assumption 1 [Classes]. Vectors x1, . . . , xn ∈ Rp i.i.d. from k-class Gaussian mixture,
with xi ∈ Ck ⇔ xi ∼ N (0, Ck) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n→∞, for each a ∈ {1, . . . , k},
1. n

p
→ c0 ∈ (0,∞)

2. na
n
→ ca ∈ (0,∞)

3. 1
p

trCa = 1 and trC◦aC◦b = O(p), with C◦a = Ca − C◦, C◦ =
∑k

b=1 cbCb.

Theorem (Corollary of Previous Section)
Let f smooth with f ′(2) 6= 0. Then, under Assumptions 2a,

L = nD−
1
2

(
K −

1n1T
n

1T
nD1n

)
D−

1
2 , with K =

{
f
(
‖x̄i − x̄j‖2

)}n
i,j=1

(x̄ = x/‖x‖)

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically
contain structural information about C1, . . . , Ck if and only if

T =
{1
p

trC◦aC◦b
}k
a,b=1

has sufficiently large eigenvalues (here M = 0, t = 0).
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Assumption 2b [Growth Rates]. As n→∞, for each a ∈ {1, . . . , k},
1. n

p
→ c0 ∈ (0,∞)

2. na
n
→ ca ∈ (0,∞)

3. 1
p

trCa = 1 and trC◦aC◦b = O(p), with C◦a = Ca − C◦, C◦ =
∑k

b=1 cbCb.

Remark: [Neyman–Pearson optimality]
I if Ci = Ip ± E with ‖E‖ → 0, detectability iif 1

p
tr (C1 − C2)2 ≥ O(p−

1
2 ).

Theorem (Random Equivalent for f ′(2) = 0)
Let f be smooth with f ′(2) = 0 and

L ≡ √p
f(2)

2f ′′(2)

[
L−

f(0)− f(2)
f(2)

P

]
, P = In −

1
n

1n1T
n.

Then, under Assumptions 2b,

L = PΦP +
{

1
√
p

tr (C◦aC◦b )
1na1T

nb

p

}k
a,b=1

+ o‖·‖(1)

where Φij = δi 6=j
√
p
[
(xT
i xj)

2 − E[(xT
i xj)

2]
]

.
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

−2 −1.5 −1 −0.5 0
0

1

2

3

λ1(L)

λ2(L)

Eigenvalues of L

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, c1 = c2 = 1/4, c3 = 1/2,
Ci ∝ Ip + (p/8)−

5
4 WiW

T
i , Wi ∈ Rp×(p/8) of i.i.d. N (0, 1) entries, f(t) = exp(−(t− 2)2).

⇒ No longer a Marcenko–Pastur like bulk, but rather a semi-circle bulk!
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Roadmap. We now need to:
I study the spectrum of Φ

I study the isolated eigenvalues of L (and the phase transition)
I retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let µn = 1

n

∑n

i=1 δλi(L). Then, under Assumption 2b,

µn
a.s.−→ µ

with µ the semi-circle distribution

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt, ω = lim

p→∞

√
2

1
p

tr (C◦)2.

91 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 91/151

Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Roadmap. We now need to:
I study the spectrum of Φ
I study the isolated eigenvalues of L (and the phase transition)

I retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let µn = 1

n

∑n

i=1 δλi(L). Then, under Assumption 2b,

µn
a.s.−→ µ

with µ the semi-circle distribution

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt, ω = lim

p→∞

√
2

1
p

tr (C◦)2.

91 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 91/151

Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Roadmap. We now need to:
I study the spectrum of Φ
I study the isolated eigenvalues of L (and the phase transition)
I retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let µn = 1

n

∑n

i=1 δλi(L). Then, under Assumption 2b,

µn
a.s.−→ µ

with µ the semi-circle distribution

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt, ω = lim

p→∞

√
2

1
p

tr (C◦)2.

91 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 91/151

Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Roadmap. We now need to:
I study the spectrum of Φ
I study the isolated eigenvalues of L (and the phase transition)
I retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let µn = 1

n

∑n

i=1 δλi(L). Then, under Assumption 2b,

µn
a.s.−→ µ

with µ the semi-circle distribution

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt, ω = lim

p→∞

√
2

1
p

tr (C◦)2.

91 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 92/151

Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0
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Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, c1 = c2 = 1/4, c3 = 1/2,
Ci ∝ Ip + (p/8)−

5
4 WiW

T
i , Wi ∈ Rp×(p/8) of i.i.d. N (0, 1) entries, f(t) = exp(−(t− 2)2).

92 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 93/151

Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Denote now

T ≡ lim
p→∞

{√
cacb
√
p

trC◦aC◦b

}k
a,b=1

.
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Denote now

T ≡ lim
p→∞

{√
cacb
√
p

trC◦aC◦b

}k
a,b=1

.

Theorem (Isolated Eigenvalues)
Let ν1 ≥ . . . ≥ νk eigenvalues of T . Then, if √c0|νi| > ω, L has an isolated
eigenvalue λi satisfying

λi
a.s.−→ ρi ≡ c0νi +

ω2

νi
.
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0

Theorem (Isolated Eigenvectors)
For each isolated eigenpair (λi, ui) of L corresponding to (νi, vi) of T , write

ui =
k∑
a=1

αai
ja√
na

+ σai w
a
i

with ja = [0T
n1 , . . . , 1

T
na
, . . . , 0T

nk
]T, (wai )Tja = 0, supp(wai ) = supp(ja), ‖wai ‖ = 1.

Then, under Assumptions 1–2b,

αai α
b
i

a.s.−→
(

1−
1
c0

ω2

ν2
i

)
[vivT

i ]ab

(σai )2 a.s.−→
ca

c0

ω2

ν2
i

and the fluctuations of ui, uj , i 6= j, are asymptotically uncorrelated.
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0
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Figure: Leading two eigenvectors of L (or equivalently of L) versus deterministic approximations of
αai ± σ

a
i .
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0
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Spectral Clustering: The case f ′(τ) = 0
The case f ′(2) = 0
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Spectral Clustering: The case f ′(τ) = 0
Application: Clustering data vectors with close covariances

Setting.
I p dimensional vector observations.
I m data sources.
I E[xi] = 0, E[xixT

i ] = Ci.

I ni independent observations x(1)
i , . . . , x

(ni)
i for source i.

Objective. Cluster sources based on covariance Ci.

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then L, based on mni vectors x(1)
1 , . . . , x

(ni)
m (as if mni

values to cluster).
2. Extract dominant isolated eigenvectors u1, . . . , uκ

3. For each i, create ũi = 1
ni

(Im ⊗ 1T
ni

)ui, i.e., average eigenvectors along time.

4. Perform k-class clustering on vectors ũ1, . . . , ũκ.
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ni

(Im ⊗ 1T
ni

)ui, i.e., average eigenvectors along time.

4. Perform k-class clustering on vectors ũ1, . . . , ũκ.

97 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 97/151

Spectral Clustering: The case f ′(τ) = 0
Application: Clustering data vectors with close covariances

Setting.
I p dimensional vector observations.
I m data sources.
I E[xi] = 0, E[xixT

i ] = Ci.

I ni independent observations x(1)
i , . . . , x

(ni)
i for source i.

Objective. Cluster sources based on covariance Ci.

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then L, based on mni vectors x(1)
1 , . . . , x

(ni)
m (as if mni

values to cluster).
2. Extract dominant isolated eigenvectors u1, . . . , uκ

3. For each i, create ũi = 1
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Spectral Clustering: The case f ′(τ) = 0
Application Example: Clustering data vectors with close covariances

−0.1 0 0.1
−0.2

−0.1

0

0.1

Eigenvector 1

Ei
ge

nv
ec

to
r

2

−5 0 5

·10−2

−5

0

5

·10−2

Eigenvector 1

Figure: Clustering data vectors with close covariances application: Leading two eigenvectors
before (left figure) and after (right figure) ni-averaging. Setting: p = 400, m = 40, ni = 10,
k = 3, c1 = c3 = 1/4, c2 = 1/2.Kernel function f(t) = exp(−(t− 2)2).
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Spectral Clustering: The case f ′(τ) = 0
Application Example: Clustering data vectors with close covariances
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Figure: Overlap for different m, using the k-means or EM starting from actual centroid solutions
(oracle) or randomly.
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Spectral Clustering: The case f ′(τ) = 0
Application Example: Clustering data vectors with close covariances
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100 / 151



Large dimensional inference and kernels (Malik TIOMOKO)/Kernel Asymptotics 101/151

Kernel Spectral Clustering: The case f ′(τ) = α√
p

Optimal growth rates and optimal kernels

Conclusion of previous analyses:
I kernel f( 1

p
‖xi − xj‖2) with f ′(τ) 6= 0:

I optimal in ‖µ◦a‖ = O(1), 1
p trC◦a = O(p−

1
2 )

I suboptimal in 1
p trC◦aC

◦
b = O(1)

−→ Model type: Marc̆enko–Pastur + spikes.

I kernel f( 1
p
‖xi − xj‖2) with f ′(τ) = 0:

I suboptimal in ‖µ◦a‖ � O(1) (kills the means)
I better in discriminating covariance (stress on t and T )
−→ Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:
I evenly weighing Marc̆enko–Pastur and semi-circle laws
I the “α-β” kernel:

f ′(τ) =
α
√
p
,

1
2
f ′′(τ) = β.
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Kernel Spectral Clustering: The case f ′(τ) = α√
p

New assumption setting

I We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)
As n→∞,

1. Data scaling: p
n
→ c0 ∈ (0,∞), na

n
→ ca ∈ (0, 1),

2. Mean scaling: with µ◦ ,
∑k

a=1
na
n
µa and µ◦a , µa − µ◦, then ‖µ◦a‖ = O(1)

3. Covariance scaling: with C◦ ,
∑k

a=1
na
n
Ca and C◦a , Ca − C◦, then

‖Ca‖ = O(1), trC◦a = O(√p), trC◦aC◦b = O(√p).

Kernel:
I For technical simplicity, we consider

K̃ = PKP = P

{
f

(1
p

(x◦)T(x◦j )
)}n

i,j=1
P , P = In −

1
n

1n1T
n.

i.e., τ replaced by 0.
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Kernel Spectral Clustering: The case f ′(τ) = α√
p

Main Results

Theorem
As n→∞, ∥∥√p (PKP +

(
f(0) + τf ′(0)

)
P
)
− K̂
∥∥ a.s.−→ 0

with, for α = √pf ′(0) = O(1) and β = 1
2f
′′(0) = O(1),

K̂ = αPWTWP + βPΦP + UAUT

A =
[
αMTM + βT αIk

αIk 0

]
U =

[
J
√
p
, PWTM

]
Φ
√
p

=
{

((ω◦i )Tω◦j )2δi 6=j
}n
i,j=1

−
{ tr (CaCb)

p2 1na1T
nb

}k
a,b=1

.

Role of α, β:
I Weighs Marc̆enko–Pastur versus semi-circle parts.
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Kernel Spectral Clustering: The case f ′(τ) = α√
p

Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk)
As p→∞,

νn ,
1
n

n∑
i=1

δλi(K̂)
a.s.−→ ν

with ν having Stieltjes transform m(z) solution of

1
m(z)

= −z +
α

p
trC◦

(
Ik +

αm(z)
c0

C◦
)−1

−
2β2

c0
ω2m(z)

where ω = limp→∞
1
p

tr (C◦)2.
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Kernel Spectral Clustering: The case f ′(τ) = α√
p

Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, p = 2048, n = 4096, k = 2,
n1 = n2, µi = 3δi, f(x) = 1

2β
(
x + 1√

p
α
β

)2
. (Top left): α = 8, β = 1, (Top right):

α = 4, β = 3, (Bottom left): α = 3, β = 4, (Bottom right): α = 1, β = 8.
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Kernel Spectral Clustering: The case f ′(τ) = α√
p

Asymptotic performances: MNIST

I MNIST is “means-dominant” but not that much!
Datasets ‖µ◦1 − µ◦2‖

2 1√
p

tr (C1 −C2)2 1
ptr (C1 −C2)2

MNIST (digits 1, 7) 613 1990 71.1
MNIST (digits 3, 6) 441 1119 39.9
MNIST (digits 3, 8) 212 652 23.5
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Figure: Spectral clustering of the MNIST database for varying α
β .
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Kernel Spectral Clustering: The case f ′(τ) = α√
p

Asymptotic performances: EEG data

I EEG data are “variance-dominant”
Datasets ‖µ◦1 − µ◦2‖
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p
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Figure: Spectral clustering of the EEG database for varying α
β .
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LS-SVM Problem Statement

Optimization problem: find separating
hyperplane (linear separability case)

arg min
w

J(w, e) = ‖w‖2 +
γ

n

n∑
i=1

e2i

such that yi = wᵀxi + b+ ei

for i = 1, . . . , n

−2 0 2 4 6 8
−2

0

2

4

6

8

10

(xi)1
(x
i
) 2

Class 1
Class 2

wᵀx+ b = 0

w

Advantage of LS-SVM
Explicit form, as opposed to SVM ⇒ easier to analyze.
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LS-SVM Problem Statement

When no linear separability:
⇒ Kernel method

To solve the optimization problem:

arg min
w

J(w, e) = ‖w‖2 +
γ

n

n∑
i=1

e2i

such that yi = wᵀϕ(xi) + b+ ei

for i = 1, . . . , n

−2 0 2 4 6 8
−2

0

2

4

6

8

10

ϕ(xi)1

ϕ
(x
i
) 2

Class 1
Class 2

wᵀϕ(x) + b = 0

w
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LS-SVM Training and Inference

I Training: Solution given by w =
∑n

i=1 αiϕ(xi), where{
α = S

(
In − 1n1ᵀ

nS

1ᵀ
nS1n

)
y = S (y − b1n)

b = 1ᵀ
nSy

1ᵀ
nS1n

with S ≡
(
K + n

γ
In
)−1 resolvent of kernel matrix:

K ≡ {ϕ(xi)ᵀϕ(xj)}ni,j=1

=︸︷︷︸
kernel trick

{
f

(
‖xi − xj‖2

p

)}n
i,j=1

for some translation invariant kernel function f : R+ 7→ R+, y ≡ [y1, . . . , yn]ᵀ and
α ≡ [α1, . . . , αn]ᵀ.

I Inference: Decision for new x

g(x) = αᵀk(x) + b where k(x) =
{
f
(
‖xj − x‖2/p

)}n
j=1
∈ Rn

I In practice, sign(g(x)) to predict the class.
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(
In − 1n1ᵀ

nS

1ᵀ
nS1n

)
y = S (y − b1n)

b = 1ᵀ
nSy

1ᵀ
nS1n

with S ≡
(
K + n

γ
In
)−1 resolvent of kernel matrix:

K ≡ {ϕ(xi)ᵀϕ(xj)}ni,j=1 =︸︷︷︸
kernel trick

{
f

(
‖xi − xj‖2

p

)}n
i,j=1

for some translation invariant kernel function f : R+ 7→ R+, y ≡ [y1, . . . , yn]ᵀ and
α ≡ [α1, . . . , αn]ᵀ.

I Inference: Decision for new x

g(x) = αᵀk(x) + b where k(x) =
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f
(
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RMT Analysis: Growth Rate Assumptions

I Large dimension: n, p→∞ and p
n
→ c0

I Gaussian mixture model: for a ∈ {1, 2}:

xi ∼ N (µa, Ca)

I Non-trivial regime: to ensure P (xi → Cb | xi ∈ Ca) 6→ 0 nor 1

I ‖µ2 − µ1‖ = O(1)
I ‖Ca‖ = O(1) and tr (C2 − C1) = O(

√
n)

I Notations:

I C◦ ≡ c1C1 + c2C2, c1 ≡ n1
n and c2 ≡ n2

n = 1− c1
I Key Notation: τ ≡ 2

p trC◦
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RMT Analysis: Kernel Linearization

Reminder: kernel matrix

Ki,j = f

(
‖xi − xj‖2

p

)
For xi ∈ Ca and xj ∈ Cb: 1

p
‖xi − xj‖2 = τ +O(n−1/2), thus for Ki,j

Ki,j = f
(
τ +O(n−1/2)

)
= f(τ) + f ′(τ)[. . .] + f ′′(τ)[. . .] + . . .

or in matrix form

K = f(τ)1n1ᵀn + f ′(τ)[. . .] + f ′′(τ)[. . .] + . . .

Consequence
Asymptotic statistics of K, thus of

g(x) = αᵀk(x) + b{
α = S

(
In − 1n1ᵀ

nS

1ᵀ
nS1n

)
y = S (y − b1n)

b = 1ᵀ
nSy

1ᵀ
nS1n

, S ≡
(
K +

n

γ
In

)−1
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Asymptotic Behavior of the Decision Function

Theorem ([Liao,C’19])
Under previous assumptions, for x ∈ Ca, a ∈ {1, 2}

n (g(x)−Ga) d→ 0

where Ga ∼ N (Ea,Vara)

with

Ea =
{
c2 − c1 − 2

p
c2 · c1c2γD , a = 1

c2 − c1 + 2
p

2c1 · c1c2γD , a = 2

Vara =
8
p2 γ

2c21c
2
2 (Va1 + Va2 + Va3 )

and

D = −2f ′(τ)‖µ2 − µ1‖2 +
f ′′(τ)
p

(tr (C2 − C1))2 +
2f ′′(τ)
p

tr
(
(C2 − C1)2

)
Va1 =

(f ′′(τ))2

p2 (tr (C2 − C1))2 trC2
a

Va2 = 2
(
f ′(τ)

)2
(µ2 − µ1)T Ca (µ2 − µ1)

Va3 =
2 (f ′(τ))2

n

( trC1Ca

c1
+

trC2Ca

c2

)
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Simulations on Gaussian data

0.49 0.5 0.51

g(x)x∈C1

g(x)x∈C2

Figure: Gaussian approximation of g(x),
n = 256, p = 512, c1 = 1/4, c2 = 3/4, γ = 1,
Gaussian kernel with σ2 = 1, x ∼ N (µa, Ca)
with µa = [0a−1; 3; 0p−a], C1 = Ip and
{C2}i,j = .4|i−j|(1 + 5√

p
).
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Figure: Performance of LS-SVM, c0 = 2,
c1 = c2 = 1/2, γ = 1, Gaussian kernel
f(t) = exp(− t

2σ2 ). x ∼ N (µa, Ca), with
µa = [0a−1; 2; 0p−a], C1 = Ip and
{C2}i,j = .4|i−j|(1 + 4√

p
).
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Simulations on MNIST data

−0.04 −0.02 0 0.02 0.04

g(x)x∈C1 histogram
g(x)x∈C2 histogram
Gaussian approximation G1
Gaussian approximation G2

(a) with 0dB noise
−0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15

(b) without noise

Figure: Gaussian approximation of g(x), n = 256, p = 784, c1 = c2 = 1/2, γ = 1, Gaussian
kernel with σ2 = 1, MNIST data (numbers 1 and 7) without and with 0dB noise.

117 / 151



Application to machine learning (Mohamed SEDDIK)/Semi-Supervised Learning 118/151

Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
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SSL Problem Statement

Context: Similar to clustering:
I Classify x1, . . . , xn ∈ Rp in k classes, with nl labelled and nu unlabelled data.

I Problem statement: give scores Fia (di = [K1n]i)

F = argminF∈Rn×k
k∑
a=1

∑
i,j

Kij(Fia

dα−1
i

− Fja

dα−1
j

)2

such that Fia = δ{xi∈Ca}, for all labelled xi.

I Solution: for F (u) ∈ Rnu×k, F (l) ∈ Rnl×k scores of unlabelled/labelled data,

F (u) =
(
Inu −D

−α
(u)K(u,u)D

α−1
(u)

)−1
D−α(u)K(u,l)D

α−1
(l) F (l)

where we naturally decompose

K =
[
K(l,l) K(l,u)
K(u,l) K(u,u)

]
D =

[
D(l) 0

0 D(u)

]
= diag {K1n} .
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The finite-dimensional intuition: What we expect

Figure: Typical expected performance output
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The reality: What we see!

Setting. p = 400, n = 1000, xi ∼ N (±µ, Ip). Kernel Kij = exp(− 1
2p‖xi − xj‖

2).
Display. Scores Fik (left) and Fik − 1

2 (Fi1 + Fi2) (right).

ë Score are almost all identical... and do not follow the labelled data!
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MNIST Data Example
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Figure: Vectors [F (u)]·,a, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: Assume nl/n→ cl ∈ (0, 1)
I We aim at characterizing

F (u) =
(
Inu −D

−α
(u)K(u,u)D

α−1
(u)

)−1
D−α(u)K(u,l)D

α−1
(l) F (l)

I Taylor expansion of K as n, p→∞,

K(u,u) = f(τ)1nu1T
nu

+O‖·‖(n−
1
2 )

D(u) = nf(τ)Inu +O(n
1
2 )

and similarly for K(u,l), D(l).
I So that(

Inu −D
−α
(u)K(u,u)D

α−1
(u)

)−1
=
(
Inu −

1nu1T
nu

n
+O‖·‖(n−

1
2 )
)−1

easily Taylor expanded.

123 / 151



Application to machine learning (Mohamed SEDDIK)/Semi-Supervised Learning 123/151

Theoretical Findings

Method: Assume nl/n→ cl ∈ (0, 1)
I We aim at characterizing

F (u) =
(
Inu −D

−α
(u)K(u,u)D

α−1
(u)

)−1
D−α(u)K(u,l)D

α−1
(l) F (l)

I Taylor expansion of K as n, p→∞,

K(u,u) = f(τ)1nu1T
nu

+O‖·‖(n−
1
2 )

D(u) = nf(τ)Inu +O(n
1
2 )

and similarly for K(u,l), D(l).

I So that(
Inu −D

−α
(u)K(u,u)D

α−1
(u)

)−1
=
(
Inu −

1nu1T
nu

n
+O‖·‖(n−

1
2 )
)−1

easily Taylor expanded.

123 / 151



Application to machine learning (Mohamed SEDDIK)/Semi-Supervised Learning 123/151

Theoretical Findings

Method: Assume nl/n→ cl ∈ (0, 1)
I We aim at characterizing

F (u) =
(
Inu −D

−α
(u)K(u,u)D

α−1
(u)

)−1
D−α(u)K(u,l)D

α−1
(l) F (l)

I Taylor expansion of K as n, p→∞,

K(u,u) = f(τ)1nu1T
nu

+O‖·‖(n−
1
2 )

D(u) = nf(τ)Inu +O(n
1
2 )

and similarly for K(u,l), D(l).
I So that(

Inu −D
−α
(u)K(u,u)D

α−1
(u)

)−1
=
(
Inu −

1nu1T
nu

n
+O‖·‖(n−

1
2 )
)−1

easily Taylor expanded.

123 / 151



Application to machine learning (Mohamed SEDDIK)/Semi-Supervised Learning 124/151

Main Results

Results: Assuming nl/n→ cl ∈ (0, 1), by previous Taylor expansion,
I In the first order,

F
(u)
·,a = C

nl,a

n

[
v︸︷︷︸

O(1)

+α
ta1nu√

n︸ ︷︷ ︸
O(n−

1
2 )

]
+ O(n−1)︸ ︷︷ ︸

Informative terms

where v = O(1) random vector (entry-wise) and ta = 1√
p

trC◦a .

I Consequences:
I Random non-informative bias v
I Strong Impact of nl,a

F
(u)
·,a to be scaled by nl,a

I Additional per-class bias αta1nu

α = 0 + β√
p
.
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Main Results
As a consequence of the remarks above, we take

α =
β
√
p

and define

F̂
(u)
i,a =

np

nl,a
F

(u)
ia .

Theorem
For xi ∈ Cb unlabelled,

F̂i,· −Gb → 0, Gb ∼ N (mb,Σb)

where mb ∈ Rk, Σb ∈ Rk×k given by

(mb)a = −
2f ′(τ)
f(τ)

M̃ab +
f ′′(τ)
f(τ)

t̃a t̃b +
2f ′′(τ)
f(τ)

T̃ab −
f ′(τ)2

f(τ)2 tatb + β
n

nl

f ′(τ)
f(τ)

ta +Bb

(Σb)a1a2 =
2trC2

b

p

(
f ′(τ)2

f(τ)2 −
f ′′(τ)
f(τ)

)2

ta1 ta2 +
4f ′(τ)2

f(τ)2

(
[MTCbM ]a1a2 +

δa2
a1 p

nl,a1
Tba1

)
with t, T,M as before, X̃a = Xa −

∑k

d=1
nl,d
nl

X◦d and Bb bias independent of a.
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a 6= b,

P (F̂i,a > F̂ib | xi ∈ Cb)−Q

(
(mb)b − (mb)a√
[1,−1]Σb[1,−1]T

)
→ 0.

Some consequences:
I non obvious choices of appropriate kernels
I non obvious choice of optimal β (induces a possibly beneficial bias)
I importance of nl versus nu.
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MNIST Data Example
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Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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MNIST Data Example
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Figure: Performance as a function of α, for 2-class MNIST data (zeros, ones), n = 1568, p = 784,
nl/n = 1/16, Gaussian kernel.
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Is semi-supervised learning really semi-supervised?

Reminder:
For xi ∈ Cb unlabelled, F̂i,· −Gb → 0, Gb ∼ N (mb,Σb) with

(mb)a = −
2f ′(τ)
f(τ)

M̃ab +
f ′′(τ)
f(τ)

t̃a t̃b +
2f ′′(τ)
f(τ)

T̃ab −
f ′(τ)2

f(τ)2 tatb + β
n

nl

f ′(τ)
f(τ)

ta +Bb

(Σb)a1a2 =
2trC2

b

p

(
f ′(τ)2

f(τ)2 −
f ′′(τ)
f(τ)

)2

ta1 ta2 +
4f ′(τ)2

f(τ)2

(
[MTCbM ]a1a2 +

δa2
a1 p

nl,a1
Tba1

)
with t, T,M as before, X̃a = Xa −

∑k

d=1
nl,d
nl

X◦d and Bb bias independent of a.

The problem with unlabelled data:
I Result does not depend on nu!
−→ increasing nu asymptotically non beneficial.

I Even best Laplacian regularizer brings SSL to be merely supervised learning.
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Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional “mismatch”

I A priori, the algorithm should not work
I Indeed “in general” it does not!
I But, luckily, after some (not clearly motivated) renormalization, it works again...

I BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, “Semi-Supervised Learning”, Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding
the unlabeled data and employing a supervised method, rather than taking a

semi-supervised route. Thus we worry about the embarrassing situation where the
addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it
I Asymptotic performance analysis: clear understanding of what we see!
I Update the algorithm and provably improve unlabelled data use.
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Resurrecting SSL by centering (SSL Improved)

Reminder:

F = argminF∈Rn×k
k∑
a=1

∑
i,j

Kij(Fiadα−1
i − Fjadα−1

j )2 with F (l)
ia = δ{xi∈Ca}

⇔ F (u) =
(
Inu −D

−α
(u)K(u,u)D

α−1
(u)

)−1
D−α(u)K(u,l)D

α−1
(l) F (l).

Domination of score flattening:
I Consequence of 1

p
‖xi − xi‖2 → τ : D−α(u)K(u,u)D

α−1
(u) '

1
n

1nu1T
nu and

clustering information vanishes (not so obvious but can be shown).

Solution:
I Forgetting finite-dimensional intuition: “recenter” K to kill flattening, i.e., use

K̃ = PKP , P = In −
1
n

1n1T
n.
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Asymptotic Performance Analysis

Theorem ([Mai,C’19] Asymptotic Performance of Improved SSL)
For xi ∈ Cb unlabelled, score vector F̂i,· ∈ Rk with K̃ satisfies:

F̂i,· − G̃b → 0, G̃b ∼ N (m̃b, Σ̃b)

with m̃b ∈ Rk, Σ̃b ∈ Rk×k still function of f(τ), f ′(τ), f ′′(τ), µ1, . . . , µk, C1, . . . , Ck.

Most importantly: m̃b, Σ̃b now dependent of nu (number of unlabelled data).

Performances:
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Performance as a function of nu, nl for N (±, Ip)

20 40 60 80 100

0.6

0.8

1

‖µ‖ = 1

‖µ‖ = 2

‖µ‖ = 3

cu/cl (blue), cl/cu (black)

Figure: Correct classification rate, at optimal α, as a function of (i) nu for fixed p/nl = 5 (blue)
and (ii) nl for fixed p/nu = 5 (black); c1 = c2 = 1

2 ; different values for ‖µ‖. Comparison to
optimal Neyman–Pearson performance for known µ (in red).
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Experimental evidence: MNIST

Digits (0,8) (2,7) (6,9)
nu = 100

Centered kernel (RMT) 89.5±3.6 89.5±3.4 85.3±5.9
Iterated centered kernel (RMT) 89.5±3.6 89.5±3.4 85.3±5.9

Laplacian 75.5±5.6 74.2±5.8 70.0±5.5
Iterated Laplacian 87.2±4.7 86.0±5.2 81.4±6.8

Manifold 88.0±4.7 88.4±3.9 82.8±6.5
nu = 1000

Centered kernel (RMT) 92.2±0.9 92.5±0.8 92.6±1.6
Iterated centered kernel (RMT) 92.3±0.9 92.5± 0.8 92.9±1.4

Laplacian 65.6±4.1 74.4±4.0 69.5±3.7
Iterated Laplacian 92.2±0.9 92.4±0.9 92.0±1.6

Manifold 91.1±1.7 91.4±1.9 91.4±2.0

Table: Comparison of classification accuracy (%) on MNIST datasets with nl = 10. Computed over
1000 random iterations for nu = 100 and 100 for nu = 1000.
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Experimental evidence: Traffic signs (HOG features)

Class ID (2,7) (9,10) (11,18)
nu = 100

Centered kernel (RMT) 79.0±10.4 77.5±9.2 78.5±7.1
Iterated centered kernel (RMT) 85.3±5.9 89.2±5.6 90.1±6.7

Laplacian 73.8±9.8 77.3±9.5 78.6±7.2
Iterated Laplacian 83.7±7.2 88.0±6.8 87.1±8.8

Manifold 77.6±8.9 81.4±10.4 82.3±10.8
nu = 1000

Centered kernel (RMT) 83.6±2.4 84.6±2.4 88.7±9.4
Iterated centered kernel (RMT) 84.8±3.8 88.0±5.5 96.4±3.0

Laplacian 72.7±4.2 88.9±5.7 95.8±3.2
Iterated Laplacian 83.0±5.5 88.2±6.0 92.7±6.1

Manifold 77.7±5.8 85.0±9.0 90.6±8.1

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with nl = 10.
Computed over 1000 random iterations for nu = 100 and 100 for nu = 1000.
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Notion of Concentrated Vectors

I Observation: RMT seems to predict ML performances for real data even with
Gaussian assumptions!

I But Real data are unlikely close to Gaussian.
I Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition
Given a normed space (E, ‖ · ‖E) and q ∈ R, a random vector z ∈ E is q-exponentially
concentrated if for any 1-Lipschitz function2 F : Rp → R, there exists C, c > 0 s.t.

P {|F(z)− EF(z)| > t} ≤ Ce−c t
q denoted−−−−−→ z ∈ O(e−·

q
)

(P1) X ∼ N (0, Ip) is 2-exponentially concentrated.
(P2) If X ∈ O(e−·q ) and G is ‖G‖lip-Lipschitz, then

G(X) ∈ O
(
e−(·/‖G‖lip)q

)
.

“Concentrated vectors are stable through Lipschitz maps.”

2Reminder: F : E → F is ‖F‖lip-Lipschitz if ∀(x, y) ∈ E2 : ‖F(x)−F(y)‖F ≤ ‖F‖lip ‖x− y‖E .
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GAN data: An Example of Concentrated Vectors

min
G

max
D

Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

We generate data as
Generated image = G(Gaussian)
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GAN data: An Example of Concentrated Vectors

Figure: Images generated by the BigGAN model [Brock et al, ICLR’19].

GAN Data = F1 ◦ F2 ◦ · · · ◦ FN (Gaussian)

where the Fi’s are either Fully Connected Layers, Convolutional Layers, Pooling Layers
and Activation Functions, Residual Connections or Batch Normalizations.

⇒ The Fi’s are Lipschitz operations.
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GAN data: An Example of Concentrated Vectors

I Fully Connected Layers and Convolutional Layers are affine operations:

Fi(x) = Wix+ bi,

and ‖Fi‖lip = supu6=0
‖Wiu‖p
‖u‖p

, for any p-norm.

I Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect
to any p-norm (e.g., ReLU and Max-pooling).

I Residual Connections: Fi(x) = x+ F(1)
i ◦ · · · ◦ F(`)

i (x)
where the F(j)

i ’s are Lipschitz operations, thus Fi is a Lipschitz operation with
Lipschitz constant bounded by 1 +

∏`

j=1 ‖F
(j)
i ‖lip.

I . . .
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Mixture of Concentrated Vectors

Consider data distributed in k classes C1, C2, . . . , Ck as

X = [x1, . . . , xn1︸ ︷︷ ︸
∈O(e−·q1 )

, xn1+1, . . . , xn2︸ ︷︷ ︸
∈O(e−·q2 )

, . . . , xn−nk+1, . . . , xn︸ ︷︷ ︸
∈O(e−·qk )

] ∈ Rp×n

Denote

µ` = Exi∈C` [xi], C` = Exi∈C` [xix
ᵀ
i ]

Assumption (Growth rate)
As p→∞,

1. p/n→ c ∈ (0,∞).
2. The number of classes k is bounded.
3. For any ` ∈ [k], ‖µ`‖ = O(√p).

Notation
Q(z) = (XᵀX/p+ zIn)−1.
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Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) ∈ O(e−(√p ·)q ) in (Rn×n, ‖ · ‖).
Furthermore,∥∥E[Q(z)]− Q̃(z)

∥∥ = O
(√

log p
p

)
where Q̃(z) =

1
z

Λ(z) +
1
p z

JΩ(z)Jᵀ

with Λ(z) = diag
{

1n`
1+δ`(z)

}k
`=1

and Ω(z) = diag{µᵀ
`
R̃(z)µ`}k`=1

R̃(z) =

(
1
k

k∑
`=1

C`

1 + δ`(z)
+ zIp

)−1

with δ(z) = [δ1(z), . . . , δk(z)] is the unique fixed point of the system of equations

δ`(z) =
1
p

tr

(
C`

(
1
k

k∑
j=1

Cj

1 + δj(z)
+ zIp

)−1)
for each ` ∈ [k].
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Behavior of Gram Matrices for Concentrated Vectors
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Key Observation: Only first and second order statistics matter!
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Application to CNN Representations of GAN Images

I CNN representations correspond to the one before last layer.
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Application to CNN Representations of GAN Images

Generator

Discriminator

Lipschitz operation

Real / Fake

Representation Network

Lipschitz operation

Concentrated Vectors
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Application to CNN representations of GAN Images
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Take-away messages

I Asymptotic “concentration effect” for large n, p

⇒ simplification in analyses and
models.

I Non-trivial phase transition phenomena (ability to detect, estimate) when
p, n→∞.

I Access to limiting performances and not only bounds! ⇒ hyperparameter
optimization, algorithm improvement.

I Complete intuitive change ⇒ opens way to renewed methods.

I Strong coincidence with real datasets ⇒ easy link between theory and practice.
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Perspectives and Open Problems

I Neural nets: loss landscape, gradient descent dynamics and

deep learning!
I Generalized linear models
I More general problems from convex optimization (often of implicit solution)
I More difficult: problem raised from non-convex optimization problems
I Transfer learning, active learning, generative networks (GAN)
I Robust statistics in machine learning
I . . .
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The End

Thank you.
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