# Random Matrix Advances in Large Dimensional Statistics, Machine Learning and Neural Nets (EUSIPCO'2019, A Coruna, Spain) 

Romain COUILLET, Malik TIOMOKO, Mohamed SEDDIK

CentraleSupélec, L2S, University of ParisSaclay, France
GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble-Alpes, France.

September 2nd, 2019

## Outline

Basics of Random Matrix Theory (Romain COUILLET)<br>Motivation: Large Sample Covariance Matrices<br>The Stieltjes Transform Method<br>Spiked Models<br>Other Common Random Matrix Models<br>Applications<br>Large dimensional inference and kernels (Malik TIOMOKO)<br>Motivation: EEG-based clustering<br>Covariance Distance Inference<br>Revisiting Motivation<br>Kernel Asymptotics<br>Application to machine learning (Mohamed SEDDIK)<br>Support Vector Machines<br>Semi-Supervised Learning<br>From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$ :

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for $C_{p}$ is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for $C_{p}$ is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p} .
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for $C_{p}$ is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p} .
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

## Random Matrix Regime

- No longer valid if $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left\|\hat{C}_{p}-C_{p}\right\| \nrightarrow 0
$$

## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for $C_{p}$ is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p}
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

## Random Matrix Regime

- No longer valid if $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left\|\hat{C}_{p}-C_{p}\right\| \nrightarrow 0
$$

- For practical $p, n$ with $p \simeq n$, leads to dramatically wrong conclusions


## Context

Baseline scenario: $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}\left(\right.$ or $\left.\mathbb{C}^{p}\right)$ i.i.d. with $E\left[x_{1}\right]=0, E\left[x_{1} x_{1}^{\top}\right]=C_{p}$ :

- If $x_{1} \sim \mathcal{N}\left(0, C_{p}\right), \mathrm{ML}$ estimator for $C_{p}$ is the sample covariance matrix (SCM)

$$
\hat{C}_{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

- If $n \rightarrow \infty$, then, strong law of large numbers

$$
\hat{C}_{p} \xrightarrow{\text { a.s. }} C_{p}
$$

or equivalently, in spectral norm

$$
\left\|\hat{C}_{p}-C_{p}\right\| \xrightarrow{\text { a.s. }} 0 .
$$

## Random Matrix Regime

- No longer valid if $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left\|\hat{C}_{p}-C_{p}\right\| \nrightarrow 0
$$

- For practical $p, n$ with $p \simeq n$, leads to dramatically wrong conclusions
- Even for $n=100 \times p$.


## The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

## The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$


## The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$
- then, joint point-wise convergence

$$
\max _{1 \leq i, j \leq p}\left|\left[\hat{C}_{p}-I_{p}\right]_{i j}\right|=\max _{1 \leq i, j \leq p}\left|\frac{1}{n} X_{j,} X_{i, .}^{\top}-\delta_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
$$

## The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$
- then, joint point-wise convergence

$$
\max _{1 \leq i, j \leq p}\left|\left[\hat{C}_{p}-I_{p}\right]_{i j}\right|=\max _{1 \leq i, j \leq p}\left|\frac{1}{n} X_{j, \cdot} X_{i, \cdot}^{\top}-\boldsymbol{\delta}_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
$$

- however, eigenvalue mismatch

$$
\begin{gathered}
0=\lambda_{1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p-n}\left(\hat{C}_{p}\right) \leq \lambda_{p-n+1}\left(\hat{C}_{p}\right) \leq \ldots \leq \lambda_{p}\left(\hat{C}_{p}\right) \\
1=\lambda_{1}\left(I_{p}\right)=\ldots=\lambda_{p-n}\left(I_{p}\right)=\lambda_{p-n+1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p}\left(I_{p}\right)
\end{gathered}
$$

## The Large Dimensional Fallacies

Setting: $x_{i} \in \mathbb{R}^{p}$ i.i.d., $x_{1} \sim \mathcal{C N}\left(0, I_{p}\right)$

- assume $p=p(n)$ such that $p / n \rightarrow c>1$
- then, joint point-wise convergence

$$
\max _{1 \leq i, j \leq p}\left|\left[\hat{C}_{p}-I_{p}\right]_{i j}\right|=\max _{1 \leq i, j \leq p}\left|\frac{1}{n} X_{j,} X_{i, .}^{\top}-\boldsymbol{\delta}_{i j}\right| \xrightarrow{\text { a.s. }} 0 .
$$

- however, eigenvalue mismatch

$$
\begin{aligned}
0=\lambda_{1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p-n}\left(\hat{C}_{p}\right) & \leq \lambda_{p-n+1}\left(\hat{C}_{p}\right) \leq \ldots \leq \lambda_{p}\left(\hat{C}_{p}\right) \\
1=\lambda_{1}\left(I_{p}\right)=\ldots=\lambda_{p-n}\left(I_{p}\right) & =\lambda_{p-n+1}\left(\hat{C}_{p}\right)=\ldots=\lambda_{p}\left(I_{p}\right)
\end{aligned}
$$

$\Rightarrow$ no convergence in spectral norm.

## The Marčenko-Pastur law



Figure: Histogram of the eigenvalues of $\hat{C}_{p}$ for $c=1 / 4, C_{p}=I_{p}$.

## The Marčenko-Pastur law



Figure: Histogram of the eigenvalues of $\hat{C}_{p}$ for $c=1 / 4, C_{p}=I_{p}$.

## The Marčenko-Pastur law



Figure: Histogram of the eigenvalues of $\hat{C}_{p}$ for $c=1 / 4, C_{p}=I_{p}$.

## The Marčenko-Pastur law



Figure: Histogram of the eigenvalues of $\hat{C}_{p}$ for $c=1 / 4, C_{p}=I_{p}$.

## The Marčenko-Pastur law



Figure: Histogram of the eigenvalues of $\hat{C}_{p}$ for $c=1 / 4, C_{p}=I_{p}$.

## The Marčenko-Pastur law



Figure: Histogram of the eigenvalues of $\hat{C}_{p}$ for $c=1 / 4, C_{p}=I_{p}$.

## The Marčenko-Pastur law

## Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) $\mu_{p}$ of Hermitian matrix $A_{p} \in \mathbb{R}^{p \times p}$ is

$$
\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}\left(A_{p}\right)}
$$

## The Marčenko-Pastur law

## Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) $\mu_{p}$ of Hermitian matrix $A_{p} \in \mathbb{R}^{p \times p}$ is

$$
\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}\left(A_{p}\right)} .
$$

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries.
As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. $\mu_{p}$ of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

in distribution (i.e., $\int f(t) \mu_{p}(d t) \xrightarrow{\text { a.s. }} \int f(t) \mu_{(c)}(d t)$ for all bounded continuous $f$ ), where

- $\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}$


## The Marčenko-Pastur law

## Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) $\mu_{p}$ of Hermitian matrix $A_{p} \in \mathbb{R}^{p \times p}$ is

$$
\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}\left(A_{p}\right)} .
$$

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries.
As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. $\mu_{p}$ of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

in distribution (i.e., $\int f(t) \mu_{p}(d t) \xrightarrow{\text { a.s. }} \int f(t) \mu_{(c)}(d t)$ for all bounded continuous $f$ ), where

- $\mu_{c}(\{0\})=\max \left\{0,1-c^{-1}\right\}$
- on $(0, \infty), \mu_{(c)}$ has continuous density $f_{c}$ supported on $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(x-(1-\sqrt{c})^{2}\right)\left((1+\sqrt{c})^{2}-x\right)}
$$

## The Marčenko-Pastur law



Figure: Marčenko-Pastur law for different limit ratios $c=\lim _{p \rightarrow \infty} p / n$.

## The Marčenko-Pastur law



Figure: Marčenko-Pastur law for different limit ratios $c=\lim _{p \rightarrow \infty} p / n$.

## The Marčenko-Pastur law



Figure: Marčenko-Pastur law for different limit ratios $c=\lim _{p \rightarrow \infty} p / n$.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


## The Stieltjes transform

## Definition (Stieltjes Transform)

For $\mu$ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform $m_{\mu}$ defined, for $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
$$

## The Stieltjes transform

Definition (Stieltjes Transform)
For $\mu$ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform $m_{\mu}$ defined, for $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
$$

Property (Inverse Stieltjes Transform)
For $a<b$ continuity points of $\mu$,

$$
\mu([a, b])=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] d x
$$

## The Stieltjes transform

## Definition (Stieltjes Transform)

For $\mu$ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform $m_{\mu}$ defined, for $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
m_{\mu}(z)=\int \frac{1}{t-z} \mu(d t)
$$

## Property (Inverse Stieltjes Transform)

For $a<b$ continuity points of $\mu$,

$$
\mu([a, b])=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] d x
$$

Besides, if $\mu$ has a density $f$ at $x$,

$$
f(x)=\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \Im\left[m_{\mu}(x+\imath \varepsilon)\right] .
$$

## The Stieltjes transform

Property (Relation to e.s.d.)
If $\mu$ e.s.d. of Hermitian $A \in \mathbb{R}^{p \times p}$, (i.e., $\mu=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}(A)}$ )

$$
m_{\mu}(z)=\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
$$

## The Stieltjes transform

Property (Relation to e.s.d.)
If $\mu$ e.s.d. of Hermitian $A \in \mathbb{R}^{p \times p}$, (i.e., $\mu=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}(A)}$ )

$$
m_{\mu}(z)=\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
$$

## Proof:

$$
\begin{aligned}
m_{\mu}(z) & =\int \frac{\mu(d t)}{t-z}=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(A)-z}=\frac{1}{p} \operatorname{tr}\left(\operatorname{diag}\left\{\lambda_{i}(A)\right\}-z I_{p}\right)^{-1} \\
& =\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1} .
\end{aligned}
$$

## The Stieltjes transform

Property (Relation to e.s.d.)
If $\mu$ e.s.d. of Hermitian $A \in \mathbb{R}^{p \times p}$, (i.e., $\mu=\frac{1}{p} \sum_{i=1}^{p} \boldsymbol{\delta}_{\lambda_{i}(A)}$ )

$$
m_{\mu}(z)=\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
$$

## Proof:

$$
\begin{aligned}
m_{\mu}(z) & =\int \frac{\mu(d t)}{t-z}=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(A)-z}=\frac{1}{p} \operatorname{tr}\left(\operatorname{diag}\left\{\lambda_{i}(A)\right\}-z I_{p}\right)^{-1} \\
& =\frac{1}{p} \operatorname{tr}\left(A-z I_{p}\right)^{-1}
\end{aligned}
$$

Fundamental object: the resolvent of $A$

$$
Q_{A}(z) \equiv\left(A-z I_{p}\right)^{-1} .
$$

## The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For $X \in \mathbb{C}^{p \times n}$, and

- $\mu$ e.s.d. of $X X^{\top}$
- $\tilde{\mu}$ e.s.d. of $X^{\top} X$

Then

$$
m_{\mu}(z)=\frac{n}{p} m_{\tilde{\mu}}(z)-\frac{p-n}{p} \frac{1}{z}
$$

## The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For $X \in \mathbb{C}^{p \times n}$, and

- $\mu$ e.s.d. of $X X^{\top}$
$-\tilde{\mu}$ e.s.d. of $X^{\top} X$
Then

$$
m_{\mu}(z)=\frac{n}{p} m_{\tilde{\mu}}(z)-\frac{p-n}{p} \frac{1}{z}
$$

Proof:

$$
m_{\mu}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}\left(X X^{\top}\right)-z}=\frac{1}{p} \sum_{i=1}^{n} \frac{1}{\lambda_{i}\left(X^{\top} X\right)-z}+\frac{1}{p}(p-n) \frac{1}{0-z}
$$

## The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For $A, B \in \mathbb{R}^{p \times p}$ invertible,

$$
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1} .
$$

Proof: Simply left-multiply by $A$ and right-multiply by $B$ on both sides.

## The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For $A, B \in \mathbb{R}^{p \times p}$ invertible,

$$
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}
$$

Proof: Simply left-multiply by $A$ and right-multiply by $B$ on both sides.

Corollary
For $t \in \mathbb{C}, x \in \mathbb{R}^{p}, A \in \mathbb{R}^{p \times p}$, with $A$ and $A+t x x^{\top}$ invertible,

$$
\left(A+t x x^{\top}\right)^{-1} x=\frac{A^{-1} x}{1+t x^{\top} A^{-1} x}
$$

Proof Intuition: Left-multiply by $\left(A+t c c^{\boldsymbol{\top}}\right)$ on both sides.

## The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. $\mu$ of $A, t>0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
\left|\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1}\right| \leq \frac{1}{p} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
$$

## The Stieltjes transform

## Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. $\mu$ of $A, t>0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
\left|\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1}\right| \leq \frac{1}{p} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
$$

In particular, as $p \rightarrow \infty$, if $\lim \sup _{p}\|B\|<\infty$,

$$
\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1} \rightarrow 0 .
$$

## The Stieltjes transform

Three fundamental lemmas in all proofs.

## Lemma (Rank-one perturbation)

For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. $\mu$ of $A, t>0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
\left|\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1}\right| \leq \frac{1}{p} \frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}
$$

In particular, as $p \rightarrow \infty$, if $\lim \sup _{p}\|B\|<\infty$,

$$
\frac{1}{p} \operatorname{tr} B\left(A+t x x^{\top}-z I_{p}\right)^{-1}-\frac{1}{p} \operatorname{tr} B\left(A-z I_{p}\right)^{-1} \rightarrow 0 .
$$

Proof Intuition: Based on Weyl's interlacing identity (eigenvalues of $A$ and $A+t x x^{\top}$ are interlaced).

## The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For

- $x \in \mathbb{R}^{p}$ with i.i.d. entries with zero mean, unit variance, finite $2 k$ order moment,
- $A \in \mathbb{R}^{p \times p}$ deterministic (or independent of $x$ ),
then

$$
E\left[\left|\frac{1}{p} x^{\top} A x-\frac{1}{p} \operatorname{tr} A\right|^{k}\right] \leq K \frac{\|A\|^{p}}{p^{k / 2}}
$$

## The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For

- $x \in \mathbb{R}^{p}$ with i.i.d. entries with zero mean, unit variance, finite $2 k$ order moment,
- $A \in \mathbb{R}^{p \times p}$ deterministic (or independent of $x$ ),
then

$$
E\left[\left|\frac{1}{p} x^{\top} A x-\frac{1}{p} \operatorname{tr} A\right|^{k}\right] \leq K \frac{\|A\|^{p}}{p^{k / 2}}
$$

In particular, if $\limsup _{p}\|A\|<\infty$, and $x$ has entries with finite eighth-order moment,

$$
\frac{1}{p} x^{\top} A x-\frac{1}{p} \operatorname{tr} A \xrightarrow{\text { a.s. }} 0
$$

(by Markov inequality and Borel Cantelli lemma).

## Proof of the Marčenko-Pastur law

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. $\mu_{p}$ of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

weakly, where
$-\mu_{(c)}(\{0\})=\max \left\{0,1-c^{-1}\right\}$

## Proof of the Marčenko-Pastur law

Theorem (Marčenko-Pastur Law [Marčenko,Pastur'67])
$X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, e.s.d. $\mu_{p}$ of $\frac{1}{n} X_{p} X_{p}^{\top}$ satisfies

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu_{(c)}
$$

weakly, where

- $\mu_{(c)}(\{0\})=\max \left\{0,1-c^{-1}\right\}$
- on $(0, \infty), \mu_{(c)}$ has continuous density $f_{c}$ supported on $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(x-(1-\sqrt{c})^{2}\right)\left((1+\sqrt{c})^{2}-x\right)}
$$

## Proof of the Marčenko-Pastur law

Stieltjes transform approach.

## Proof of the Marčenko-Pastur law

Stieltjes transform approach.

## Proof

- With $\mu_{p}$ e.s.d. of $\frac{1}{n} X_{p} X_{p}^{\top}$,

$$
m_{\mu_{p}}(z)=\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\frac{1}{p} \sum_{i=1}^{p}\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{i i}
$$

## Proof of the Marčenko-Pastur law

Stieltjes transform approach.

## Proof

- With $\mu_{p}$ e.s.d. of $\frac{1}{n} X_{p} X_{p}^{\top}$,

$$
m_{\mu_{p}}(z)=\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\frac{1}{p} \sum_{i=1}^{p}\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{i i}
$$

- Write

$$
X_{p}=\left[\begin{array}{c}
y^{\top} \\
Y_{p-1}
\end{array}\right] \in \mathbb{R}^{p \times n}
$$

## Proof of the Marčenko-Pastur law

Stieltjes transform approach.

## Proof

- With $\mu_{p}$ e.s.d. of $\frac{1}{n} X_{p} X_{p}^{\top}$,

$$
m_{\mu_{p}}(z)=\frac{1}{p} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\frac{1}{p} \sum_{i=1}^{p}\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{i i}
$$

- Write

$$
X_{p}=\left[\begin{array}{c}
y^{\top} \\
Y_{p-1}
\end{array}\right] \in \mathbb{R}^{p \times n}
$$

so that, for $\Im[z]>0$,

$$
\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{n} y^{\top} y-z & \frac{1}{n} y^{\top} Y_{p-1} \\
\frac{1}{n} Y_{p-1} y & \frac{1}{n} Y_{p-1} Y_{p-1}^{\top}-z I_{p-1}
\end{array}\right)^{-1}
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- From block matrix inverse formula

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(A-B D^{-1} C\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

we have

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}=\frac{1}{-z-z \frac{1}{n} y^{\top}\left(\frac{1}{n} Y_{p-1}^{\top} Y_{p-1}-z I_{n}\right)^{-1} y}
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- From block matrix inverse formula

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(A-B D^{-1} C\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right)
$$

we have

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}=\frac{1}{-z-z \frac{1}{n} y^{\top}\left(\frac{1}{n} Y_{p-1}^{\top} Y_{p-1}-z I_{n}\right)^{-1} y}
$$

- By Trace Lemma, as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} Y_{p-1}^{\top} Y_{p-1}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- By Rank-1 Perturbation Lemma ( $X_{p}^{\top} X_{p}=Y_{p-1}^{\top} Y_{p-1}+y y^{\top}$ ), as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- By Rank-1 Perturbation Lemma ( $X_{p}^{\top} X_{p}=Y_{p-1}^{\top} Y_{p-1}+y y^{\top}$ ), as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

- Since $\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}=\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}-\frac{n-p}{n} \frac{1}{z}$,

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{1-\frac{p}{n}-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- By Rank-1 Perturbation Lemma ( $X_{p}^{\top} X_{p}=Y_{p-1}^{\top} Y_{p-1}+y y^{\top}$ ), as $p, n \rightarrow \infty$

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

- Since $\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p}^{\top} X_{p}-z I_{n}\right)^{-1}=\frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}-\frac{n-p}{n} \frac{1}{z}$,

$$
\left[\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}\right]_{11}-\frac{1}{1-\frac{p}{n}-z-z \frac{1}{n} \operatorname{tr}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1}} \xrightarrow{\text { a.s. }} 0 .
$$

- Repeating for entries $(2,2), \ldots,(p, p)$, and averaging, we get (for $\Im[z]>0$ )

$$
m_{\mu_{p}}(z)-\frac{1}{1-\frac{p}{n}-z-z \frac{p}{n} m_{\mu_{p}}(z)} \xrightarrow{\text { a.s. }} 0 .
$$

## Proof of the Marčenko-Pastur law

Proof (continued)

- Then $m_{\mu_{p}}(z) \xrightarrow{\text { a.s. }} m(z)$ solution to

$$
m(z)=\frac{1}{1-c-z-c z m(z)}
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- Then $m_{\mu_{p}}(z) \xrightarrow{\text { a.s. }} m(z)$ solution to

$$
m(z)=\frac{1}{1-c-z-c z m(z)}
$$

i.e., (with branch of $\sqrt{f(z)}$ such that $m(z) \rightarrow 0$ as $|z| \rightarrow \infty$ )

$$
m(z)=\frac{1-c}{2 c z}-\frac{1}{2 c}+\frac{\sqrt{\left(z-(1+\sqrt{c})^{2}\right)\left(z-(1-\sqrt{c})^{2}\right)}}{2 c z}
$$

## Proof of the Marčenko-Pastur law

## Proof (continued)

- Then $m_{\mu_{p}}(z) \xrightarrow{\text { a.s. }} m(z)$ solution to

$$
m(z)=\frac{1}{1-c-z-c z m(z)}
$$

i.e., (with branch of $\sqrt{f(z)}$ such that $m(z) \rightarrow 0$ as $|z| \rightarrow \infty$ )

$$
m(z)=\frac{1-c}{2 c z}-\frac{1}{2 c}+\frac{\sqrt{\left(z-(1+\sqrt{c})^{2}\right)\left(z-(1-\sqrt{c})^{2}\right)}}{2 c z}
$$

- Finally, by inverse Stieltjes Transform, for $x>0$,

$$
\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \Im[m(x+\imath \varepsilon)]=\frac{\sqrt{\left((1+\sqrt{c})^{2}-x\right)\left(x-(1-\sqrt{c})^{2}\right)}}{2 \pi c x} 1_{\left\{x \in\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]\right\}}
$$

And for $x=0$,

$$
\lim _{\varepsilon \downarrow 0} \imath \varepsilon \Im[m(\imath \varepsilon)]=\left(1-c^{-1}\right) 1_{\{c>1\}}
$$

## Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95]) Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance.

As $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, $\tilde{\mu}_{p}$ e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p} \in \mathbb{R}^{n \times n}$ satisfies

$$
\tilde{\mu}_{p} \xrightarrow{\text { a.s. }} \tilde{\mu}
$$

weakly, with $m_{\tilde{\mu}}(z), \Im[z]>0$, unique solution with $\Im\left[m_{\tilde{\mu}}(z)\right]>0$ of

$$
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
$$

## Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95]) Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance.

As $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, $\tilde{\mu}_{p}$ e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p} \in \mathbb{R}^{n \times n}$ satisfies

$$
\tilde{\mu}_{p} \xrightarrow{\text { a.s. }} \tilde{\mu}
$$

weakly, with $m_{\tilde{\mu}}(z), \Im[z]>0$, unique solution with $\Im\left[m_{\tilde{\mu}}(z)\right]>0$ of

$$
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
$$

Moreover, $\tilde{\mu}$ is continuous on $\mathbb{R}^{+}$and real analytic wherever positive.

## Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai'95])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance.

As $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, $\tilde{\mu}_{p}$ e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p} \in \mathbb{R}^{n \times n}$ satisfies

$$
\tilde{\mu}_{p} \xrightarrow{\text { a.s. }} \tilde{\mu}
$$

weakly, with $m_{\tilde{\mu}}(z), \Im[z]>0$, unique solution with $\Im\left[m_{\tilde{\mu}}(z)\right]>0$ of

$$
m_{\tilde{\mu}}(z)=\left(-z+c \int \frac{t}{1+t m_{\tilde{\mu}}(z)} \nu(d t)\right)^{-1}
$$

Moreover, $\tilde{\mu}$ is continuous on $\mathbb{R}^{+}$and real analytic wherever positive.

Immediate corollary: For $\mu_{p}$ e.s.d. of $\frac{1}{n} Y_{p} Y_{p}^{\top}=\frac{1}{n} \sum_{i=1}^{n} C_{p}^{\frac{1}{2}} x_{i} x_{i}^{\top} C_{p}^{\frac{1}{2}}$,

$$
\mu_{p} \xrightarrow{\text { a.s. }} \mu
$$

weakly, with $\tilde{\mu}=c \mu+(1-c) \boldsymbol{\delta}_{0}$.

## Sample Covariance Matrices



Figure: Histogram of the eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, n=3000, p=300$, with $C_{p}$ diagonal with evenly weighted masses in (i) $1,3,7$, (ii) $1,3,4$.

## Further Models and Deterministic Equivalents

Sometimes, $\mu_{p}$ does not converge!

## Further Models and Deterministic Equivalents

Sometimes, $\mu_{p}$ does not converge!

- if $\nu_{p}$ does not converge


## Further Models and Deterministic Equivalents

Sometimes, $\mu_{p}$ does not converge!

- if $\nu_{p}$ does not converge
- if $p / n$ does not converge


## Further Models and Deterministic Equivalents

Sometimes, $\mu_{p}$ does not converge!

- if $\nu_{p}$ does not converge
- if $p / n$ does not converge
- if eigenvectors of deterministic matrices play a role!


## Further Models and Deterministic Equivalents

Sometimes, $\mu_{p}$ does not converge!

- if $\nu_{p}$ does not converge
- if $p / n$ does not converge
- if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence $\bar{\mu}_{p}$ of deterministic measures, with

$$
\mu_{p}-\bar{\mu}_{p} \xrightarrow{\text { a.s. }} 0
$$

## Further Models and Deterministic Equivalents

Sometimes, $\mu_{p}$ does not converge!

- if $\nu_{p}$ does not converge
- if $p / n$ does not converge
- if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence $\bar{\mu}_{p}$ of deterministic measures, with

$$
\mu_{p}-\bar{\mu}_{p} \xrightarrow{\text { a.s. }} 0
$$

or equivalently, deterministic sequence of $m_{p}$ with

$$
m_{\mu_{p}}-m_{p} \xrightarrow{\text { a.s. }} 0 .
$$

## Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)
Let $B_{p}=C_{p}^{\frac{1}{2}} X_{p} T_{p} X_{p}^{\top} C_{p}^{\frac{1}{2}}$, with e.s.d. $\mu_{p}, X_{p} \in \mathbb{R}^{p \times n}$ with i.i.d. entries of zero mean, variance $1 / n, C_{p}$ Hermitian nonnegative definite, $T_{p}$ diagonal nonnegative, $\limsup _{p} \max \left(\left\|C_{p}\right\|,\left\|T_{p}\right\|\right)<\infty$. Denote $c=p / n$.
Then, as $p, n \rightarrow \infty$ with bounded ratio $c$, for $z \in \mathbb{C} \backslash \mathbb{R}^{-}$,

$$
m_{\mu_{p}}(z)-m_{p}(z) \xrightarrow{\text { a.s. }} 0, \quad m_{p}(z)=\frac{1}{p} \operatorname{tr}\left(-z I_{p}+\bar{e}_{p}(z) C_{p}\right)^{-1}
$$

with $\bar{e}(z)$ unique solution in $\left\{z \in \mathbb{C}^{+}, \bar{e}_{p}(z) \in \mathbb{C}^{+}\right\}$or $\left\{z \in \mathbb{R}^{-}, \bar{e}_{p}(z) \in \mathbb{R}^{+}\right\}$of

$$
\begin{aligned}
e_{p}(z) & =\frac{1}{p} \operatorname{tr} C_{p}\left(-z I_{p}+\bar{e}_{p}(z) C_{p}\right)^{-1} \\
\bar{e}_{p}(z) & =\frac{1}{n} \operatorname{tr} T_{p}\left(I_{n}+c e_{p}(z) T_{p}\right)^{-1}
\end{aligned}
$$

## Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

## Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

- Information-plus-noise: $Y_{p}=A_{p}+X_{p}, A_{p}$ deterministic
- Variance profile: $Y_{p}=P_{p} \odot X_{p}$ (entry-wise product)
- Per-column covariance: $Y_{p}=\left[y_{1}, \ldots, y_{n}\right], y_{i}=C_{p, i}^{\frac{1}{2}} x_{i}$
- etc.


## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{p}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.


## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{p}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p}$ as before. Let $[a, b] \subset \mathbb{R}^{\top} \backslash \operatorname{supp}(\tilde{\nu})$. Then,

$$
\left\{\lambda_{i}\left(\frac{1}{n} Y_{p}^{\top} Y_{p}\right)\right\}_{i=1}^{n} \cap[a, b]=\emptyset
$$

for all large $n$, almost surely.

## No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \in \mathbb{R}^{p \times n}$, with

- $C_{p} \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_{p} \rightarrow \nu$ weakly,
- $X_{p} \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$,
- $\max _{i} \operatorname{dist}\left(\lambda_{i}\left(C_{p}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$.

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n} Y_{p}^{\top} Y_{p}$ as before. Let $[a, b] \subset \mathbb{R}^{\top} \backslash \operatorname{supp}(\tilde{\nu})$. Then,

$$
\left\{\lambda_{i}\left(\frac{1}{n} Y_{p}^{\boldsymbol{\top}} Y_{p}\right)\right\}_{i=1}^{n} \cap[a, b]=\emptyset
$$

for all large $n$, almost surely.

In practice: This means that eigenvalues of $\frac{1}{n} Y_{p}^{\top} Y_{p}$ cannot be bound at macroscopic distance from the bulk, for $p, n$ large.

## Spiked Models

## Breaking the rules. If we break

- Rule 1: Infinitely many eigenvalues may wander away from $\operatorname{supp}(\mu)$.




## Spiked Models

## If we break:

- Rule 2: $C_{p}$ may create isolated eigenvalues in $\frac{1}{n} Y_{p} Y_{p}^{\top}$, called spikes.


Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5), p=500, n=2000$.

## Spiked Models: The phase transition phenomenon



Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

## Spiked Models: The phase transition phenomenon



Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

## Spiked Models: The phase transition phenomenon



Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

## Spiked Models: The phase transition phenomenon



Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-4}, 2,3,4,5)$.

## Spiked Models

Theorem (Eigenvalues [Baik,Silverstein'06])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. zero mean, unit variance, $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$.
- $C_{p}=I_{p}+P, P=U \Omega U^{\top}$, where, for $K$ fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K} \text {, with } \omega_{1} \geq \ldots \geq \omega_{K}>0 \text {. }
$$

## Spiked Models

## Theorem (Eigenvalues [Baik,Silverstein'06])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. zero mean, unit variance, $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$.
- $C_{p}=I_{p}+P, P=U \Omega U^{\top}$, where, for $K$ fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0 .
$$

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, denoting $\lambda_{i}=\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\boldsymbol{\top}}\right)$,

- if $\omega_{m}>\sqrt{c}$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }} 1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}>(1+\sqrt{c})^{2}
$$

## Spiked Models

## Theorem (Eigenvalues [Baik,Silverstein'06])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. zero mean, unit variance, $E\left[\left|X_{p}\right|_{i j}^{4}\right]<\infty$.
- $C_{p}=I_{p}+P, P=U \Omega U^{\top}$, where, for $K$ fixed,

$$
\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{K}\right) \in \mathbb{R}^{K \times K}, \text { with } \omega_{1} \geq \ldots \geq \omega_{K}>0
$$

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, denoting $\lambda_{i}=\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\boldsymbol{\top}}\right)$,

- if $\omega_{m}>\sqrt{c}$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }} 1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}>(1+\sqrt{c})^{2}
$$

- if $\omega_{m} \in(0, \sqrt{c}]$,

$$
\lambda_{m} \xrightarrow{\text { a.s. }}(1+\sqrt{c})^{2}
$$

## Spiked Models



Figure: Eigenvalues of $\frac{1}{n} Y_{p} Y_{p}^{\top}, C_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p-2}, 2,3), p=500, n=1500$.

## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma


## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{p} X_{p}^{\top}$ :

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-\lambda I_{p}\right), \quad Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \\
& =\operatorname{det}\left(C_{p}\right) \operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda C_{p}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)
\end{aligned}
$$

## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{p} X_{p}^{\top}$ :

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-\lambda I_{p}\right), \quad Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \\
& =\operatorname{det}\left(C_{p}\right) \operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda C_{p}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)
\end{aligned}
$$

- Use low rank property: $\left(C_{p}=I_{p}+P=I_{p}+U \Omega U^{\top}\right)$

$$
I_{p}-C_{p}^{-1}=I_{p}-\left(I_{p}+U \Omega U^{\top}\right)^{-1}=U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}, \Omega \in \mathbb{C}^{K \times K}
$$

Hence

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)
$$

## Spiked Models

## Proof

- Two ingredients: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n} X_{p} X_{p}^{\top}$ :

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-\lambda I_{p}\right), \quad Y_{p}=C_{p}^{\frac{1}{2}} X_{p} \\
& =\operatorname{det}\left(C_{p}\right) \operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda C_{p}^{-1}\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\right) \\
& =\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda\left(I_{p}-C_{p}^{-1}\right)\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)
\end{aligned}
$$

- Use low rank property: $\left(C_{p}=I_{p}+P=I_{p}+U \Omega U^{\top}\right)$

$$
I_{p}-C_{p}^{-1}=I_{p}-\left(I_{p}+U \Omega U^{\top}\right)^{-1}=U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}, \Omega \in \mathbb{C}^{K \times K}
$$

Hence

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{p}+\lambda U\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1}\right)
$$

## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large $n$ a.s.


## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large $n$ a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1} U \xrightarrow{\text { a.s. }} m_{\mu}(z) I_{K} .
$$

( $X_{p}$ being "almost-unitarily invariant", $U$ made of "i.i.d.-like" random vectors)

## Spiked Models

## Proof (2)

- Sylverster's identity $(\operatorname{det}(I+A B)=\operatorname{det}(I+B A))$,

$$
0=\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right) \operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right)
$$

- No eigenvalue outside the support [Bai,Sil'98]: $\operatorname{det}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)$ has no zero beyond $(1+\sqrt{c})^{2}$ for all large $n$ a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$,

$$
U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-z I_{p}\right)^{-1} U \xrightarrow{\text { a.s. }} m_{\mu}(z) I_{K} .
$$

( $X_{p}$ being "almost-unitarily invariant", $U$ made of "i.i.d.-like" random vectors)

- As a result, for all large $n$ a.s.,

$$
\begin{aligned}
0 & =\operatorname{det}\left(I_{K}+\lambda\left(I_{K}+\Omega^{-1}\right)^{-1} U^{\top}\left(\frac{1}{n} X_{p} X_{p}^{\top}-\lambda I_{p}\right)^{-1} U\right) \\
& \simeq \prod_{k=1}^{K}\left(1+\frac{\lambda}{1+\omega_{k}^{-1}} m_{\mu}(\lambda)\right)=\prod_{k=1}^{K}\left(1+\frac{\omega_{k}}{1+\omega_{k}} \lambda m_{\mu}(\lambda)\right)
\end{aligned}
$$

## Spiked Models

## Proof (3)

- Limiting solutions: zeros of

$$
\lambda m_{\mu}(\lambda)=-\frac{1+\omega_{m}}{\omega_{m}}
$$

## Spiked Models

## Proof (3)

- Limiting solutions: zeros of

$$
\lambda m_{\mu}(\lambda)=-\frac{1+\omega_{m}}{\omega_{m}} .
$$

- Marčenko-Pastur law properties $\left(m_{\mu}(z)=\left(1-c-z-c z m_{\mu}(z)\right)^{-1}\right)$ :
$>\lambda \mapsto \lambda m_{\mu}(\lambda)=\int \frac{\lambda}{t-\lambda} \mu(d t)$ maps $\left((1+\sqrt{c})^{2}, \infty\right)$ onto $\left(-\frac{1+\sqrt{c}}{\sqrt{c}}, 0^{-}\right)$
$\rightarrow$ Solution only when $\omega_{m}>\sqrt{c}$ :

$$
\lambda=1+\omega_{m}+c \frac{1+\omega_{m}}{\omega_{m}}
$$

## Spiked Models

Theorem (Eigenvectors [Paul'07])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{M}>0$.


## Spiked Models

## Theorem (Eigenvectors [Paul'07])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{M}>0$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, for $a, b \in \mathbb{R}^{p}$ deterministic and $\hat{u}_{i}$ eigenvector of $\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\mathrm{T}}\right)$,

$$
a^{\top} \hat{u}_{i} \hat{u}_{i}^{\top} b-\frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} a^{\top} u_{i} u_{i}^{\top} b \cdot 1_{\omega_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0
$$

In particular,

$$
\left|\hat{u}_{i}^{\top} u_{i}\right|^{2} \xrightarrow{\text { a.s. }} \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} \cdot 1_{\omega_{i}>\sqrt{c}} .
$$

## Spiked Models

## Theorem (Eigenvectors [Paul'07])

Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. zero mean, unit variance, finite fourth order moment entries
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{M}>0$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$, for $a, b \in \mathbb{R}^{p}$ deterministic and $\hat{u}_{i}$ eigenvector of $\lambda_{i}\left(\frac{1}{n} Y_{p} Y_{p}^{\mathrm{T}}\right)$,

$$
a^{\top} \hat{u}_{i} \hat{u}_{i}^{\top} b-\frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} a^{\top} u_{i} u_{i}^{\top} b \cdot 1_{\omega_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0
$$

In particular,

$$
\left|\hat{u}_{i}^{\top} u_{i}\right|^{2} \xrightarrow{\text { a.s. }} \frac{1-c \omega_{i}^{-2}}{1+c \omega_{i}^{-1}} \cdot 1_{\omega_{i}>\sqrt{c}} .
$$

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

$$
a^{\top} \hat{u}_{i} \hat{u}_{i}^{\top} b=\frac{1}{2 \pi \imath} \oint_{\mathcal{C}_{i}} a^{\top}\left(\frac{1}{n} Y_{p} Y_{p}^{\top}-z I_{p}\right)^{-1} b d z
$$

for $\mathcal{C}_{m}$ contour circling around $\lambda_{i}$ only.

## Spiked Models



Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying $\omega_{1}$.

## Spiked Models



Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying $\omega_{1}$.

## Spiked Models



Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying $\omega_{1}$.

## Spiked Models



Figure: Simulated versus limiting $\left|\hat{u}_{1}^{\top} u_{1}\right|^{2}$ for $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}, C_{p}=I_{p}+\omega_{1} u_{1} u_{1}^{\top}, p / n=1 / 3$, varying $\omega_{1}$.

## Tracy-Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché'05])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. real or complex Gaussian zero mean, unit variance entries,
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.


## Tracy-Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. real or complex Gaussian zero mean, unit variance entries,
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c<1$,

- If $\omega_{1}<\sqrt{c}$ (or $K=0$ ),

$$
p^{\frac{2}{3}} \frac{\lambda_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T,(\text { real or complex Tracy-Widom law) }
$$

## Tracy-Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
Let $Y_{p}=C_{p}^{\frac{1}{2}} X_{p}$, with

- $X_{p}$ with i.i.d. real or complex Gaussian zero mean, unit variance entries,
- $C_{p}=I_{p}+P, P=\sum_{i=1}^{K} \omega_{i} u_{i} u_{i}^{\top}, \omega_{1}>\ldots>\omega_{K}>0(K \geq 0)$.

Then, as $p, n \rightarrow \infty, p / n \rightarrow c<1$,

- If $\omega_{1}<\sqrt{c}$ (or $K=0$ ),

$$
p^{\frac{2}{3}} \frac{\lambda_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T,(\text { real or complex Tracy-Widom law) }
$$

- If $\omega_{1}>\sqrt{c}$,

$$
\left(\frac{\left(1+\omega_{1}\right)^{2}}{c}-\frac{\left(1+\omega_{1}\right)^{2}}{\omega_{1}^{2}}\right)^{\frac{1}{2}} p^{\frac{1}{2}}\left[\lambda_{1}-\left(1+\omega_{1}+c \frac{1+\omega_{1}}{\omega_{1}}\right)\right] \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)
$$

## Tracy-Widom Theorem



Figure: Distribution of $p^{\frac{2}{3}} c^{-\frac{1}{2}}(1+\sqrt{c})^{-\frac{4}{3}}\left[\lambda_{1}\left(\frac{1}{n} X_{p} X_{p}^{\mathrm{T}}\right)-(1+\sqrt{c})^{2}\right]$ versus real Tracy-Widom ( $T$ ), $p=500, n=1500$.

## Other Spiked Models

Similar results for multiple matrix models:

- $Y_{p}=\frac{1}{n} X X^{\top}+P, P$ deterministic and low rank
- $Y_{p}=\frac{1}{n} X^{\top}(I+P) X$
- $Y_{p}=\frac{1}{n}(X+P)^{\top}(X+P)$
- $Y_{p}=\frac{1}{n} T X^{\top}(I+P) X T$
- etc.


## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


## The Semi-circle law

Theorem
Let $X_{n} \in \mathbb{R}^{n \times n}$ Hermitian with e.s.d. $\mu_{n}$ such that $\frac{1}{\sqrt{n}}\left[X_{n}\right]_{i>j}$ are i.i.d. with zero mean and unit variance. Then, as $n \rightarrow \infty$,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu(d t)=\frac{1}{2 \pi} \sqrt{\left(4-t^{2}\right)^{+}} d t$. In particular, $m_{\mu}$ satisfies

$$
m_{\mu}(z)=\frac{1}{-z-m_{\mu}(z)}
$$

## The Semi-circle law



Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for $n=500$

## The Circular law

Theorem
Let $X_{n} \in \mathbb{C}^{n \times n}$ with e.s.d. $\mu_{n}$ be such that $\frac{1}{\sqrt{n}}\left[X_{n}\right]_{i j}$ are i.i.d. entries with zero mean and unit variance. Then, as $n \rightarrow \infty$,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu$ a complex-supported measure with $\mu(d z)=\frac{1}{2 \pi} \delta_{|z| \leq 1} d z$.

## The Circular law



Figure: Eigenvalues of $X_{n}$ with i.i.d. standard Gaussian entries, for $n=500$.

## Bibliographical references: Maths Book and Tutorial References I

## From most accessible to least:

Couillet, R., \& Debbah, M. (2011). Random matrix methods for wireless communications. Cambridge University Press.

Tao, T. (2012). Topics in random matrix theory (Vol. 132). Providence, RI: American Mathematical Society.

Bai, Z., \& Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (Vol. 20). New York: Springer.

Pastur, L. A., Shcherbina, M., \& Shcherbina, M. (2011). Eigenvalue distribution of large random matrices (Vol. 171). Providence, RI: American Mathematical Society.

Anderson, G. W., Guionnet, A., \& Zeitouni, O. (2010). An introduction to random matrices (Vol. 118). Cambridge university press.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
```


## From classical applications...

Large range of applications:

## From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.


## From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ( $p \sim n$ ), optimal beamforming (MVDR), detection filters (ANMF), etc.


## From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ( $p \sim n$ ), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.


## From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ( $p \sim n$ ), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- Brain signal processing: EEG covariance estimation on short windows.


## From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ( $p \sim n$ ), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- Brain signal processing: EEG covariance estimation on short windows.

$$
\begin{aligned}
& \text { Any application where } p \sim n \text { "rather large" } \\
& \text { (convergence speed in up to } O(n) \text { and not } O(\sqrt{n}) \text { as usual!) }
\end{aligned}
$$

## From classical applications...

Large range of applications:

- Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- Array processing: improved MUSIC methods for large arrays ( $p \sim n$ ), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- Brain signal processing: EEG covariance estimation on short windows.

$$
\begin{aligned}
& \text { Any application where } p \sim n \text { "rather large" } \\
& \text { (convergence speed in up to } O(n) \text { and not } O(\sqrt{n}) \text { as usual!) }
\end{aligned}
$$

BUT mostly linear settings...

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand,

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}$, activation functions in neural nets $x_{l+1}=\sigma\left(W x_{l}\right)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for large $n, p$, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and change paradigm.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Motivation example: EEG-based clustering

- Hard classification on raw data $X_{i}$ : Need Features



## Motivation example: EEG-based clustering

- Hard classification on raw data $X_{i}$ : Need Features
- Relevant Feature: Covariance $C_{i}$



## Motivation example: EEG-based clustering

- Hard classification on raw data $X_{i}$ : Need Features
- Relevant Feature: Covariance $C_{i}$
- Distance between features: $D\left(C_{i}, C_{j}\right)$



## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

```
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Context

Observations:

- two data vector classes $x_{i}^{(1)} \in \mathcal{C}_{1}$ and $x_{i}^{(2)} \in \mathcal{C}_{2}$


## Context

## Observations:

- two data vector classes $x_{i}^{(1)} \in \mathcal{C}_{1}$ and $x_{i}^{(2)} \in \mathcal{C}_{2}$
- $X_{a}=\left[x_{1}^{(a)}, \ldots, x_{n_{a}}^{(a)}\right], x_{i}^{(a)} \in \mathbb{R}^{p}$ with $E\left[x_{i}^{(a)}\right]=0, E\left[x_{i}^{(a)} x_{i}^{(a) \mathrm{T}}\right]=C_{a}$.


## Context

## Observations:

- two data vector classes $x_{i}^{(1)} \in \mathcal{C}_{1}$ and $x_{i}^{(2)} \in \mathcal{C}_{2}$
- $X_{a}=\left[x_{1}^{(a)}, \ldots, x_{n_{a}}^{(a)}\right], x_{i}^{(a)} \in \mathbb{R}^{p}$ with $E\left[x_{i}^{(a)}\right]=0, E\left[x_{i}^{(a)} x_{i}^{(a) \mathrm{T}}\right]=C_{a}$.


## Objective:

- From the data $x_{i}^{(a)}$, estimate some distance function

$$
D \equiv D\left(C_{1}, C_{2}\right)
$$

## Context

## Observations:

- two data vector classes $x_{i}^{(1)} \in \mathcal{C}_{1}$ and $x_{i}^{(2)} \in \mathcal{C}_{2}$
- $X_{a}=\left[x_{1}^{(a)}, \ldots, x_{n_{a}}^{(a)}\right], x_{i}^{(a)} \in \mathbb{R}^{p}$ with $E\left[x_{i}^{(a)}\right]=0, E\left[x_{i}^{(a)} x_{i}^{(a) \mathrm{T}}\right]=C_{a}$.


## Objective:

- From the data $x_{i}^{(a)}$, estimate some distance function

$$
D \equiv D\left(C_{1}, C_{2}\right)
$$

- Classical approach:

$$
\hat{D} \equiv D\left(\hat{C}_{1}, \hat{C}_{2}\right), \quad \text { with } \hat{C}_{a}=\frac{1}{n_{a}} \sum_{i=1}^{n_{a}} x_{i}^{(a)} x_{i}^{(a) \top}=\frac{1}{n_{a}} X_{a} X_{a}^{\top}
$$

## Context

## Observations:

- two data vector classes $x_{i}^{(1)} \in \mathcal{C}_{1}$ and $x_{i}^{(2)} \in \mathcal{C}_{2}$
$\triangleright X_{a}=\left[x_{1}^{(a)}, \ldots, x_{n_{a}}^{(a)}\right], x_{i}^{(a)} \in \mathbb{R}^{p}$ with $E\left[x_{i}^{(a)}\right]=0, E\left[x_{i}^{(a)} x_{i}^{(a) \mathrm{T}}\right]=C_{a}$.


## Objective:

- From the data $x_{i}^{(a)}$, estimate some distance function

$$
D \equiv D\left(C_{1}, C_{2}\right)
$$

- Classical approach:

$$
\hat{D} \equiv D\left(\hat{C}_{1}, \hat{C}_{2}\right), \quad \text { with } \hat{C}_{a}=\frac{1}{n_{a}} \sum_{i=1}^{n_{a}} x_{i}^{(a)} x_{i}^{(a) \top}=\frac{1}{n_{a}} X_{a} X_{a}^{\top} .
$$

$\longrightarrow$ Often justified by Law of Large Numbers: $\hat{D} \xrightarrow{\text { a.s. }} D$ as $n \rightarrow \infty$.

In practice though...

## Example:

- The Fisher distance

$$
D\left(C_{1}, C_{2}\right)=\frac{1}{p}\left\|\log ^{2}\left(C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}
$$

In practice though...

## Example:

- The Fisher distance

$$
D\left(C_{1}, C_{2}\right)=\frac{1}{p}\left\|\log ^{2}\left(C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}=\frac{1}{p} \sum_{i=1}^{p} \log ^{2}\left(\lambda_{i}\left(C_{1}^{-1} C_{2}\right)\right)
$$

In practice though...

## Example:

- The Fisher distance

$$
\begin{aligned}
D\left(C_{1}, C_{2}\right) & =\frac{1}{p}\left\|\log ^{2}\left(C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}=\frac{1}{p} \sum_{i=1}^{p} \log ^{2}\left(\lambda_{i}\left(C_{1}^{-1} C_{2}\right)\right)=\int \log ^{2}(t) \nu_{p}(d t) \\
\text { with } \nu_{p} & =\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)} .
\end{aligned}
$$

In practice though...

## Example:

- The Fisher distance

$$
\begin{aligned}
D\left(C_{1}, C_{2}\right) & =\frac{1}{p}\left\|\log ^{2}\left(C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}=\frac{1}{p} \sum_{i=1}^{p} \log ^{2}\left(\lambda_{i}\left(C_{1}^{-1} C_{2}\right)\right)=\int \log ^{2}(t) \nu_{p}(d t) \\
\text { with } \nu_{p} & =\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)} .
\end{aligned}
$$

- for $n_{1}=1024, n_{2}=2048$, different $p$ (here $\left[C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right]_{i j}=.3^{|i-j|}$ ):

In practice though...

## Example:

- The Fisher distance

$$
\begin{aligned}
D\left(C_{1}, C_{2}\right) & =\frac{1}{p}\left\|\log ^{2}\left(C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}=\frac{1}{p} \sum_{i=1}^{p} \log ^{2}\left(\lambda_{i}\left(C_{1}^{-1} C_{2}\right)\right)=\int \log ^{2}(t) \nu_{p}(d t) \\
\text { with } \nu_{p} & =\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)} .
\end{aligned}
$$

- for $n_{1}=1024, n_{2}=2048$, different $p$ (here $\left[C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right]_{i j}=.3^{|i-j|}$ ):

| $p$ | Fisher distance | Classical estimator |
| :---: | :---: | :---: |
| 2 | 0.0980 | 0.1002 |
| 4 | 0.1456 | 0.1520 |
| 8 | 0.1694 | 0.1820 |
| 16 | 0.1812 | 0.2081 |
| 32 | 0.1872 | 0.2363 |
| 64 | 0.1901 | 0.2892 |
| 128 | 0.1916 | 0.3955 |
| 256 | 0.1924 | 0.6338 |
| 512 | 0.1927 | $\underline{1.2715}$ |
| (error $<5 \%$ ) (error $>50 \%$ ) (error $>100 \%$ ) (error $>500 \%$ ) |  |  |

In practice though...

## Example:

- The Fisher distance

$$
\begin{aligned}
D\left(C_{1}, C_{2}\right) & =\frac{1}{p}\left\|\log ^{2}\left(C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}=\frac{1}{p} \sum_{i=1}^{p} \log ^{2}\left(\lambda_{i}\left(C_{1}^{-1} C_{2}\right)\right)=\int \log ^{2}(t) \nu_{p}(d t) \\
\text { with } \nu_{p} & =\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)} .
\end{aligned}
$$

- for $n_{1}=1024, n_{2}=2048$, different $p$ (here $\left[C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}}\right]_{i j}=.3^{|i-j|}$ ):

| $p$ | Fisher distance | Classical estimator | RMT estimator |
| ---: | ---: | ---: | ---: |
| 2 | 0.0980 | 0.1002 | 0.0973 |
| 4 | 0.1456 | 0.1520 | 0.1461 |
| 8 | 0.1694 | 0.1820 | 0.1703 |
| 16 | 0.1812 | 0.2081 | 0.1845 |
| 32 | 0.1872 | 0.2363 | 0.1886 |
| 64 | 0.1901 | $\mathbf{0 . 2 8 9 2}$ | 0.1920 |
| 128 | 0.1916 | 0.3955 | 0.1934 |
| 256 | 0.1924 | 0.6338 | 0.1942 |
| 512 | 0.1927 | $\underline{1.2715}$ | 0.1953 |
| $($ error $<5 \%)$ |  |  |  |

## Explanation for failure



Figure: Population and Sample Eigenvalues for $n_{1}=1024, n_{2}=2048$, varying $p, C_{1}=C_{2}$.

## Explanation for failure



Figure: Population and Sample Eigenvalues for $n_{1}=1024, n_{2}=2048$, varying $p, C_{1}=C_{2}$.

## Explanation for failure



Figure: Population and Sample Eigenvalues for $n_{1}=1024, n_{2}=2048$, varying $p, C_{1}=C_{2}$.

## Explanation for failure



Figure: Population and Sample Eigenvalues for $n_{1}=1024, n_{2}=2048$, varying $p, C_{1}=C_{2}$.

## Explanation for failure



Figure: Population and Sample Eigenvalues for $n_{1}=1024, n_{2}=2048$, varying $p, C_{1}=C_{2}$.

## Setup

## Assumptions

$\checkmark$ [Spatial independence] $x_{i}^{(a)}=C_{a}^{\frac{1}{2}} \tilde{x}_{i}^{(a)}, \tilde{x}_{i}^{(a)} \in \mathbb{R}^{p}$ with i.i.d. zero mean, unit variance, finite $4+\varepsilon$ order moment.

## Setup

## Assumptions

-[Spatial independence] $x_{i}^{(a)}=C_{a}^{\frac{1}{2}} \tilde{x}_{i}^{(a)}, \tilde{x}_{i}^{(a)} \in \mathbb{R}^{p}$ with i.i.d. zero mean, unit variance, finite $4+\varepsilon$ order moment.

- [RMT regime] As $n_{a} \rightarrow \infty$,

$$
\frac{p}{n_{a}}=c_{a} \rightarrow c_{a}^{\infty} \in(0,1)
$$

- [Studied distances] for $f$ a complex-analytic extensible function,

$$
D\left(C_{1}, C_{2}\right)=\int f(t) \nu_{p}(d t)
$$

## Setup

## Assumptions

$\checkmark$ [Spatial independence] $x_{i}^{(a)}=C_{a}^{\frac{1}{2}} \tilde{x}_{i}^{(a)}, \tilde{x}_{i}^{(a)} \in \mathbb{R}^{p}$ with i.i.d. zero mean, unit variance, finite $4+\varepsilon$ order moment.

- [RMT regime] As $n_{a} \rightarrow \infty$,

$$
\frac{p}{n_{a}}=c_{a} \rightarrow c_{a}^{\infty} \in(0,1)
$$

- [Studied distances] for $f$ a complex-analytic extensible function,

$$
D\left(C_{1}, C_{2}\right)=\int f(t) \nu_{p}(d t), \quad \nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}
$$

## Setup

## Assumptions

- [Spatial independence] $x_{i}^{(a)}=C_{a}^{\frac{1}{2}} \tilde{x}_{i}^{(a)}, \tilde{x}_{i}^{(a)} \in \mathbb{R}^{p}$ with i.i.d. zero mean, unit variance, finite $4+\varepsilon$ order moment.
- [RMT regime] As $n_{a} \rightarrow \infty$,

$$
\frac{p}{n_{a}}=c_{a} \rightarrow c_{a}^{\infty} \in(0,1)
$$

- [Studied distances] for $f$ a complex-analytic extensible function,

$$
D\left(C_{1}, C_{2}\right)=\int f(t) \nu_{p}(d t), \quad \nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}
$$

## Examples

- Fisher geodesic distance: $f(t)=\log ^{2}(t)$
- Bhattacharyya distance: $f(t)=-\frac{1}{4} \log (t)+\frac{1}{2} \log (1+t)-\frac{1}{2} \log (2)$
- Kullback-Leibler divergence for Gaussian: $f(t)=\frac{1}{2} t-\frac{1}{2} \log (t)-\frac{1}{2}$
- Rényi divergence for Gaussian: $f(t)=\frac{-1}{2(\alpha-1)} \log (\alpha+(1-\alpha) t)+\frac{1}{2} \log (t)$


## RMT-improved estimator

Notations:

## RMT-improved estimator

Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$


## RMT-improved estimator

## Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$
- Sample eigenvalue distribution: $\left.\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(\hat{C}_{1}-1\right.} \hat{C}_{2}\right)$


## RMT-improved estimator

## Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$
- Sample eigenvalue distribution: $\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}{ }^{-1} \hat{C}_{2}\right)} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}}$


## RMT-improved estimator

## Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$
- Sample eigenvalue distribution: $\left.\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(\hat{C}_{1}-1\right.} \hat{C}_{2}\right) \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}}$
- Recall Stieltjes transform $m_{\theta}(z), z \in \mathbb{C} \backslash \operatorname{Supp}(\theta)$, of measure $\theta$ :

$$
m_{\theta}(z)=\int \frac{1}{\lambda-z} d \theta(\lambda)
$$

## RMT-improved estimator

## Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$
- Sample eigenvalue distribution: $\left.\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(\hat{C}_{1}-1\right.} \hat{C}_{2}\right) \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}}$
- Recall Stieltjes transform $m_{\theta}(z), z \in \mathbb{C} \backslash \operatorname{Supp}(\theta)$, of measure $\theta$ :

$$
m_{\theta}(z)=\int \frac{1}{\lambda-z} d \theta(\lambda)
$$

e.g., $m_{\mu_{p}}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}-z}$.

## RMT-improved estimator

## Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$
- Sample eigenvalue distribution: $\left.\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(\hat{C}_{1}-1\right.} \hat{C}_{2}\right)=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}}$
- Recall Stieltjes transform $m_{\theta}(z), z \in \mathbb{C} \backslash \operatorname{Supp}(\theta)$, of measure $\theta$ :

$$
m_{\theta}(z)=\int \frac{1}{\lambda-z} d \theta(\lambda)
$$

e.g., $m_{\mu_{p}}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}-z}$.

Theorem (Estimation via contour integral)
For $z \in \mathbb{C} \backslash \operatorname{Supp}\left(\mu_{p}\right)$, let

$$
\begin{aligned}
\varphi_{p}(z) & \equiv z+c_{1} z^{2} m_{\mu_{p}}(z) \\
\psi_{p}(z) & \equiv 1-c_{2}-c_{2} z m_{\mu_{p}}(z)
\end{aligned}
$$

## RMT-improved estimator

## Notations:

- Population eigenvalue distribution: $\nu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(C_{1}^{-1} C_{2}\right)}$
- Sample eigenvalue distribution: $\left.\mu_{p}=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(\hat{C}_{1}-1\right.} \hat{C}_{2}\right)=\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}}$
- Recall Stieltjes transform $m_{\theta}(z), z \in \mathbb{C} \backslash \operatorname{Supp}(\theta)$, of measure $\theta$ :

$$
m_{\theta}(z)=\int \frac{1}{\lambda-z} d \theta(\lambda)
$$

e.g., $m_{\mu_{p}}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}-z}$.

Theorem (Estimation via contour integral)
For $z \in \mathbb{C} \backslash \operatorname{Supp}\left(\mu_{p}\right)$, let

$$
\begin{aligned}
\varphi_{p}(z) & \equiv z+c_{1} z^{2} m_{\mu_{p}}(z) \\
\psi_{p}(z) & \equiv 1-c_{2}-c_{2} z m_{\mu_{p}}(z)
\end{aligned}
$$

Then, for any (positively oriented) contour $\Gamma \subset\{z \in \mathbb{C}, \Re[z]>0\}$ surrounding $\operatorname{Supp}\left(\mu_{p}\right)$.

$$
\int f d \nu_{p}-\frac{1}{2 \pi \imath} \oint_{\Gamma} f\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z \xrightarrow{\text { a.s. }} 0 .
$$

## Idea of proof

From [Bai-Silverstein'95] ${ }^{1}$, limiting spectra of $C$ and $\hat{C}$ related through Stieljes transform.

## Idea of proof

From [Bai-Silverstein'95] ${ }^{1}$, limiting spectra of $C$ and $\hat{C}$ related through Stieljes transform.
Besides, by Cauchy's integral,

$$
\int f(t) \nu_{p}(d t)=\int\left[\frac{-1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{t-z} d z\right] \nu_{p}(d t)
$$

## Idea of proof

From [Bai-Silverstein'95] ${ }^{1}$, limiting spectra of $C$ and $\hat{C}$ related through Stieljes transform.
Besides, by Cauchy's integral,

$$
\int f(t) \nu_{p}(d t)=\int\left[\frac{-1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{t-z} d z\right] \nu_{p}(d t)=\frac{-1}{2 \pi \imath} \oint_{\Gamma} f(z) \underbrace{\left[\int \frac{1}{t-z} \nu_{p}(d t)\right]}_{=m_{\nu_{p}}(z)} d z
$$

## Idea of proof

From [Bai-Silverstein'95] ${ }^{1}$, limiting spectra of $C$ and $\hat{C}$ related through Stieljes transform.
Besides, by Cauchy's integral,

$$
\begin{aligned}
& \int f(t) \nu_{p}(d t)=\int\left[\frac{-1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{t-z} d z\right] \nu_{p}(d t)=\frac{-1}{2 \pi \imath} \oint_{\Gamma} f(z) \underbrace{\left[\int \frac{1}{t-z} \nu_{p}(d t)\right]}_{=m_{\nu_{p}}(z)} d z . \\
& \int f(t) \nu_{p}(d t) \int h(t) \mu_{p}(d t) \\
& \oint H\left(m_{\nu_{p}}(z)\right) d z \longleftrightarrow \oint G\left(m_{\zeta_{p}}(z)\right) d z \nLeftarrow \oint F\left(m_{\mu_{p}}(z)\right) d z \\
& C_{2}^{-\frac{1}{2}} C_{1} C_{2}^{-\frac{1}{2}} \quad \hat{C}_{2}^{-\frac{1}{2}} C_{1} \hat{C}_{2}^{-\frac{1}{2}} \quad \hat{C}_{2}^{-\frac{1}{2}} \hat{C}_{1} \hat{C}_{2}^{-\frac{1}{2}}
\end{aligned}
$$

## Evaluation of the complex integrals

Object of interest: Evaluate in closed-form

$$
\frac{1}{2 \pi \imath} \oint_{\Gamma} f\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z
$$

## Evaluation of the complex integrals

Object of interest: Evaluate in closed-form

$$
\frac{1}{2 \pi \imath} \oint_{\Gamma} f\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z
$$

Reminder: functions of interest

- Fisher geodesic distance: $f(t)=\log ^{2}(t)$
- Bhattacharyya distance: $f(t)=-\frac{1}{4} \log (t)+\frac{1}{2} \log (1+t)-\frac{1}{2} \log (2)$
- Kullback-Leibler divergence for Gaussian: $f(t)=\frac{1}{2} t-\frac{1}{2} \log (t)-\frac{1}{2}$
- Rényi divergence for Gaussian: $f(t)=\frac{-1}{2(\alpha-1)} \log (\alpha+(1-\alpha) t)+\frac{1}{2} \log (t)$


## Evaluation of the complex integrals

Object of interest: Evaluate in closed-form

$$
\frac{1}{2 \pi \imath} \oint_{\Gamma} f\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z
$$

Reminder: functions of interest

- Fisher geodesic distance: $f(t)=\log ^{2}(t)$
- Bhattacharyya distance: $f(t)=-\frac{1}{4} \log (t)+\frac{1}{2} \log (1+t)-\frac{1}{2} \log (2)$
- Kullback-Leibler divergence for Gaussian: $f(t)=\frac{1}{2} t-\frac{1}{2} \log (t)-\frac{1}{2}$
- Rényi divergence for Gaussian: $f(t)=\frac{-1}{2(\alpha-1)} \log (\alpha+(1-\alpha) t)+\frac{1}{2} \log (t)$

Cases of interest:

- Entire functions (e.g., $f(t)=t$ ): residue calculus


## Evaluation of the complex integrals

Object of interest: Evaluate in closed-form

$$
\frac{1}{2 \pi \imath} \oint_{\Gamma} f\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z
$$

Reminder: functions of interest

- Fisher geodesic distance: $f(t)=\log ^{2}(t)$
- Bhattacharyya distance: $f(t)=-\frac{1}{4} \log (t)+\frac{1}{2} \log (1+t)-\frac{1}{2} \log (2)$
- Kullback-Leibler divergence for Gaussian: $f(t)=\frac{1}{2} t-\frac{1}{2} \log (t)-\frac{1}{2}$
- Rényi divergence for Gaussian: $f(t)=\frac{-1}{2(\alpha-1)} \log (\alpha+(1-\alpha) t)+\frac{1}{2} \log (t)$


## Cases of interest:

- Entire functions (e.g., $f(t)=t$ ): residue calculus
- Functions with branch cuts: $f(t)=\log (t), f(t)=\log (1+s t), f(t)=\log ^{2}(t)$, etc.
$\longrightarrow$ Much more technical!


## Sketch of Proof

The case $f(t)=\log ^{k}(t)$

- Much less trivial due to branch cuts of $\log (z)$ !!

$$
\log (z) \equiv \log (|z|)+\imath \arg (z), \quad \arg (z) \in(-\pi, \pi] .
$$

## Sketch of Proof

The case $f(t)=\log ^{k}(t)$

- Much less trivial due to branch cuts of $\log (z)$ !!

$$
\log (z) \equiv \log (|z|)+\imath \arg (z), \quad \arg (z) \in(-\pi, \pi] .
$$

- Singularities arise when $\log \left(\varphi_{p}(z) / \psi_{p}(z)\right)$ discontinuous.


## Sketch of Proof

The case $f(t)=\log ^{k}(t)$

- Much less trivial due to branch cuts of $\log (z)$ !!

$$
\log (z) \equiv \log (|z|)+\imath \arg (z), \quad \arg (z) \in(-\pi, \pi] .
$$

- Singularities arise when $\log \left(\varphi_{p}(z) / \psi_{p}(z)\right)$ discontinuous.
- The situation in image...

with
- $\zeta_{i}$ zeros of $\psi_{p}$
$\eta_{i}$ zeros of $\varphi_{p}$.


## Sketch of proof

The case $f(t)=\log ^{k}(t)$ (continued)

- Integration method: avoid branch cuts:



## Sketch of proof

The case $f(t)=\log ^{k}(t)$ (continued)

- Integration method: avoid branch cuts:

- Detailed method:
- careful control of integrals on circles $I_{i}^{A}, I_{i}^{C}, I_{i}^{E}$ (Jordan's identity does not apply!)
- linear integrals on segments, up to integrability... easy for $\log (t)$, difficult for $\log ^{2}(t)$ !


## Application to specific functions

Corollary (Case $f(t)=t$ )
Under the same assumptions,

$$
\int t \nu_{p}(d t)-\left(1-c_{1}\right) \int t \mu_{p}(d t) \xrightarrow{\text { a.s. }} 0 .
$$

## Application to specific functions

Corollary (Case $f(t)=t$ )
Under the same assumptions,

$$
\begin{aligned}
& \qquad \int t \nu_{p}(d t)-\left(1-c_{1}\right) \int t \mu_{p}(d t) \xrightarrow{\text { a.s. }} 0 \\
& \text { (i.e., } \left.\frac{1}{p} \operatorname{tr} C_{1}^{-1} C_{2} \simeq\left(1-\frac{p}{n_{1}}\right) \frac{1}{p} \operatorname{tr} \hat{C}_{1}^{-1} \hat{C}_{2}\right)
\end{aligned}
$$

## Application to specific functions

Corollary (Case $f(t)=t$ )
Under the same assumptions,

$$
\int t \nu_{p}(d t)-\left(1-c_{1}\right) \int t \mu_{p}(d t) \xrightarrow{\text { a.s. }} 0 .
$$

(i.e., $\left.\frac{1}{p} \operatorname{tr} C_{1}^{-1} C_{2} \simeq\left(1-\frac{p}{n_{1}}\right) \frac{1}{p} \operatorname{tr} \hat{C}_{1}^{-1} \hat{C}_{2}\right)$
$\longrightarrow$ Just a scaling factor!

## Application to specific functions

Corollary (Case $f(t)=t$ )
Under the same assumptions,

$$
\int t \nu_{p}(d t)-\left(1-c_{1}\right) \int t \mu_{p}(d t) \xrightarrow{\text { a.s. }} 0 .
$$

(i.e., $\left.\frac{1}{p} \operatorname{tr} C_{1}^{-1} C_{2} \simeq\left(1-\frac{p}{n_{1}}\right) \frac{1}{p} \operatorname{tr} \hat{C}_{1}^{-1} \hat{C}_{2}\right)$
$\longrightarrow$ Just a scaling factor!

Corollary (Case $f(t)=\log (t)$ )
Under the same assumptions,

$$
\int \log (t) \nu_{p}(d t)-\left[\int \log (t) \mu_{p}(d t)-\frac{1-c_{1}}{c_{1}} \log \left(1-c_{1}\right)+\frac{1-c_{2}}{c_{2}} \log \left(1-c_{2}\right)\right] \xrightarrow{\text { a.s. }} 0 .
$$

## Application to specific functions

Corollary (Case $f(t)=t$ )
Under the same assumptions,

$$
\int t \nu_{p}(d t)-\left(1-c_{1}\right) \int t \mu_{p}(d t) \xrightarrow{\text { a.s. }} 0 .
$$

(i.e., $\left.\frac{1}{p} \operatorname{tr} C_{1}^{-1} C_{2} \simeq\left(1-\frac{p}{n_{1}}\right) \frac{1}{p} \operatorname{tr} \hat{C}_{1}^{-1} \hat{C}_{2}\right)$
$\longrightarrow$ Just a scaling factor!

Corollary (Case $f(t)=\log (t)$ )
Under the same assumptions,
$\int \log (t) \nu_{p}(d t)-\left[\int \log (t) \mu_{p}(d t)-\frac{1-c_{1}}{c_{1}} \log \left(1-c_{1}\right)+\frac{1-c_{2}}{c_{2}} \log \left(1-c_{2}\right)\right] \xrightarrow{\text { a.s. }} 0$.
(i.e., $\left.\frac{1}{p} \log \operatorname{det}\left(C_{1}^{-1} C_{2}\right) \simeq \frac{1}{p} \log \operatorname{det}\left(\hat{C}_{1}^{-1} \hat{C}_{2}\right)-\frac{n_{1}-p}{n_{1}} \log \left(1-\frac{p}{n_{1}}\right)+\frac{n_{2}-p}{n_{2}} \log \left(1-\frac{p}{n_{2}}\right)\right)$

## Application to specific functions

Corollary (Case $f(t)=t$ )
Under the same assumptions,

$$
\int t \nu_{p}(d t)-\left(1-c_{1}\right) \int t \mu_{p}(d t) \xrightarrow{\text { a.s. }} 0 .
$$

(i.e., $\left.\frac{1}{p} \operatorname{tr} C_{1}^{-1} C_{2} \simeq\left(1-\frac{p}{n_{1}}\right) \frac{1}{p} \operatorname{tr} \hat{C}_{1}^{-1} \hat{C}_{2}\right)$
$\longrightarrow$ Just a scaling factor!

Corollary (Case $f(t)=\log (t)$ )
Under the same assumptions,
$\int \log (t) \nu_{p}(d t)-\left[\int \log (t) \mu_{p}(d t)-\frac{1-c_{1}}{c_{1}} \log \left(1-c_{1}\right)+\frac{1-c_{2}}{c_{2}} \log \left(1-c_{2}\right)\right] \xrightarrow{\text { a.s. }} 0$.
(i.e., $\left.\frac{1}{p} \log \operatorname{det}\left(C_{1}^{-1} C_{2}\right) \simeq \frac{1}{p} \log \operatorname{det}\left(\hat{C}_{1}^{-1} \hat{C}_{2}\right)-\frac{n_{1}-p}{n_{1}} \log \left(1-\frac{p}{n_{1}}\right)+\frac{n_{2}-p}{n_{2}} \log \left(1-\frac{p}{n_{2}}\right)\right)$
$\longrightarrow$ Just a bias term!

## Application to specific functions

Corollary (Case $f(t)=\log (1+s t))$
Denoting $\kappa_{0}<0$ unique negative solution to $1+s \frac{\varphi_{p}(x)}{\psi_{p}(x)}=0$,

$$
\begin{aligned}
& \int \log (1+s t) d \nu_{p}(t)-\left[\frac{c_{1}+c_{2}-c_{1} c_{2}}{c_{1} c_{2}} \log \left(\frac{c_{1}+c_{2}-c_{1} c_{2}}{\left(1-c_{1}\right)\left(c_{2}-s c_{1} \kappa_{0}\right)}\right)\right. \\
& \left.+\frac{1}{c_{2}} \log \left(-s \kappa_{0}\left(1-c_{1}\right)\right)+\int \log \left(1-\frac{t}{\kappa_{0}}\right) d \mu_{p}(t)\right] \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

## Application to specific functions

Corollary (Case $f(t)=\log (1+s t))$
Denoting $\kappa_{0}<0$ unique negative solution to $1+s \frac{\varphi_{p}(x)}{\psi_{p}(x)}=0$,

$$
\begin{aligned}
& \int \log (1+s t) d \nu_{p}(t)-\left[\frac{c_{1}+c_{2}-c_{1} c_{2}}{c_{1} c_{2}} \log \left(\frac{c_{1}+c_{2}-c_{1} c_{2}}{\left(1-c_{1}\right)\left(c_{2}-s c_{1} \kappa_{0}\right)}\right)\right. \\
& \left.+\frac{1}{c_{2}} \log \left(-s \kappa_{0}\left(1-c_{1}\right)\right)+\int \log \left(1-\frac{t}{\kappa_{0}}\right) d \mu_{p}(t)\right] \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

$\longrightarrow$ Highly non-trivial!

## Application to specific functions

Corollary (Case $\left.f(t)=\log ^{2}(t)\right)$

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\Gamma} \log ^{2}\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z \\
& =\frac{c_{1}+c_{2}-c_{1} c_{2}}{c_{1} c_{2}}\left[\sum_{i=1}^{p}\left\{\log ^{2}\left(\left(1-c_{1}\right) \eta_{i}\right)-\log ^{2}\left(\left(1-c_{1}\right) \lambda_{i}\right)\right\}\right.
\end{aligned}
$$

$$
\left.+2 \sum_{1 \leq i, j \leq p}\left\{\operatorname{Li}_{2}\left(1-\frac{\zeta_{i}}{\lambda_{j}}\right)-\operatorname{Li}_{2}\left(1-\frac{\eta_{i}}{\lambda_{j}}\right)+\operatorname{Li}_{2}\left(1-\frac{\eta_{i}}{\eta_{j}}\right)-\operatorname{Li}_{2}\left(1-\frac{\zeta_{i}}{\eta_{j}}\right)\right\}\right]
$$

$$
-\frac{1-c_{2}}{c_{2}}\left[\log ^{2}\left(1-c_{2}\right)-\log ^{2}\left(1-c_{1}\right)+\sum_{i=1}^{p}\left\{\log ^{2}\left(\eta_{i}\right)-\log ^{2}\left(\zeta_{i}\right)\right\}\right]
$$

$$
-\frac{1}{p}\left[2 \sum_{1 \leq i, j \leq p}\left\{\operatorname{Li}_{2}\left(1-\frac{\zeta_{i}}{\lambda_{j}}\right)-\operatorname{Li}_{2}\left(1-\frac{\eta_{i}}{\lambda_{j}}\right)\right\}-\sum_{i=1}^{p} \log ^{2}\left(\left(1-c_{1}\right) \lambda_{i}\right)\right]
$$

## Application to specific functions

Corollary (Case $\left.f(t)=\log ^{2}(t)\right)$

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\Gamma} \log ^{2}\left(\frac{\varphi_{p}(z)}{\psi_{p}(z)}\right)\left(\frac{\varphi_{p}^{\prime}(z)}{\varphi_{p}(z)}-\frac{\psi_{p}^{\prime}(z)}{\psi_{p}(z)}\right) \frac{\psi_{p}(z)}{c_{2}} d z \\
& =\frac{c_{1}+c_{2}-c_{1} c_{2}}{c_{1} c_{2}}\left[\sum_{i=1}^{p}\left\{\log ^{2}\left(\left(1-c_{1}\right) \eta_{i}\right)-\log ^{2}\left(\left(1-c_{1}\right) \lambda_{i}\right)\right\}\right.
\end{aligned}
$$

$$
\left.+2 \sum_{1 \leq i, j \leq p}\left\{\operatorname{Li}_{2}\left(1-\frac{\zeta_{i}}{\lambda_{j}}\right)-\operatorname{Li}_{2}\left(1-\frac{\eta_{i}}{\lambda_{j}}\right)+\operatorname{Li}_{2}\left(1-\frac{\eta_{i}}{\eta_{j}}\right)-\operatorname{Li}_{2}\left(1-\frac{\zeta_{i}}{\eta_{j}}\right)\right\}\right]
$$

$$
-\frac{1-c_{2}}{c_{2}}\left[\log ^{2}\left(1-c_{2}\right)-\log ^{2}\left(1-c_{1}\right)+\sum_{i=1}^{p}\left\{\log ^{2}\left(\eta_{i}\right)-\log ^{2}\left(\zeta_{i}\right)\right\}\right]
$$

$$
-\frac{1}{p}\left[2 \sum_{1 \leq i, j \leq p}\left\{\operatorname{Li}_{2}\left(1-\frac{\zeta_{i}}{\lambda_{j}}\right)-\operatorname{Li}_{2}\left(1-\frac{\eta_{i}}{\lambda_{j}}\right)\right\}-\sum_{i=1}^{p} \log ^{2}\left(\left(1-c_{1}\right) \lambda_{i}\right)\right]
$$

$\longrightarrow$ Involves dilogarithm functions!

## Spectral clustering with feature $C_{i}$

## Setting:

- " $m$ " observations, $X_{1}, \ldots, X_{m}$ with $X_{i}=\left[x_{1}^{(i)}, \ldots, x_{n_{i}}^{(i)}\right]$
- Two classes: $C_{i}=C^{(1)}$ for $i \leq m / 2, C_{i}=C^{(2)}$ for $i>m / 2$.


## Objective:

- Classify observations $X_{i}$ based on $C^{(1)}$ and $C^{(2)}$.


## Method:

- Spectral clustering with kernel

$$
K_{i j}=D\left(C_{i}, C_{j}\right)
$$

estimated by $D\left(\hat{C}_{i}, \hat{C}_{j}\right)$ versus RMT estimator.

## Simulation: random $n_{i}$



Figure: Eigenvectors 1 and 2 of $K$ for traditional (red circles) versus RMT estimator (blue crosses).

Classical

- Wide spread of eigenvectors
- Small inter space
- $\rightarrow$ Poor clustering

RMT estimator

- Well centered eigenvector
- Large inter space
- $\rightarrow$ Good clustering

Simulation: outlier $n_{1}=\ldots=n_{m-1}, n_{m}=n_{1} / 2$


Figure: Eigenvectors 1 and 2 of $K$ for traditional (red circles) versus RMT estimator (blue crosses).

Classical

- Isolated outlier
- Adversarial effect of outlier ("draws" eigenvector to itself)
- Effect increased by more outliers

RMT estimator

- No outlier effect
- Large inter space


## Application to covariance matrix estimation

Observations:

- $X=\left[x_{1}, \ldots, x_{n}\right], x_{i} \in \mathbb{R}^{p}$ with $\mathbb{E}\left[x_{i}\right]=0, \mathbb{E}\left[x_{i} x_{i}^{\top}\right]=C$.


## Application to covariance matrix estimation

Observations:

- $X=\left[x_{1}, \ldots, x_{n}\right], x_{i} \in \mathbb{R}^{p}$ with $\mathbb{E}\left[x_{i}\right]=0, \mathbb{E}\left[x_{i} x_{i}^{\top}\right]=C$.


## Objective:

- From the data $x_{i}$, estimate $C$.


## Application to covariance matrix estimation

Observations:

- $X=\left[x_{1}, \ldots, x_{n}\right], x_{i} \in \mathbb{R}^{p}$ with $\mathbb{E}\left[x_{i}\right]=0, \mathbb{E}\left[x_{i} x_{i}^{\top}\right]=C$.


## Objective:

- From the data $x_{i}$, estimate $C$.


## State of the Art:

- Sample Covariance Matrix (SCM):

$$
\hat{C}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}=\frac{1}{n} X X^{\top} .
$$

## Application to covariance matrix estimation

Observations:

- $X=\left[x_{1}, \ldots, x_{n}\right], x_{i} \in \mathbb{R}^{p}$ with $\mathbb{E}\left[x_{i}\right]=0, \mathbb{E}\left[x_{i} x_{i}^{\top}\right]=C$.


## Objective:

- From the data $x_{i}$, estimate $C$.


## State of the Art:

- Sample Covariance Matrix (SCM):

$$
\hat{C}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}=\frac{1}{n} X X^{\top} .
$$

$\longrightarrow$ Often justified by Law of Large Numbers: $n \rightarrow \infty$.

## Application to covariance matrix estimation

## Observations:

- $X=\left[x_{1}, \ldots, x_{n}\right], x_{i} \in \mathbb{R}^{p}$ with $\mathbb{E}\left[x_{i}\right]=0, \mathbb{E}\left[x_{i} x_{i}^{\top}\right]=C$.


## Objective:

- From the data $x_{i}$, estimate $C$.


## State of the Art:

- Sample Covariance Matrix (SCM):

$$
\hat{C}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}=\frac{1}{n} X X^{\top} .
$$

$\longrightarrow$ Often justified by Law of Large Numbers: $n \rightarrow \infty$.

- Numerical inversion of asymptotic spectrum (QuEST).

1. Bai-Silverstein equation: Estimate $\lambda(\hat{C})$ from $\lambda(C)$ in "large $p, n$ " regime.
2. Need for non trivial inversion of the equation.

## Application to covariance matrix estimation (continued)

- Elementary idea

$$
C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)
$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

## Application to covariance matrix estimation (continued)

- Elementary idea

$$
C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)
$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

- Divergence $\delta(M, C)=\int f(t) d \nu_{p}(t)$ inaccessible, $\nu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} C\right)}$.


## Application to covariance matrix estimation (continued)

- Elementary idea

$$
C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)
$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

- Divergence $\delta(M, C)=\int f(t) d \nu_{p}(t)$ inaccessible, $\nu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} C\right)}$.
- Random Matrix improved estimate $\hat{\delta}(M, X)$ of $\delta(M, C)$ using $\mu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} \hat{C}\right)}$.



## Application to covariance matrix estimation (continued)

- Elementary idea

$$
C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)
$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

- Divergence $\delta(M, C)=\int f(t) d \nu_{p}(t)$ inaccessible, $\nu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} C\right)}$.
- Random Matrix improved estimate $\hat{\delta}(M, X)$ of $\delta(M, C)$ using $\mu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} \hat{C}\right)}$.

- $\hat{\delta}(M, X)<0$ with non zero probability.


## Application to covariance matrix estimation (continued)

- Elementary idea

$$
C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)
$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

- Divergence $\delta(M, C)=\int f(t) d \nu_{p}(t)$ inaccessible, $\nu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} C\right)}$.
- Random Matrix improved estimate $\hat{\delta}(M, X)$ of $\delta(M, C)$ using $\mu_{p} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}\left(M^{-1} \hat{C}\right)}$.

- $\hat{\delta}(M, X)<0$ with non zero probability.
- RMT estimation

$$
\check{C} \equiv \operatorname{argmin}_{M \succ 0} h(M), \quad h(M)=\hat{\delta}(M, X)^{2}
$$

## Application to covariance matrix estimation (continued)

- Gradient descent over the Positive Definite manifold.

```
Algorithm 1 RMT estimation algorithm.
Require \(M_{0} \in C_{n}^{++}\).
Repeat \(M \leftarrow M^{\frac{1}{2}} \exp \left(-t M^{-\frac{1}{2}} \nabla h_{X}(M) M^{-\frac{1}{2}}\right) M^{\frac{1}{2}}\).
Until Convergence.
Return \(\check{C}=M\).
```


## Application to covariance matrix estimation (continued)

- 2 Data classes $x_{1}^{(1)}, \ldots, x_{n_{1}}^{(1)} \sim N\left(\mu_{1}, C_{1}\right)$ and $x_{1}^{(2)}, \ldots, x_{n_{2}}^{(2)} \sim N\left(\mu_{2}, C_{2}\right)$.
- Classify point $x$ using Linear Discriminant Analysis based on the sign of

$$
\delta_{x}^{\mathrm{LDA}}=\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\mathrm{T}} \check{C}^{-1} x+\frac{1}{2} \hat{\mu}_{2}^{\mathrm{T}} \check{C}^{-1} \hat{\mu}_{2}-\frac{1}{2} \hat{\mu}_{1}^{\mathrm{T}} \check{C}^{-1} \hat{\mu}_{1} .
$$

- Estimate $\check{C} \equiv \frac{n_{1}}{n_{1}+n_{2}} \check{C}_{1}+\frac{n_{2}}{n_{1}+n_{2}} \check{C}_{2}$.


## Application to covariance matrix estimation (continued)

- 2 Data classes $x_{1}^{(1)}, \ldots, x_{n_{1}}^{(1)} \sim N\left(\mu_{1}, C_{1}\right)$ and $x_{1}^{(2)}, \ldots, x_{n_{2}}^{(2)} \sim N\left(\mu_{2}, C_{2}\right)$.
- Classify point $x$ using Linear Discriminant Analysis based on the sign of

$$
\delta_{x}^{\mathrm{LDA}}=\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\mathrm{T}} \check{C}^{-1} x+\frac{1}{2} \hat{\mu}_{2}^{\mathrm{T}} \check{C}^{-1} \hat{\mu}_{2}-\frac{1}{2} \hat{\mu}_{1}^{\mathrm{T}} \check{C}^{-1} \hat{\mu}_{1} .
$$

- Estimate $\check{C} \equiv \frac{n_{1}}{n_{1}+n_{2}} \check{C}_{1}+\frac{n_{2}}{n_{1}+n_{2}} \check{C}_{2}$.



Figure: Mean accuracy obtained over 10 realizations of LDA classification. (Left) $C_{1}$ and $C_{2}$ Toeplitz-0.2/Toeplitz-0.4, and (Right) real EEG data.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

```
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Reconsider clustering

- Hard classification on raw data $x_{i}$ : Need Features



## Reconsider clustering

- Hard classification on raw data $x_{i}$ : Need Features
- Relevant Feature: Covariance $C_{i}$ $\rightarrow$ Learn features from data



## Reconsider clustering

- Hard classification on raw data $x_{i}$ : Need Features
- Relevant Feature: Covariance $C_{i}$ $\rightarrow$ Learn features from data
- $D\left(C_{i}, C_{j}\right) \leftrightarrow \varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)$



## Reconsider clustering

- Hard classification on raw data $x_{i}$ : Need Features
- Relevant Feature: Covariance $C_{i}$ $\rightarrow$ Learn features from data
- $D\left(C_{i}, C_{j}\right) \leftrightarrow \varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)$
- Kernel trick
$\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right) \rightarrow f\left(\left\|x_{i}-x_{j}\right\|^{2}\right)$ or $f\left(x_{i}{ }^{\top} x_{j}\right)$



## Reconsider clustering

- Hard classification on raw data $x_{i}$ : Need Features
- Relevant Feature: Covariance $C_{i}$ $\rightarrow$ Learn features from data
- $D\left(C_{i}, C_{j}\right) \leftrightarrow \varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)$
- Kernel trick
$\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right) \rightarrow f\left(\left\|x_{i}-x_{j}\right\|^{2}\right)$ or $f\left(x_{i}{ }^{\top} x_{j}\right)$
- Asymptotic performance of kernel methods?



## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
```

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

```
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.


## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

## Kernel Spectral Clustering

## Problem Statement

- Dataset $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$
- Objective: "cluster" data in $k$ similarity classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Kernel spectral clustering based on kernel matrix

$$
K=\left\{\kappa\left(x_{i}, x_{j}\right)\right\}_{i, j=1}^{n}
$$

- Usually, $\kappa(x, y)=f\left(x^{\top} y\right)$ or $\kappa(x, y)=f\left(\|x-y\|^{2}\right)$


## Kernel spectral clustering

Intuition (from small dimensions)

$$
K=\left(\begin{array}{cc|c|}
\hline \begin{array}{c}
\kappa\left(x_{i}, x_{j}\right) \\
\gg 1
\end{array} & \begin{array}{c}
\kappa\left(x_{i}, x_{j}\right) \\
\ll 1
\end{array} & \kappa\left(x_{i}, x_{j}\right) \\
\ll 1 \\
\hline \begin{array}{c}
\kappa\left(x_{i}, x_{j}\right) \\
\ll 1
\end{array} & \kappa\left(x_{i}, x_{j}\right) \\
\gg 1 & \kappa\left(x_{i}, x_{j}\right) \\
\ll 1 \\
\hline \begin{array}{c}
\kappa\left(x_{i}, x_{j}\right) \\
\ll 1
\end{array} & \begin{array}{c}
\kappa\left(x_{i}, x_{j}\right) \\
\ll 1
\end{array} & \kappa\left(x_{i}, x_{j}\right) \\
\gg 1
\end{array} \quad \downarrow \downarrow \mathcal{C}_{1}\right.
$$

- $K$ essentially low rank with class structure in eigenvectors.


## Kernel spectral clustering

Intuition (from small dimensions)

- $K$ essentially low rank with class structure in eigenvectors.
- Ng-Weiss-Jordan key remark: $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}\left(D^{\frac{1}{2}} j_{a}\right) \simeq D^{\frac{1}{2}} j_{a}\left(j_{a}\right.$ canonical vector of $\mathcal{C}_{a}$ )


## Kernel Spectral Clustering



## Kernel Spectral Clustering



## Kernel Spectral Clustering



## Kernel Spectral Clustering



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data, RBF kernel $\left(f(t)=\exp \left(-t^{2} / 2\right)\right)$.

## Kernel Spectral Clustering



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data, RBF kernel $\left(f(t)=\exp \left(-t^{2} / 2\right)\right)$.

- Important Remark: eigenvectors informative BUT far from $D^{\frac{1}{2}} j_{a}$ !


## Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.


## Model and Assumptions

Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.


## Assumption (Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

## Model and Assumptions

## Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.


## Assumption (Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

For 2 classes, this is
$\left\|\mu_{1}-\mu_{2}\right\|=O(1), \quad \operatorname{tr}\left(C_{1}-C_{2}\right)=O(\sqrt{p}), \quad\left\|C_{i}\right\|=O(1), \quad \operatorname{tr}\left(\left[C_{1}-C_{2}\right]^{2}\right)=O(p)$.

## Model and Assumptions

## Gaussian mixture model:

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$,
- $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$,
- $x_{1}, \ldots, x_{n_{1}} \in \mathcal{C}_{1}, \ldots, x_{n-n_{k}+1}, \ldots, x_{n} \in \mathcal{C}_{k}$,
- $x_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, C_{g_{i}}\right)$.


## Assumption (Growth Rate)

## As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)
$$

For 2 classes, this is
$\left\|\mu_{1}-\mu_{2}\right\|=O(1), \quad \operatorname{tr}\left(C_{1}-C_{2}\right)=O(\sqrt{p}), \quad\left\|C_{i}\right\|=O(1), \quad \operatorname{tr}\left(\left[C_{1}-C_{2}\right]^{2}\right)=O(p)$.

## Remark: [Neyman-Pearson optimality]

- $x \sim \mathcal{N}\left( \pm \mu, I_{p}\right)$ (known $\mu$ ) decidable iif $\|\mu\| \geq O(1)$.
- $x \sim \mathcal{N}\left(0,(1 \pm \varepsilon) I_{p}\right)$ (known $\varepsilon$ ) decidable iif $\|\epsilon\| \geq O\left(p^{-\frac{1}{2}}\right)$.


## Model and Assumptions

## Kernel Matrix:

- Kernel matrix of interest:

$$
K=\left\{f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}
$$

for some sufficiently smooth nonnegative $f\left(f\left(\frac{1}{p} x_{i}^{\top} x_{j}\right)\right.$ simpler $)$.

## Model and Assumptions

## Kernel Matrix:

- Kernel matrix of interest:

$$
K=\left\{f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n}
$$

for some sufficiently smooth nonnegative $f\left(f\left(\frac{1}{p} x_{i}^{\top} x_{j}\right)\right.$ simpler $)$.

- We study the normalized Laplacian:

$$
L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}
$$

with $d=K 1_{n}, D=\operatorname{diag}(d)$.
(more stable both theoretically and in practice)

## Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.

## Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.
$\Rightarrow$ Suggests that (up to diagonal) $K \simeq f(\tau) 1_{n} 1_{n}^{\top}$ !

## Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.
$\Rightarrow$ Suggests that (up to diagonal) $K \simeq f(\tau) 1_{n} 1_{n}^{\top}$ !

- In fact, information hidden in low order fluctuations! from "matrix-wise" Taylor expansion of $K$ :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} K_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{K_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

## Random Matrix Equivalent

- Key Remark: Under growth rate assumptions,

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}-\tau\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

where $\tau=\frac{1}{p} \operatorname{tr} C^{\circ}$.
$\Rightarrow$ Suggests that (up to diagonal) $K \simeq f(\tau) 1_{n} 1_{n}^{\top}$ !

- In fact, information hidden in low order fluctuations! from "matrix-wise" Taylor expansion of $K$ :

$$
K=\underbrace{f(\tau) 1_{n} 1_{n}^{\top}}_{O_{\|\cdot\|}(n)}+\underbrace{\sqrt{n} K_{1}}_{\text {low rank, } O_{\|\cdot\|}(\sqrt{n})}+\underbrace{K_{2}}_{\text {informative terms, } O_{\|\cdot\|}(1)}
$$

Clearly not the (small dimension) expected behavior.

## Random Matrix Equivalent

$$
\begin{aligned}
& \text { Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) } \\
& \text { As } n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0 \text {, where } \\
& \qquad L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}} \text {, avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \qquad \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+* \\
& \text { et } W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}
\end{aligned}
$$

## Random Matrix Equivalent

$$
\begin{aligned}
& \text { Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) } \\
& \begin{array}{l}
\text { As } n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0 \text {, where } \\
\qquad L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
\hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+* \\
\text { et } W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =-2 \frac{f^{\prime}(\tau)}{f(\tau)} M^{\top} M+\left(\frac{f^{\prime \prime}(\tau)}{f(\tau)}-\frac{5 f^{\prime}(\tau)^{2}}{4 f(\tau)^{2}}\right) t t^{\top}+2 \frac{f^{\prime \prime}(\tau)}{f(\tau)} T+*
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.

## Random Matrix Equivalent

$$
\begin{aligned}
& \text { Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) } \\
& \text { As } n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0 \text {, where } \\
& \qquad L=n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
& \qquad \hat{L}=-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+* \\
& \text { et } W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =-2 \frac{f^{\prime}(\tau)}{f(\tau)} M^{\top} M+\left(\frac{f^{\prime \prime}(\tau)}{f(\tau)}-\frac{5 f^{\prime}(\tau)^{2}}{4 f(\tau)^{2}}\right) t t^{\top}+2 \frac{f^{\prime \prime}(\tau)}{f(\tau)} T+*
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.
Fundamental conclusions:

## Random Matrix Equivalent

## Theorem (Random Matrix Equivalent [Couillet, Benaych'2015])

 As $n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$, where$$
\begin{aligned}
L & =n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
\hat{L} & =-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*
\end{aligned}
$$

et $W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =-2 \frac{f^{\prime}(\tau)}{f(\tau)} M^{\top} M+\left(\frac{f^{\prime \prime}(\tau)}{f(\tau)}-\frac{5 f^{\prime}(\tau)^{2}}{4 f(\tau)^{2}}\right) t t^{\top}+2 \frac{f^{\prime \prime}(\tau)}{f(\tau)} T+* .
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.

## Fundamental conclusions:

- asymptotic kernel impact only through $f^{\prime}(\tau)$ and $f^{\prime \prime}(\tau)$, that's all!


## Random Matrix Equivalent

## Theorem (Random Matrix Equivalent [Couillet, Benaych'2015])

 As $n, p \rightarrow \infty,\|L-\hat{L}\| \xrightarrow{\text { a.s. }} 0$, where$$
\begin{aligned}
L & =n D^{-\frac{1}{2}}\left(K-\frac{d d^{\top}}{d^{\top} 1_{n}}\right) D^{-\frac{1}{2}}, \text { avec } K_{i j}=f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right) \\
\hat{L} & =-2 \frac{f^{\prime}(\tau)}{f(\tau)} \frac{1}{p} P W^{\top} W P+\frac{1}{p} J B J^{\top}+*
\end{aligned}
$$

et $W=\left[w_{1}, \ldots, w_{n}\right] \in \mathbb{R}^{p \times n}\left(x_{i}=\mu_{a}+w_{i}\right), P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}$,

$$
\begin{aligned}
J & =\left[j_{1}, \ldots, j_{k}\right], j_{a}^{\top}=\left(0 \ldots 0,1_{n_{a}}, 0, \ldots, 0\right) \\
B & =-2 \frac{f^{\prime}(\tau)}{f(\tau)} M^{\top} M+\left(\frac{f^{\prime \prime}(\tau)}{f(\tau)}-\frac{5 f^{\prime}(\tau)^{2}}{4 f(\tau)^{2}}\right) t t^{\top}+2 \frac{f^{\prime \prime}(\tau)}{f(\tau)} T+* .
\end{aligned}
$$

Recall $M=\left[\mu_{1}^{\circ}, \ldots, \mu_{k}^{\circ}\right], t=\left[\frac{1}{\sqrt{p}} \operatorname{tr} C_{1}^{\circ}, \ldots, \frac{1}{\sqrt{p}} \operatorname{tr} C_{k}^{\circ}\right]^{\top}, T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}$.

## Fundamental conclusions:

- asymptotic kernel impact only through $f^{\prime}(\tau)$ and $f^{\prime \prime}(\tau)$, that's all!
- spectral clustering reads $M^{\top} M, t t^{\top}$ and $T$, that's all!

Isolated eigenvalues: Gaussian inputs



Figure: Eigenvalues of $L$ and $\hat{L}, k=3, p=2048, n=512, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $\left[\mu_{a}\right]_{j}=4 \boldsymbol{\delta}_{a j}, C_{a}=(1+2(a-1) / \sqrt{p}) I_{p}, f(x)=\exp (-x / 2)$.

## Theoretical Findings versus MNIST



Figure: Eigenvalues of $L$ (red) and (equivalent Gaussian model) $\hat{L}$ (white), MNIST data, $p=784$, $n=192$.

## Theoretical Findings versus MNIST



Figure: Eigenvalues of $L$ (red) and (equivalent Gaussian model) $\hat{L}$ (white), MNIST data, $p=784$, $n=192$.

## Theoretical Findings versus MNIST



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

## Theoretical Findings versus MNIST



Figure: Leading four eigenvectors of $D^{-\frac{1}{2}} K D^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

## Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1


Eigenvector 3/Eigenvector 2


Figure: 2D representation of eigenvectors of $L$, for the MNIST dataset. Theoretical means and 1and 2 -standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

## Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1


Eigenvector 3/Eigenvector 2


Figure: 2D representation of eigenvectors of $L$, for the MNIST dataset. Theoretical means and 1and 2 -standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.

The surprising $f^{\prime}(\tau)=0$ case


Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

The surprising $f^{\prime}(\tau)=0$ case


Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

The surprising $f^{\prime}(\tau)=0$ case


Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

The surprising $f^{\prime}(\tau)=0$ case


Figure: Polynomial kernel with $f(\tau)=4, f^{\prime \prime}(\tau)=2, x_{i} \in \mathcal{N}\left(0, C_{a}\right)$, with $C_{1}=I_{p}$, $\left[C_{2}\right]_{i, j}=.4^{|i-j|}, c_{0}=\frac{1}{4}$.

- Trivial classification when $t=0, M=0$ and $\|T\|=O(1)$.


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Position of the problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Position of the problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

## Method:

- Still assume $x_{1}, \ldots, x_{n}$ belong to $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Zero-mean Gaussian model for the data: for $x_{i} \in \mathcal{C}_{k}$,

$$
x_{i} \sim \mathcal{N}\left(0, C_{k}\right)
$$

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Position of the problem

Problem: Cluster large data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ based on "spanned subspaces".

## Method:

- Still assume $x_{1}, \ldots, x_{n}$ belong to $k$ classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.
- Zero-mean Gaussian model for the data: for $x_{i} \in \mathcal{C}_{k}$,

$$
x_{i} \sim \mathcal{N}\left(0, C_{k}\right) .
$$

- Performance of $L=n D^{-\frac{1}{2}}\left(K-\frac{1_{n} 1_{n}^{\top}}{1_{n}^{\top} D 1_{n}}\right) D^{-\frac{1}{2}}$, with

$$
K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{1 \leq i, j \leq n}, \quad \bar{x}=\frac{x}{\|x\|}
$$

in the regime $n, p \rightarrow \infty$.
(alternatively, we can ask $\frac{1}{p} \operatorname{tr} C_{i}=1$ for all $1 \leq i \leq k$ )

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Model and Reminders
Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Model and Reminders
Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Model and Reminders
Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## Theorem (Corollary of Previous Section)

Let $f$ smooth with $f^{\prime}(2) \neq 0$. Then, under Assumptions 2a,
$L=n D^{-\frac{1}{2}}\left(K-\frac{1_{n} 1_{n}^{\top}}{1_{n}^{\top} D 1_{n}}\right) D^{-\frac{1}{2}}$, with $K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n} \quad(\bar{x}=x /\|x\|)$
exhibits phase transition phenomenon

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Model and Reminders
Assumption 1 [Classes]. Vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ i.i.d. from $k$-class Gaussian mixture, with $x_{i} \in \mathcal{C}_{k} \Leftrightarrow x_{i} \sim \mathcal{N}\left(0, C_{k}\right)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## Theorem (Corollary of Previous Section)

Let $f$ smooth with $f^{\prime}(2) \neq 0$. Then, under Assumptions 2a,

$$
L=n D^{-\frac{1}{2}}\left(K-\frac{1_{n} 1_{n}^{\top}}{1_{n}^{\top} D 1_{n}}\right) D^{-\frac{1}{2}}, \text { with } K=\left\{f\left(\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}\right)\right\}_{i, j=1}^{n} \quad(\bar{x}=x /\|x\|)
$$

exhibits phase transition phenomenon, i.e., leading eigenvectors of $L$ asymptotically contain structural information about $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ if and only if

$$
T=\left\{\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

has sufficiently large eigenvalues (here $M=0, t=0$ ).

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$
Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(p)$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$
Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p})$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$. (in this regime, previous kernels clearly fail)

## Remark: [Neyman-Pearson optimality]

- if $C_{i}=I_{p} \pm E$ with $\|E\| \rightarrow 0$, detectability iif $\frac{1}{p} \operatorname{tr}\left(C_{1}-C_{2}\right)^{2} \geq O\left(p^{-\frac{1}{2}}\right)$.

Spectral Clustering: The case $f^{\prime}(\tau)=0$
The case $f^{\prime}(2)=0$
Assumption 2b [Growth Rates]. As $n \rightarrow \infty$, for each $a \in\{1, \ldots, k\}$,

1. $\frac{n}{p} \rightarrow c_{0} \in(0, \infty)$
2. $\frac{n_{a}}{n} \rightarrow c_{a} \in(0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_{a}=1$ and $\operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p})$, with $C_{a}^{\circ}=C_{a}-C^{\circ}, C^{\circ}=\sum_{b=1}^{k} c_{b} C_{b}$. (in this regime, previous kernels clearly fail)

## Remark: [Neyman-Pearson optimality]

- if $C_{i}=I_{p} \pm E$ with $\|E\| \rightarrow 0$, detectability iif $\frac{1}{p} \operatorname{tr}\left(C_{1}-C_{2}\right)^{2} \geq O\left(p^{-\frac{1}{2}}\right)$.

Theorem (Random Equivalent for $f^{\prime}(2)=0$ )
Let $f$ be smooth with $f^{\prime}(2)=0$ and

$$
\mathcal{L} \equiv \sqrt{p} \frac{f(2)}{2 f^{\prime \prime}(2)}\left[L-\frac{f(0)-f(2)}{f(2)} P\right], \quad P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

Then, under Assumptions 2b,

$$
\begin{equation*}
\mathcal{L}=P \Phi P+\left\{\frac{1}{\sqrt{p}} \operatorname{tr}\left(C_{a}^{\circ} C_{b}^{\circ}\right) \frac{1_{n_{a}} 1_{n_{b}}^{\top}}{p}\right\}_{a, b=1}^{k}+o_{\|\cdot\|} \tag{1}
\end{equation*}
$$

where $\Phi_{i j}=\delta_{i \neq j} \sqrt{p}\left[\left(x_{i}^{\top} x_{j}\right)^{2}-E\left[\left(x_{i}^{\top} x_{j}\right)^{2}\right]\right]$.

Spectral Clustering: The case $f^{\prime}(\tau)=0$
The case $f^{\prime}(2)=0$


Figure: Eigenvalues of $L, p=1000, n=2000, k=3, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $C_{i} \propto I_{p}+(p / 8)^{-\frac{5}{4}} W_{i} W_{i}^{\top}, W_{i} \in \mathbb{R}^{p \times(p / 8)}$ of i.i.d. $\mathcal{N}(0,1)$ entries, $f(t)=\exp \left(-(t-2)^{2}\right)$.
$\Rightarrow$ No longer a Marcenko-Pastur like bulk, but rather a semi-circle bulk!

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$
- study the isolated eigenvalues of $\mathcal{L}$ (and the phase transition)


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$
- study the isolated eigenvalues of $\mathcal{L}$ (and the phase transition)
- retrieve information from the eigenvectors.


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Roadmap. We now need to:

- study the spectrum of $\Phi$
- study the isolated eigenvalues of $\mathcal{L}$ (and the phase transition)
- retrieve information from the eigenvectors.

Theorem (Semi-circle law for $\Phi$ )
Let $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\delta}_{\lambda_{i}(\mathcal{L})}$. Then, under Assumption 2b,

$$
\mu_{n} \xrightarrow{\text { a.s. }} \mu
$$

with $\mu$ the semi-circle distribution

$$
\mu(d t)=\frac{1}{2 \pi c_{0} \omega^{2}} \sqrt{\left(4 c_{0} \omega^{2}-t^{2}\right)^{+}} d t, \quad \omega=\lim _{p \rightarrow \infty} \sqrt{2} \frac{1}{p} \operatorname{tr}\left(C^{\circ}\right)^{2} .
$$

Spectral Clustering: The case $f^{\prime}(\tau)=0$
The case $f^{\prime}(2)=0$


Figure: Eigenvalues of $L, p=1000, n=2000, k=3, c_{1}=c_{2}=1 / 4, c_{3}=1 / 2$, $C_{i} \propto I_{p}+(p / 8)^{-\frac{5}{4}} W_{i} W_{i}^{\top}, W_{i} \in \mathbb{R}^{p \times(p / 8)}$ of i.i.d. $\mathcal{N}(0,1)$ entries, $f(t)=\exp \left(-(t-2)^{2}\right)$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Denote now

$$
\mathcal{T} \equiv \lim _{p \rightarrow \infty}\left\{\frac{\sqrt{c_{a} c_{b}}}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Denote now

$$
\mathcal{T} \equiv \lim _{p \rightarrow \infty}\left\{\frac{\sqrt{c_{a} c_{b}}}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}\right\}_{a, b=1}^{k}
$$

Theorem (Isolated Eigenvalues)
Let $\nu_{1} \geq \ldots \geq \nu_{k}$ eigenvalues of $\mathcal{T}$. Then, if $\sqrt{c_{0}}\left|\nu_{i}\right|>\omega, \mathcal{L}$ has an isolated eigenvalue $\lambda_{i}$ satisfying

$$
\lambda_{i} \xrightarrow{\text { a.s. }} \rho_{i} \equiv c_{0} \nu_{i}+\frac{\omega^{2}}{\nu_{i}}
$$

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$

Theorem (Isolated Eigenvectors)
For each isolated eigenpair $\left(\lambda_{i}, u_{i}\right)$ of $\mathcal{L}$ corresponding to $\left(\nu_{i}, v_{i}\right)$ of $\mathcal{T}$, write

$$
u_{i}=\sum_{a=1}^{k} \alpha_{i}^{a} \frac{j_{a}}{\sqrt{n_{a}}}+\sigma_{i}^{a} w_{i}^{a}
$$

with $j_{a}=\left[0_{n_{1}}^{\top}, \ldots, 1_{n_{a}}^{\top}, \ldots, 0_{n_{k}}^{\top}\right]^{\top},\left(w_{i}^{a}\right)^{\top} j_{a}=0, \operatorname{supp}\left(w_{i}^{a}\right)=\operatorname{supp}\left(j_{a}\right),\left\|w_{i}^{a}\right\|=1$. Then, under Assumptions 1-2b,

$$
\begin{aligned}
& \alpha_{i}^{a} \alpha_{i}^{b} \xrightarrow{\text { a.s. }}\left(1-\frac{1}{c_{0}} \frac{\omega^{2}}{\nu_{i}^{2}}\right)\left[v_{i} v_{i}^{\top}\right]_{a b} \\
& \left(\sigma_{i}^{a}\right)^{2} \xrightarrow{\text { a.s. }} \frac{c_{a}}{c_{0}} \frac{\omega^{2}}{\nu_{i}^{2}}
\end{aligned}
$$

and the fluctuations of $u_{i}, u_{j}, i \neq j$, are asymptotically uncorrelated.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$



Figure: Leading two eigenvectors of $\mathcal{L}$ (or equivalently of $L$ ) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$


Figure: Leading two eigenvectors of $\mathcal{L}$ (or equivalently of $L$ ) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

The case $f^{\prime}(2)=0$


Figure: Leading two eigenvectors of $\mathcal{L}$ (or equivalently of $L$ ) versus deterministic approximations of $\alpha_{i}^{a} \pm \sigma_{i}^{a}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.


## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.

Objective. Cluster sources based on covariance $C_{i}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.

Objective. Cluster sources based on covariance $C_{i}$.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.

Objective. Cluster sources based on covariance $C_{i}$.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

## Algorithm.

1. Build kernel matrix $K$, then $\mathcal{L}$, based on $m n_{i}$ vectors $x_{1}^{(1)}, \ldots, x_{m}^{\left(n_{i}\right)}$ (as if $m n_{i}$ values to cluster).

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.

Objective. Cluster sources based on covariance $C_{i}$.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

## Algorithm.

1. Build kernel matrix $K$, then $\mathcal{L}$, based on $m n_{i}$ vectors $x_{1}^{(1)}, \ldots, x_{m}^{\left(n_{i}\right)}$ (as if $m n_{i}$ values to cluster).
2. Extract dominant isolated eigenvectors $u_{1}, \ldots, u_{\kappa}$

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.

Objective. Cluster sources based on covariance $C_{i}$.

Applications examples. Massive MIMO scheduling / EEG classification / etc.

## Algorithm.

1. Build kernel matrix $K$, then $\mathcal{L}$, based on $m n_{i}$ vectors $x_{1}^{(1)}, \ldots, x_{m}^{\left(n_{i}\right)}$ (as if $m n_{i}$ values to cluster).
2. Extract dominant isolated eigenvectors $u_{1}, \ldots, u_{\kappa}$
3. For each $i$, create $\tilde{u}_{i}=\frac{1}{n_{i}}\left(I_{m} \otimes 1_{n_{i}}^{\top}\right) u_{i}$, i.e., average eigenvectors along time.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application: Clustering data vectors with close covariances

## Setting.

- $p$ dimensional vector observations.
- $m$ data sources.
- $E\left[x_{i}\right]=0, E\left[x_{i} x_{i}^{\top}\right]=C_{i}$.
- $n_{i}$ independent observations $x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}$ for source $i$.

Objective. Cluster sources based on covariance $C_{i}$.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

## Algorithm.

1. Build kernel matrix $K$, then $\mathcal{L}$, based on $m n_{i}$ vectors $x_{1}^{(1)}, \ldots, x_{m}^{\left(n_{i}\right)}$ (as if $m n_{i}$ values to cluster).
2. Extract dominant isolated eigenvectors $u_{1}, \ldots, u_{\kappa}$
3. For each $i$, create $\tilde{u}_{i}=\frac{1}{n_{i}}\left(I_{m} \otimes 1_{n_{i}}^{\top}\right) u_{i}$, i.e., average eigenvectors along time.
4. Perform $k$-class clustering on vectors $\tilde{u}_{1}, \ldots, \tilde{u}_{\kappa}$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application Example: Clustering data vectors with close covariances


Figure: Clustering data vectors with close covariances application: Leading two eigenvectors before (left figure) and after (right figure) $n_{i}$-averaging. Setting: $p=400, m=40, n_{i}=10$, $k=3, c_{1}=c_{3}=1 / 4, c_{2}=1 / 2$. Kernel function $f(t)=\exp \left(-(t-2)^{2}\right)$.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application Example: Clustering data vectors with close covariances


Figure: Overlap for different $m$, using the k-means or EM starting from actual centroid solutions (oracle) or randomly.

## Spectral Clustering: The case $f^{\prime}(\tau)=0$

Application Example: Clustering data vectors with close covariances


Figure: Overlap for optimal kernel $f(t)$ (here $f(t)=\exp \left(-(t-2)^{2}\right)$ ) and Gaussian kernel $f(t)=\exp \left(-t^{2}\right)$, for different $m$, using the k -means or EM.

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Optimal growth rates and optimal kernels

## Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$ :
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
$\longrightarrow$ Model type: Marčenko-Pastur + spikes.


## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Optimal growth rates and optimal kernels

## Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$ :
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
$\longrightarrow$ Model type: Marčenko-Pastur + spikes.
- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau)=0$ :
- suboptimal in $\left\|\mu_{a}^{\circ}\right\| \gg O(1)$ (kills the means)
- better in discriminating covariance (stress on $t$ and $T$ )
$\longrightarrow$ Model type: smaller order semi-circle law + spikes.


## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Optimal growth rates and optimal kernels

## Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$ :
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
$\longrightarrow$ Model type: Marčenko-Pastur + spikes.
- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau)=0$ :
- suboptimal in $\left\|\mu_{a}^{\circ}\right\| \gg O(1)$ (kills the means)
- better in discriminating covariance (stress on $t$ and $T$ )
$\longrightarrow$ Model type: smaller order semi-circle law + spikes.


## Jointly optimal solution:

- evenly weighing Marčenko-Pastur and semi-circle laws


## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Optimal growth rates and optimal kernels

## Conclusion of previous analyses:

- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau) \neq 0$ :
- optimal in $\left\|\mu_{a}^{\circ}\right\|=O(1), \frac{1}{p} \operatorname{tr} C_{a}^{\circ}=O\left(p^{-\frac{1}{2}}\right)$
- suboptimal in $\frac{1}{p} \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(1)$
$\longrightarrow$ Model type: Marčenko-Pastur + spikes.
- kernel $f\left(\frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}\right)$ with $f^{\prime}(\tau)=0$ :
- suboptimal in $\left\|\mu_{a}^{\circ}\right\| \gg O(1)$ (kills the means)
- better in discriminating covariance (stress on $t$ and $T$ )
$\longrightarrow$ Model type: smaller order semi-circle law + spikes.


## Jointly optimal solution:

- evenly weighing Marčenko-Pastur and semi-circle laws
- the " $\alpha-\beta$ " kernel:

$$
f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}, \quad \frac{1}{2} f^{\prime \prime}(\tau)=\beta .
$$

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

New assumption setting

- We consider now an improved growth rate setting.


## Assumption (Optimal Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p}) .
$$

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

New assumption setting

- We consider now an improved growth rate setting.


## Assumption (Optimal Growth Rate)

As $n \rightarrow \infty$,

1. Data scaling: $\frac{p}{n} \rightarrow c_{0} \in(0, \infty), \frac{n_{a}}{n} \rightarrow c_{a} \in(0,1)$,
2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} \mu_{a}$ and $\mu_{a}^{\circ} \triangleq \mu_{a}-\mu^{\circ}$, then $\left\|\mu_{a}^{\circ}\right\|=O(1)$
3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_{a}}{n} C_{a}$ and $C_{a}^{\circ} \triangleq C_{a}-C^{\circ}$, then

$$
\left\|C_{a}\right\|=O(1), \quad \operatorname{tr} C_{a}^{\circ}=O(\sqrt{p}), \quad \operatorname{tr} C_{a}^{\circ} C_{b}^{\circ}=O(\sqrt{p}) .
$$

## Kernel:

- For technical simplicity, we consider

$$
\tilde{K}=P K P=P\left\{f\left(\frac{1}{p}\left(x^{\circ}\right)^{\top}\left(x_{j}^{\circ}\right)\right)\right\}_{i, j=1}^{n} P \quad, \quad P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top}
$$

i.e., $\tau$ replaced by 0 .

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Theorem
As $n \rightarrow \infty$,

$$
\left\|\sqrt{p}\left(P K P+\left(f(0)+\tau f^{\prime}(0)\right) P\right)-\hat{\mathcal{K}}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for $\alpha=\sqrt{p} f^{\prime}(0)=O(1)$ and $\beta=\frac{1}{2} f^{\prime \prime}(0)=O(1)$,

$$
\begin{aligned}
\hat{\mathcal{K}} & =\alpha P W^{\top} W P+\beta P \Phi P+U A U^{\top} \\
A & =\left[\begin{array}{cc}
\alpha M^{\top} M+\beta T & \alpha I_{k} \\
\alpha I_{k} & 0
\end{array}\right] \\
U & =\left[\frac{J}{\sqrt{p}}, P W^{\top} M\right] \\
\frac{\Phi}{\sqrt{p}} & =\left\{\left(\left(\omega_{i}^{\circ}\right)^{\top} \omega_{j}^{\circ}\right)^{2} \delta_{i \neq j}\right\}_{i, j=1}^{n}-\left\{\frac{\operatorname{tr}\left(C_{a} C_{b}\right)}{p^{2}} 1_{n_{a}} 1_{n_{b}}^{\top}\right\}_{a, b=1}^{k} .
\end{aligned}
$$

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Main Results

Theorem
As $n \rightarrow \infty$,

$$
\left\|\sqrt{p}\left(P K P+\left(f(0)+\tau f^{\prime}(0)\right) P\right)-\hat{\mathcal{K}}\right\| \xrightarrow{\text { a.s. }} 0
$$

with, for $\alpha=\sqrt{p} f^{\prime}(0)=O(1)$ and $\beta=\frac{1}{2} f^{\prime \prime}(0)=O(1)$,

$$
\begin{aligned}
\hat{\mathcal{K}} & =\alpha P W^{\top} W P+\beta P \Phi P+U A U^{\top} \\
A & =\left[\begin{array}{cc}
\alpha M^{\top} M+\beta T & \alpha I_{k} \\
\alpha I_{k} & 0
\end{array}\right] \\
U & =\left[\frac{J}{\sqrt{p}}, P W^{\top} M\right] \\
\frac{\Phi}{\sqrt{p}} & =\left\{\left(\left(\omega_{i}^{\circ}\right)^{\top} \omega_{j}^{\circ}\right)^{2} \delta_{i \neq j}\right\}_{i, j=1}^{n}-\left\{\frac{\operatorname{tr}\left(C_{a} C_{b}\right)}{p^{2}} 1_{n_{a}} 1_{n_{b}}^{\top}\right\}_{a, b=1}^{k} .
\end{aligned}
$$

Role of $\alpha, \beta$ :

- Weighs Marčenko-Pastur versus semi-circle parts.


## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk)
As $p \rightarrow \infty$,

$$
\nu_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\hat{K})} \xrightarrow{\text { a.s. }} \nu
$$

with $\nu$ having Stieltjes transform $m(z)$ solution of

$$
\frac{1}{m(z)}=-z+\frac{\alpha}{p} \operatorname{tr} C^{\circ}\left(I_{k}+\frac{\alpha m(z)}{c_{0}} C^{\circ}\right)^{-1}-\frac{2 \beta^{2}}{c_{0}} \omega^{2} m(z)
$$

where $\omega=\lim _{p \rightarrow \infty} \frac{1}{p} \operatorname{tr}\left(C^{\circ}\right)^{2}$.

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Limiting eigenvalue distribution


Figure: Eigenvalues of $K$ (up to recentering) versus limiting law, $p=2048, n=4096, k=2$,
$n_{1}=n_{2}, \boldsymbol{\mu}_{i}=3 \boldsymbol{\delta}_{i}, f(x)=\frac{1}{2} \beta\left(x+\frac{1}{\sqrt{p}} \frac{\alpha}{\beta}\right)^{2}$. (Top left): $\alpha=8, \beta=1$, (Top right): $\alpha=4, \beta=3$, (Bottom left): $\alpha=3, \beta=4$, (Bottom right): $\alpha=1, \beta=8$.

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Asymptotic performances: MNIST

- MNIST is "means-dominant" but not that much!

| DATASETS | $\left\\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\right\\|^{2}$ | $\frac{1}{\sqrt{p}} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$ | $\frac{1}{p} \mathrm{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$ |
| :--- | :---: | :---: | :---: |
| MNIST (DIGITS 1, 7) | 613 | 1990 | 71.1 |
| MNIST (DIGITS 3, 6) | 441 | 1119 | 39.9 |
| MNIST (DIGITS 3, 8) | 212 | 652 | 23.5 |

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Asymptotic performances: MNIST

- MNIST is "means-dominant" but not that much!

| DATASETS | $\left\\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\right\\|^{2}$ | $\frac{1}{\sqrt{p}} \operatorname{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$ | $\frac{1}{p} \operatorname{TR}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2}$ |
| :--- | :---: | :---: | :---: |
| MNIST (DIGITS 1, 7) | 613 | 1990 | 71.1 |
| MNIST (DIGITS 3, 6) | 441 | 1119 | 39.9 |
| MNIST (DIGITS 3, 8) | 212 | 652 | 23.5 |



Figure: Spectral clustering of the MNIST database for varying $\frac{\alpha}{\beta}$.

## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Asymptotic performances: EEG data

- EEG data are "variance-dominant"



## Kernel Spectral Clustering: The case $f^{\prime}(\tau)=\frac{\alpha}{\sqrt{p}}$

Asymptotic performances: EEG data

- EEG data are "variance-dominant"



Figure: Spectral clustering of the EEG database for varying $\frac{\alpha}{\beta}$.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
```

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
```

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data
Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## LS-SVM Problem Statement

Optimization problem: find separating hyperplane (linear separability case)

$$
\begin{gathered}
\underset{w}{\arg \min } \quad J(w, e)=\|w\|^{2}+\frac{\gamma}{n} \sum_{i=1}^{n} e_{i}^{2} \\
\text { such that } \quad y_{i}=w^{\boldsymbol{\top}} x_{i}+b+e_{i} \\
\text { for } i=1, \ldots, n
\end{gathered}
$$



## LS-SVM Problem Statement

Optimization problem: find separating hyperplane (linear separability case)
$\underset{w}{\arg \min } J(w, e)=\|w\|^{2}+\frac{\gamma}{n} \sum_{i=1}^{n} e_{i}^{2}$

$$
\begin{gathered}
\text { such that } \quad y_{i}=w^{\top} x_{i}+b+e_{i} \\
\text { for } i=1, \ldots, n
\end{gathered}
$$



Advantage of LS-SVM
Explicit form, as opposed to $\mathrm{SVM} \Rightarrow$ easier to analyze.

## LS-SVM Problem Statement

When no linear separability:
$\Rightarrow$ Kernel method

## LS-SVM Problem Statement

When no linear separability:
$\Rightarrow$ Kernel method

To solve the optimization problem:

$$
\begin{gathered}
\underset{w}{\arg \min } J(w, e)=\|w\|^{2}+\frac{\gamma}{n} \sum_{i=1}^{n} e_{i}^{2} \\
\text { such that } \quad y_{i}=w^{\top} \varphi\left(x_{i}\right)+b+e_{i} \\
\text { for } i=1, \ldots, n
\end{gathered}
$$

## LS-SVM Training and Inference

- Training: Solution given by $w=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)$, where

$$
\begin{cases}\alpha & =S\left(I_{n}-\frac{1_{n} 1_{n}^{\top} S}{1_{n}^{\top} S 1_{n}}\right) y=S\left(y-b 1_{n}\right) \\ b & =\frac{1_{n}^{\top} S y}{1_{n}^{\top} S 1_{n}}\end{cases}
$$

with $S \equiv\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}$ resolvent of kernel matrix:

$$
K \equiv\left\{\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)\right\}_{i, j=1}^{n}
$$

## LS-SVM Training and Inference

- Training: Solution given by $w=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)$, where

$$
\begin{cases}\alpha & =S\left(I_{n}-\frac{1_{n} 1_{n}^{\top} S}{1_{n}^{\top} S 1_{n}}\right) y=S\left(y-b 1_{n}\right) \\ b & =\frac{1_{n}^{\top} S y}{1_{n}^{\top} S 1_{n}}\end{cases}
$$

with $S \equiv\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}$ resolvent of kernel matrix:

$$
K \equiv\left\{\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)\right\}_{i, j=1}^{n}
$$

## LS-SVM Training and Inference

- Training: Solution given by $w=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)$, where

$$
\begin{cases}\alpha & =S\left(I_{n}-\frac{1_{n} 1_{n}^{\top} S}{1_{n}^{\top} S 1_{n}}\right) y=S\left(y-b 1_{n}\right) \\ b & =\frac{1_{n}^{\top} S y}{1_{n}^{\top} S 1_{n}}\end{cases}
$$

with $S \equiv\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}$ resolvent of kernel matrix:

$$
K \equiv\left\{\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)\right\}_{i, j=1}^{n} \underbrace{=}_{\text {kernel trick }}\left\{f\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{p}\right)\right\}_{i, j=1}^{n}
$$

for some translation invariant kernel function $f: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}, y \equiv\left[y_{1}, \ldots, y_{n}\right]^{\top}$ and $\alpha \equiv\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{\top}$.

- Training: Solution given by $w=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)$, where

$$
\begin{cases}\alpha & =S\left(I_{n}-\frac{1_{n} 1_{n}^{\top} S}{1_{n}^{\top} S 1_{n}}\right) y=S\left(y-b 1_{n}\right) \\ b & =\frac{1_{n}^{\top} S y}{1_{n}^{\top} S 1_{n}}\end{cases}
$$

with $S \equiv\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}$ resolvent of kernel matrix:

$$
K \equiv\left\{\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)\right\}_{i, j=1}^{n} \underbrace{=}_{\text {kernel trick }}\left\{f\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{p}\right)\right\}_{i, j=1}^{n}
$$

for some translation invariant kernel function $f: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}, y \equiv\left[y_{1}, \ldots, y_{n}\right]^{\top}$ and $\alpha \equiv\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{\top}$.

- Inference: Decision for new $x$

$$
g(x)=\alpha^{\boldsymbol{\top}} k(x)+b \text { where } k(x)=\left\{f\left(\left\|x_{j}-x\right\|^{2} / p\right)\right\}_{j=1}^{n} \in \mathbb{R}^{n}
$$

- Training: Solution given by $w=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)$, where

$$
\begin{cases}\alpha & =S\left(I_{n}-\frac{1_{n} 1_{n}^{\top} S}{1_{n}^{\top} S 1_{n}}\right) y=S\left(y-b 1_{n}\right) \\ b & =\frac{1 n_{n}^{\top} S y}{1_{n}^{\top} S 1_{n}}\end{cases}
$$

with $S \equiv\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}$ resolvent of kernel matrix:

$$
K \equiv\left\{\varphi\left(x_{i}\right)^{\top} \varphi\left(x_{j}\right)\right\}_{i, j=1}^{n} \underbrace{=}_{\text {kernel trick }}\left\{f\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{p}\right)\right\}_{i, j=1}^{n}
$$

for some translation invariant kernel function $f: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}, y \equiv\left[y_{1}, \ldots, y_{n}\right]^{\top}$ and $\alpha \equiv\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{\top}$.

- Inference: Decision for new $x$

$$
g(x)=\alpha^{\top} k(x)+b \text { where } k(x)=\left\{f\left(\left\|x_{j}-x\right\|^{2} / p\right)\right\}_{j=1}^{n} \in \mathbb{R}^{n}
$$

- In practice, $\operatorname{sign}(g(x))$ to predict the class.

RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$


## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

- Non-trivial regime: to ensure $P\left(x_{i} \rightarrow \mathcal{C}_{b} \mid x_{i} \in \mathcal{C}_{a}\right) \nrightarrow 0$ nor 1


## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

- Non-trivial regime: to ensure $P\left(x_{i} \rightarrow \mathcal{C}_{b} \mid x_{i} \in \mathcal{C}_{a}\right) \nrightarrow 0$ nor 1
- $\left\|\mu_{2}-\mu_{1}\right\|=\mathcal{O}(1)$


## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

- Non-trivial regime: to ensure $P\left(x_{i} \rightarrow \mathcal{C}_{b} \mid x_{i} \in \mathcal{C}_{a}\right) \nrightarrow 0$ nor 1
- $\left\|\mu_{2}-\mu_{1}\right\|=\mathcal{O}(1)$
- $\left\|C_{a}\right\|=\mathcal{O}(1)$ and $\operatorname{tr}\left(C_{2}-C_{1}\right)=\mathcal{O}(\sqrt{n})$


## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

- Non-trivial regime: to ensure $P\left(x_{i} \rightarrow \mathcal{C}_{b} \mid x_{i} \in \mathcal{C}_{a}\right) \nrightarrow 0$ nor 1
- $\left\|\mu_{2}-\mu_{1}\right\|=\mathcal{O}(1)$
- $\left\|C_{a}\right\|=\mathcal{O}(1)$ and $\operatorname{tr}\left(C_{2}-C_{1}\right)=\mathcal{O}(\sqrt{n})$
- Notations:


## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

- Non-trivial regime: to ensure $P\left(x_{i} \rightarrow \mathcal{C}_{b} \mid x_{i} \in \mathcal{C}_{a}\right) \nrightarrow 0$ nor 1
- $\left\|\mu_{2}-\mu_{1}\right\|=\mathcal{O}(1)$
- $\left\|C_{a}\right\|=\mathcal{O}(1)$ and $\operatorname{tr}\left(C_{2}-C_{1}\right)=\mathcal{O}(\sqrt{n})$
- Notations:
$-C^{\circ} \equiv c_{1} C_{1}+c_{2} C_{2}, c_{1} \equiv \frac{n_{1}}{n}$ and $c_{2} \equiv \frac{n_{2}}{n}=1-c_{1}$


## RMT Analysis: Growth Rate Assumptions

- Large dimension: $n, p \rightarrow \infty$ and $\frac{p}{n} \rightarrow c_{0}$
- Gaussian mixture model: for $a \in\{1,2\}$ :

$$
x_{i} \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)
$$

- Non-trivial regime: to ensure $P\left(x_{i} \rightarrow \mathcal{C}_{b} \mid x_{i} \in \mathcal{C}_{a}\right) \nrightarrow 0$ nor 1
- $\left\|\mu_{2}-\mu_{1}\right\|=\mathcal{O}(1)$
- $\left\|C_{a}\right\|=\mathcal{O}(1)$ and $\operatorname{tr}\left(C_{2}-C_{1}\right)=\mathcal{O}(\sqrt{n})$
- Notations:
- $C^{\circ} \equiv c_{1} C_{1}+c_{2} C_{2}, c_{1} \equiv \frac{n_{1}}{n}$ and $c_{2} \equiv \frac{n_{2}}{n}=1-c_{1}$
- Key Notation: $\tau \equiv \frac{2}{p}$ tr $C^{\circ}$


## RMT Analysis: Kernel Linearization

Reminder: kernel matrix

$$
K_{i, j}=f\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{p}\right)
$$

For $x_{i} \in \mathcal{C}_{a}$ and $x_{j} \in \mathcal{C}_{b}: \frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}=\tau+\mathcal{O}\left(n^{-1 / 2}\right)$, thus for $K_{i, j}$

$$
K_{i, j}=f\left(\tau+\mathcal{O}\left(n^{-1 / 2}\right)\right)=f(\tau)+f^{\prime}(\tau)[\ldots]+f^{\prime \prime}(\tau)[\ldots]+\ldots
$$

or in matrix form

$$
K=f(\tau) 1_{n} 1_{n}^{\top}+f^{\prime}(\tau)[\ldots]+f^{\prime \prime}(\tau)[\ldots]+\ldots
$$

## RMT Analysis: Kernel Linearization

Reminder: kernel matrix

$$
K_{i, j}=f\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{p}\right)
$$

For $x_{i} \in \mathcal{C}_{a}$ and $x_{j} \in \mathcal{C}_{b}: \frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}=\tau+\mathcal{O}\left(n^{-1 / 2}\right)$, thus for $K_{i, j}$

$$
K_{i, j}=f\left(\tau+\mathcal{O}\left(n^{-1 / 2}\right)\right)=f(\tau)+f^{\prime}(\tau)[\ldots]+f^{\prime \prime}(\tau)[\ldots]+\ldots
$$

or in matrix form

$$
K=f(\tau) 1_{n} 1_{n}^{\top}+f^{\prime}(\tau)[\ldots]+f^{\prime \prime}(\tau)[\ldots]+\ldots
$$

Consequence
Asymptotic statistics of $K$, thus of

$$
g(x)=\alpha^{\boldsymbol{\top}} k(x)+b
$$

## RMT Analysis: Kernel Linearization

Reminder: kernel matrix

$$
K_{i, j}=f\left(\frac{\left\|x_{i}-x_{j}\right\|^{2}}{p}\right)
$$

For $x_{i} \in \mathcal{C}_{a}$ and $x_{j} \in \mathcal{C}_{b}: \frac{1}{p}\left\|x_{i}-x_{j}\right\|^{2}=\tau+\mathcal{O}\left(n^{-1 / 2}\right)$, thus for $K_{i, j}$

$$
K_{i, j}=f\left(\tau+\mathcal{O}\left(n^{-1 / 2}\right)\right)=f(\tau)+f^{\prime}(\tau)[\ldots]+f^{\prime \prime}(\tau)[\ldots]+\ldots
$$

or in matrix form

$$
K=f(\tau) 1_{n} 1_{n}^{\top}+f^{\prime}(\tau)[\ldots]+f^{\prime \prime}(\tau)[\ldots]+\ldots
$$

Consequence
Asymptotic statistics of $K$, thus of

$$
\begin{gathered}
g(x)=\alpha^{\top} k(x)+b \\
\left\{\begin{array}{ll}
\alpha & =S\left(I_{n}-\frac{1_{n} 1_{n}^{\top} S}{1_{n}^{\top} S 1_{n}}\right) y=S\left(y-b 1_{n}\right) \\
b=\frac{1^{\top} S y}{1_{n}^{\top} S 1_{n}}
\end{array}, S \equiv\left(K+\frac{n}{\gamma} I_{n}\right)^{-1}\right.
\end{gathered}
$$

## Asymptotic Behavior of the Decision Function

Theorem ([Liao,C'19])
Under previous assumptions, for $x \in \mathcal{C} a, a \in\{1,2\}$

$$
n\left(g(x)-G_{a}\right) \xrightarrow{d} 0
$$

where $G_{a} \sim \mathcal{N}\left(\mathrm{E}_{a}, \operatorname{Var}_{a}\right)$

## Asymptotic Behavior of the Decision Function

## Theorem ([Liao,C'19])

Under previous assumptions, for $x \in \mathcal{C}_{a}, a \in\{1,2\}$

$$
n\left(g(x)-G_{a}\right) \xrightarrow{d} 0
$$

where $G_{a} \sim \mathcal{N}\left(\mathrm{E}_{a}, \operatorname{Var}_{a}\right)$ with

$$
\begin{aligned}
\mathrm{E}_{a} & = \begin{cases}c_{2}-c_{1}-\frac{2}{p} c_{2} \cdot c_{1} c_{2} \gamma \mathfrak{D}, & a=1 \\
c_{2}-c_{1}+\frac{2}{p} 2 c_{1} \cdot c_{1} c_{2} \gamma \mathfrak{D}, & a=2\end{cases} \\
\operatorname{Var}_{a} & =\frac{8}{p^{2}} \gamma^{2} c_{1}^{2} c_{2}^{2}\left(\mathcal{V}_{1}^{a}+\mathcal{V}_{2}^{a}+\mathcal{V}_{3}^{a}\right)
\end{aligned}
$$

## Asymptotic Behavior of the Decision Function

## Theorem ([Liao,C'19])

Under previous assumptions, for $x \in \mathcal{C}_{a}, a \in\{1,2\}$

$$
n\left(g(x)-G_{a}\right) \xrightarrow{d} 0
$$

where $G_{a} \sim \mathcal{N}\left(\mathrm{E}_{a}, \operatorname{Var}_{a}\right)$ with

$$
\begin{aligned}
\mathrm{E}_{a} & = \begin{cases}c_{2}-c_{1}-\frac{2}{p} c_{2} \cdot c_{1} c_{2} \gamma \mathfrak{D}, & a=1 \\
c_{2}-c_{1}+\frac{2}{p} 2 c_{1} \cdot c_{1} c_{2} \gamma \mathfrak{D}, & a=2\end{cases} \\
\operatorname{Var}_{a} & =\frac{8}{p^{2}} \gamma^{2} c_{1}^{2} c_{2}^{2}\left(\mathcal{V}_{1}^{a}+\mathcal{V}_{2}^{a}+\mathcal{V}_{3}^{a}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{D} & =-2 f^{\prime}(\tau)\left\|\mu_{2}-\mu_{1}\right\|^{2}+\frac{f^{\prime \prime}(\tau)}{p}\left(\operatorname{tr}\left(C_{2}-C_{1}\right)\right)^{2}+\frac{2 f^{\prime \prime}(\tau)}{p} \operatorname{tr}\left(\left(C_{2}-C_{1}\right)^{2}\right) \\
\mathcal{V}_{1}^{a} & =\frac{\left(f^{\prime \prime}(\tau)\right)^{2}}{p^{2}}\left(\operatorname{tr}\left(C_{2}-C_{1}\right)\right)^{2} \operatorname{tr} C_{a}^{2} \\
\mathcal{V}_{2}^{a} & =2\left(f^{\prime}(\tau)\right)^{2}\left(\mu_{2}-\mu_{1}\right)^{\top} C_{a}\left(\mu_{2}-\mu_{1}\right) \\
\mathcal{V}_{3}^{a} & =\frac{2\left(f^{\prime}(\tau)\right)^{2}}{n}\left(\frac{\operatorname{tr} C_{1} C_{a}}{c_{1}}+\frac{\operatorname{tr} C_{2} C_{a}}{c_{2}}\right)
\end{aligned}
$$

## Simulations on Gaussian data



Figure: Gaussian approximation of $g(x)$, $n=256, p=512, c_{1}=1 / 4, c_{2}=3 / 4, \gamma=1$, Gaussian kernel with $\sigma^{2}=1, x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$ with $\mu_{a}=\left[0_{a-1} ; 3 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{5}{\sqrt{p}}\right)$.

## Simulations on Gaussian data



Figure: Gaussian approximation of $g(x)$, $n=256, p=512, c_{1}=1 / 4, c_{2}=3 / 4, \gamma=1$, Gaussian kernel with $\sigma^{2}=1, x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$ with $\mu_{a}=\left[0_{a-1} ; 3 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{5}{\sqrt{p}}\right)$.

## Simulations on Gaussian data



Figure: Gaussian approximation of $g(x)$, $n=256, p=512, c_{1}=1 / 4, c_{2}=3 / 4, \gamma=1$, Gaussian kernel with $\sigma^{2}=1, x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$ with $\mu_{a}=\left[0_{a-1} ; 3 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{5}{\sqrt{p}}\right)$.


Figure: Performance of LS-SVM, $c_{0}=2$, $c_{1}=c_{2}=1 / 2, \gamma=1$, Gaussian kernel $f(t)=\exp \left(-\frac{t}{2 \sigma^{2}}\right) . x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$, with $\mu_{a}=\left[0_{a-1} ; 2 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{4}{\sqrt{p}}\right)$.

## Simulations on Gaussian data



Figure: Gaussian approximation of $g(x)$, $n=256, p=512, c_{1}=1 / 4, c_{2}=3 / 4, \gamma=1$, Gaussian kernel with $\sigma^{2}=1, x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$ with $\mu_{a}=\left[0_{a-1} ; 3 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{5}{\sqrt{p}}\right)$.


Figure: Performance of LS-SVM, $c_{0}=2$, $c_{1}=c_{2}=1 / 2, \gamma=1$, Gaussian kernel $f(t)=\exp \left(-\frac{t}{2 \sigma^{2}}\right) . x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$, with $\mu_{a}=\left[0_{a-1} ; 2 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{4}{\sqrt{p}}\right)$.

## Simulations on Gaussian data



Figure: Gaussian approximation of $g(x)$, $n=256, p=512, c_{1}=1 / 4, c_{2}=3 / 4, \gamma=1$, Gaussian kernel with $\sigma^{2}=1, x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$ with $\mu_{a}=\left[0_{a-1} ; 3 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{5}{\sqrt{p}}\right)$.


Figure: Performance of LS-SVM, $c_{0}=2$, $c_{1}=c_{2}=1 / 2, \gamma=1$, Gaussian kernel $f(t)=\exp \left(-\frac{t}{2 \sigma^{2}}\right) . x \sim \mathcal{N}\left(\mu_{a}, C_{a}\right)$, with $\mu_{a}=\left[0_{a-1} ; 2 ; 0_{p-a}\right], C_{1}=I_{p}$ and $\left\{C_{2}\right\}_{i, j}=.4^{|i-j|}\left(1+\frac{4}{\sqrt{p}}\right)$.

## Simulations on MNIST data



Figure: Gaussian approximation of $g(\mathbf{x}), n=256, p=784, c_{1}=c_{2}=1 / 2, \gamma=1$, Gaussian kernel with $\sigma^{2}=1$, MNIST data (numbers 1 and 7 ) without and with 0dB noise.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
```

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## SSL Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, with $n_{l}$ labelled and $n_{u}$ unlabelled data.


## SSL Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, with $n_{l}$ labelled and $n_{u}$ unlabelled data.
- Problem statement: give scores $F_{i a}\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} \quad-F_{j a} \quad\right)^{2}
$$

such that $F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled $x_{i}$.

## SSL Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, with $n_{l}$ labelled and $n_{u}$ unlabelled data.
- Problem statement: give scores $F_{i a}\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2}
$$

such that $F_{i a}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled $x_{i}$.

## SSL Problem Statement

Context: Similar to clustering:

- Classify $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ in $k$ classes, with $n_{l}$ labelled and $n_{u}$ unlabelled data.
- Problem statement: give scores $F_{i a}\left(d_{i}=\left[K 1_{n}\right]_{i}\right)$

$$
F=\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2}
$$

such that $F_{i a}=\boldsymbol{\delta}_{\left\{x_{i} \in \mathcal{C}_{a}\right\}}$, for all labelled $x_{i}$.

- Solution: for $F^{(u)} \in \mathbb{R}^{n_{u} \times k}, F^{(l)} \in \mathbb{R}^{n_{l} \times k}$ scores of unlabelled/labelled data,

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

where we naturally decompose

$$
\begin{aligned}
K & =\left[\begin{array}{ll}
K_{(l, l)} & K_{(l, u)} \\
K_{(u, l)} & K_{(u, u)}
\end{array}\right] \\
D & =\left[\begin{array}{cc}
D_{(l)} & 0 \\
0 & D^{(u)}
\end{array}\right]=\operatorname{diag}\left\{K 1_{n}\right\} .
\end{aligned}
$$

The finite-dimensional intuition: What we expect


Figure: Typical expected performance output

The finite-dimensional intuition: What we expect


Figure: Typical expected performance output

The finite-dimensional intuition: What we expect


Figure: Typical expected performance output

## The reality: What we see!

Setting. $p=400, n=1000, x_{i} \sim \mathcal{N}\left( \pm \mu, I_{p}\right)$. Kernel $K_{i j}=\exp \left(-\frac{1}{2 p}\left\|x_{i}-x_{j}\right\|^{2}\right)$. Display. Scores $F_{i k}$ (left) and $F_{i k}-\frac{1}{2}\left(F_{i 1}+F_{i 2}\right)$ (right).



## The reality: What we see!

Setting. $p=400, n=1000, x_{i} \sim \mathcal{N}\left( \pm \mu, I_{p}\right)$. Kernel $K_{i j}=\exp \left(-\frac{1}{2 p}\left\|x_{i}-x_{j}\right\|^{2}\right)$. Display. Scores $F_{i k}$ (left) and $F_{i k}-\frac{1}{2}\left(F_{i 1}+F_{i 2}\right)$ (right).


$\Rightarrow$ Score are almost all identical... and do not follow the labelled data!

## MNIST Data Example



Figure: Vectors $\left[F^{(u)}\right]_{, a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Vectors $\left[F^{(u)}\right]_{, a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Vectors $\left[F^{(u)}\right]_{., a}, a=1,2,3$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## Theoretical Findings

Method: Assume $n_{l} / n \rightarrow c_{l} \in(0,1)$

- We aim at characterizing

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

## Theoretical Findings

Method: Assume $n_{l} / n \rightarrow c_{l} \in(0,1)$

- We aim at characterizing

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

- Taylor expansion of $K$ as $n, p \rightarrow \infty$,

$$
\begin{aligned}
K_{(u, u)} & =f(\tau) 1_{n_{u}} 1_{n_{u}}^{\top}+O_{\|\cdot\|}\left(n^{-\frac{1}{2}}\right) \\
D_{(u)} & =n f(\tau) I_{n_{u}}+O\left(n^{\frac{1}{2}}\right)
\end{aligned}
$$

and similarly for $K_{(u, l)}, D_{(l)}$.

## Theoretical Findings

Method: Assume $n_{l} / n \rightarrow c_{l} \in(0,1)$

- We aim at characterizing

$$
F^{(u)}=\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)}
$$

- Taylor expansion of $K$ as $n, p \rightarrow \infty$,

$$
\begin{aligned}
K_{(u, u)} & =f(\tau) 1_{n_{u}} 1_{n_{u}}^{\top}+O_{\|\cdot\|}\left(n^{-\frac{1}{2}}\right) \\
D_{(u)} & =n f(\tau) I_{n_{u}}+O\left(n^{\frac{1}{2}}\right)
\end{aligned}
$$

and similarly for $K_{(u, l)}, D_{(l)}$.

- So that

$$
\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1}=\left(I_{n_{u}}-\frac{1_{n_{u}} 1_{n_{u}}^{\top}}{n}+O_{\|\cdot\|}\left(n^{-\frac{1}{2}}\right)\right)^{-1}
$$

easily Taylor expanded.

## Main Results

Results: Assuming $n_{l} / n \rightarrow c_{l} \in(0,1)$, by previous Taylor expansion,

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}[\underbrace{v}_{O(1)}+\underbrace{\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}}_{O\left(n^{-\frac{1}{2}}\right)}]+\underbrace{O\left(n^{-1}\right)}_{\text {Informative terms }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

## Main Results

Results: Assuming $n_{l} / n \rightarrow c_{l} \in(0,1)$, by previous Taylor expansion,

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}[\underbrace{v}_{O(1)}+\underbrace{\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}}_{O\left(n^{-\frac{1}{2}}\right)}]+\underbrace{O\left(n^{-1}\right)}_{\text {Informative terms }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Consequences:


## Main Results

Results: Assuming $n_{l} / n \rightarrow c_{l} \in(0,1)$, by previous Taylor expansion,

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}[\underbrace{v}_{O(1)}+\underbrace{\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}}_{O\left(n^{-\frac{1}{2}}\right)}]+\underbrace{O\left(n^{-1}\right)}_{\text {Informative terms }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Consequences:
- Random non-informative bias $v$


## Main Results

Results: Assuming $n_{l} / n \rightarrow c_{l} \in(0,1)$, by previous Taylor expansion,

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}[\underbrace{v}_{O(1)}+\underbrace{\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}}_{O\left(n^{-\frac{1}{2}}\right)}]+\underbrace{O\left(n^{-1}\right)}_{\text {Informative terms }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Consequences:
- Random non-informative bias $v$
- Strong Impact of $n_{l, a}$

$$
F_{\cdot, a}^{(u)} \text { to be scaled by } n_{l, a}
$$

## Main Results

Results: Assuming $n_{l} / n \rightarrow c_{l} \in(0,1)$, by previous Taylor expansion,

- In the first order,

$$
F_{\cdot, a}^{(u)}=C \frac{n_{l, a}}{n}[\underbrace{v}_{O(1)}+\underbrace{\alpha \frac{t_{a} 1_{n_{u}}}{\sqrt{n}}}_{O\left(n^{-\frac{1}{2}}\right)}]+\underbrace{O\left(n^{-1}\right)}_{\text {Informative terms }}
$$

where $v=O(1)$ random vector (entry-wise) and $t_{a}=\frac{1}{\sqrt{p}} \operatorname{tr} C_{a}^{\circ}$.

- Consequences:
- Random non-informative bias $v$
- Strong Impact of $n_{l, a}$

$$
F_{\cdot, a}^{(u)} \text { to be scaled by } n_{l, a}
$$

- Additional per-class bias $\alpha t_{a} 1_{n_{u}}$

$$
\alpha=0+\frac{\beta}{\sqrt{p}}
$$

## Main Results

As a consequence of the remarks above, we take

$$
\alpha=\frac{\beta}{\sqrt{p}}
$$

and define

$$
\hat{F}_{i, a}^{(u)}=\frac{n p}{n_{l, a}} F_{i a}^{(u)}
$$

## Main Results

As a consequence of the remarks above, we take

$$
\alpha=\frac{\beta}{\sqrt{p}}
$$

and define

$$
\hat{F}_{i, a}^{(u)}=\frac{n p}{n_{l, a}} F_{i a}^{(u)} .
$$

Theorem
For $x_{i} \in \mathcal{C}_{b}$ unlabelled,

$$
\hat{F}_{i, .}-G_{b} \rightarrow 0, G_{b} \sim \mathcal{N}\left(m_{b}, \Sigma_{b}\right)
$$

where $m_{b} \in \mathbb{R}^{k}, \Sigma_{b} \in \mathbb{R}^{k \times k}$ given by

$$
\begin{aligned}
\left(m_{b}\right)_{a} & =-\frac{2 f^{\prime}(\tau)}{f(\tau)} \tilde{M}_{a b}+\frac{f^{\prime \prime}(\tau)}{f(\tau)} \tilde{t}_{a} \tilde{t}_{b}+\frac{2 f^{\prime \prime}(\tau)}{f(\tau)} \tilde{T}_{a b}-\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}} t_{a} t_{b}+\beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{f(\tau)} t_{a}+B_{b} \\
\left(\Sigma_{b}\right)_{a_{1} a_{2}} & =\frac{2 \operatorname{tr} C_{b}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{f(\tau)}\right)^{2} t_{a_{1}} t_{a_{2}}+\frac{4 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}\left(\left[M^{\top} C_{b} M\right]_{a_{1} a_{2}}+\frac{\delta_{a_{1}}^{a_{2} p}}{n_{l, a_{1}}} T_{b a_{1}}\right)
\end{aligned}
$$

with $t, T, M$ as before, $\tilde{X}_{a}=X_{a}-\sum_{d=1}^{k} \frac{n_{l, d}}{n_{l}} X_{d}^{\circ}$ and $B_{b}$ bias independent of $a$.

## Main Results

Corollary (Asymptotic Classification Error)
For $k=2$ classes and $a \neq b$,

$$
P\left(\hat{F}_{i, a}>\hat{F}_{i b} \mid x_{i} \in \mathcal{C}_{b}\right)-Q\left(\frac{\left(m_{b}\right)_{b}-\left(m_{b}\right)_{a}}{\sqrt{[1,-1] \Sigma_{b}[1,-1]^{\top}}}\right) \rightarrow 0
$$

## Main Results

## Corollary (Asymptotic Classification Error)

For $k=2$ classes and $a \neq b$,

$$
P\left(\hat{F}_{i, a}>\hat{F}_{i b} \mid x_{i} \in \mathcal{C}_{b}\right)-Q\left(\frac{\left(m_{b}\right)_{b}-\left(m_{b}\right)_{a}}{\sqrt{[1,-1] \Sigma_{b}[1,-1]^{\top}}}\right) \rightarrow 0
$$

Some consequences:

- non obvious choices of appropriate kernels
- non obvious choice of optimal $\beta$ (induces a possibly beneficial bias)
- importance of $n_{l}$ versus $n_{u}$.


## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 3-class MNIST data (zeros, ones, twos), $n=192$, $p=784, n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 2-class MNIST data (zeros, ones), $n=1568, p=784$, $n_{l} / n=1 / 16$, Gaussian kernel.

## MNIST Data Example



Figure: Performance as a function of $\alpha$, for 2-class MNIST data (zeros, ones), $n=1568, p=784$, $n_{l} / n=1 / 16$, Gaussian kernel.

## Is semi-supervised learning really semi-supervised?

## Reminder:

For $x_{i} \in \mathcal{C}_{b}$ unlabelled, $\hat{F}_{i, .}-G_{b} \rightarrow 0, G_{b} \sim \mathcal{N}\left(m_{b}, \Sigma_{b}\right)$ with

$$
\begin{aligned}
\left(m_{b}\right)_{a} & =-\frac{2 f^{\prime}(\tau)}{f(\tau)} \tilde{M}_{a b}+\frac{f^{\prime \prime}(\tau)}{f(\tau)} \tilde{t}_{a} \tilde{t}_{b}+\frac{2 f^{\prime \prime}(\tau)}{f(\tau)} \tilde{T}_{a b}-\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}} t_{a} t_{b}+\beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{f(\tau)} t_{a}+B_{b} \\
\left(\Sigma_{b}\right)_{a_{1} a_{2}} & =\frac{2 \operatorname{tr} C_{b}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{f(\tau)}\right)^{2} t_{a_{1}} t_{a_{2}}+\frac{4 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}\left(\left[M^{\top} C_{b} M\right]_{a_{1} a_{2}}+\frac{\delta_{a_{1}}^{a_{2} p}}{n_{l, a_{1}}} T_{b a_{1}}\right)
\end{aligned}
$$

with $t, T, M$ as before, $\tilde{X}_{a}=X_{a}-\sum_{d=1}^{k} \frac{n_{l, d}}{n_{l}} X_{d}^{\circ}$ and $B_{b}$ bias independent of $a$.

## Is semi-supervised learning really semi-supervised?

## Reminder:

For $x_{i} \in \mathcal{C}_{b}$ unlabelled, $\hat{F}_{i, .}-G_{b} \rightarrow 0, G_{b} \sim \mathcal{N}\left(m_{b}, \Sigma_{b}\right)$ with

$$
\begin{aligned}
\left(m_{b}\right)_{a} & =-\frac{2 f^{\prime}(\tau)}{f(\tau)} \tilde{M}_{a b}+\frac{f^{\prime \prime}(\tau)}{f(\tau)} \tilde{t}_{a} \tilde{t}_{b}+\frac{2 f^{\prime \prime}(\tau)}{f(\tau)} \tilde{T}_{a b}-\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}} t_{a} t_{b}+\beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{f(\tau)} t_{a}+B_{b} \\
\left(\Sigma_{b}\right)_{a_{1} a_{2}} & =\frac{2 \operatorname{tr} C_{b}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{f(\tau)}\right)^{2} t_{a_{1}} t_{a_{2}}+\frac{4 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}\left(\left[M^{\top} C_{b} M\right]_{a_{1} a_{2}}+\frac{\delta_{a_{1}}^{a_{2} p}}{n_{l, a_{1}}} T_{b a_{1}}\right)
\end{aligned}
$$

with $t, T, M$ as before, $\tilde{X}_{a}=X_{a}-\sum_{d=1}^{k} \frac{n_{l, d}}{n_{l}} X_{d}^{\circ}$ and $B_{b}$ bias independent of $a$.

The problem with unlabelled data:

- Result does not depend on $n_{u}$ !
$\longrightarrow$ increasing $n_{u}$ asymptotically non beneficial.


## Reminder:

For $x_{i} \in \mathcal{C}_{b}$ unlabelled, $\hat{F}_{i, .}-G_{b} \rightarrow 0, G_{b} \sim \mathcal{N}\left(m_{b}, \Sigma_{b}\right)$ with

$$
\begin{aligned}
\left(m_{b}\right)_{a} & =-\frac{2 f^{\prime}(\tau)}{f(\tau)} \tilde{M}_{a b}+\frac{f^{\prime \prime}(\tau)}{f(\tau)} \tilde{t}_{a} \tilde{t}_{b}+\frac{2 f^{\prime \prime}(\tau)}{f(\tau)} \tilde{T}_{a b}-\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}} t_{a} t_{b}+\beta \frac{n}{n_{l}} \frac{f^{\prime}(\tau)}{f(\tau)} t_{a}+B_{b} \\
\left(\Sigma_{b}\right)_{a_{1} a_{2}} & =\frac{2 \operatorname{tr} C_{b}^{2}}{p}\left(\frac{f^{\prime}(\tau)^{2}}{f(\tau)^{2}}-\frac{f^{\prime \prime}(\tau)}{f(\tau)}\right)^{2} t_{a_{1}} t_{a_{2}}+\frac{4 f^{\prime}(\tau)^{2}}{f(\tau)^{2}}\left(\left[M^{\top} C_{b} M\right]_{a_{1} a_{2}}+\frac{\delta_{a_{1}}^{a_{2}} p}{n_{l, a_{1}}} T_{b a_{1}}\right)
\end{aligned}
$$

with $t, T, M$ as before, $\tilde{X}_{a}=X_{a}-\sum_{d=1}^{k} \frac{n_{l, d}}{n_{l}} X_{d}^{\circ}$ and $B_{b}$ bias independent of $a$.

The problem with unlabelled data:

- Result does not depend on $n_{u}$ !
$\longrightarrow$ increasing $n_{u}$ asymptotically non beneficial.
- Even best Laplacian regularizer brings SSL to be merely supervised learning.


## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work


## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!


## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...


## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!


## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.
Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.
Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.
Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

- Asymptotic performance analysis: clear understanding of what we see!


## Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.
Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

- Asymptotic performance analysis: clear understanding of what we see!
- Update the algorithm and provably improve unlabelled data use.


## Resurrecting SSL by centering (SSL Improved)

## Reminder:

$$
\begin{aligned}
F & =\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2} \quad \text { with } F_{i a}^{(l)}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}} \\
\Leftrightarrow F^{(u)} & =\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)} .
\end{aligned}
$$

## Resurrecting SSL by centering (SSL Improved)

## Reminder:

$$
\begin{aligned}
F & =\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2} \quad \text { with } F_{i a}^{(l)}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}} \\
\Leftrightarrow F^{(u)} & =\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)} .
\end{aligned}
$$

## Domination of score flattening:

- Consequence of $\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{i}\right\|^{2} \rightarrow \tau: D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1} \simeq \frac{1}{n} 1_{n_{u}} 1_{n_{u}}^{\top}$ and clustering information vanishes (not so obvious but can be shown).


## Resurrecting SSL by centering (SSL Improved)

## Reminder:

$$
\begin{aligned}
F & =\operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i, j} K_{i j}\left(F_{i a} d_{i}^{\alpha-1}-F_{j a} d_{j}^{\alpha-1}\right)^{2} \quad \text { with } F_{i a}^{(l)}=\delta_{\left\{x_{i} \in \mathcal{C}_{a}\right\}} \\
\Leftrightarrow F^{(u)} & =\left(I_{n_{u}}-D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u, l)} D_{(l)}^{\alpha-1} F^{(l)} .
\end{aligned}
$$

## Domination of score flattening:

- Consequence of $\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{i}\right\|^{2} \rightarrow \tau: D_{(u)}^{-\alpha} K_{(u, u)} D_{(u)}^{\alpha-1} \simeq \frac{1}{n} 1_{n_{u}} 1_{n_{u}}^{\top}$ and clustering information vanishes (not so obvious but can be shown).


## Solution:

- Forgetting finite-dimensional intuition: "recenter" $K$ to kill flattening, i.e., use

$$
\tilde{K}=P K P, P=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{\top} .
$$

## Asymptotic Performance Analysis

Theorem ([Mai, C'19] Asymptotic Performance of Improved SSL)
For $x_{i} \in \mathcal{C}_{b}$ unlabelled, score vector $\hat{F}_{i,}, \in \mathbb{R}^{k}$ with $\tilde{K}$ satisfies:

$$
\hat{F}_{i}, .-\tilde{G}_{b} \rightarrow 0, \tilde{G}_{b} \sim \mathcal{N}\left(\tilde{m}_{b}, \tilde{\Sigma}_{b}\right)
$$

with $\tilde{m}_{b} \in \mathbb{R}^{k}, \tilde{\Sigma}_{b} \in \mathbb{R}^{k \times k}$ still function of $f(\tau), f^{\prime}(\tau), f^{\prime \prime}(\tau), \mu_{1}, \ldots, \mu_{k}, C_{1}, \ldots, C_{k}$.

## Asymptotic Performance Analysis

Theorem ([Mai, C'19] Asymptotic Performance of Improved SSL) For $x_{i} \in \mathcal{C}_{b}$ unlabelled, score vector $\hat{F}_{i,}, \in \mathbb{R}^{k}$ with $\tilde{K}$ satisfies:

$$
\hat{F}_{i},--\tilde{G}_{b} \rightarrow 0, \tilde{G}_{b} \sim \mathcal{N}\left(\tilde{m}_{b}, \tilde{\Sigma}_{b}\right)
$$

with $\tilde{m}_{b} \in \mathbb{R}^{k}, \tilde{\Sigma}_{b} \in \mathbb{R}^{k \times k}$ still function of $f(\tau), f^{\prime}(\tau), f^{\prime \prime}(\tau), \mu_{1}, \ldots, \mu_{k}, C_{1}, \ldots, C_{k}$.
Most importantly: $\tilde{m}_{b}, \tilde{\Sigma}_{b}$ now dependent of $n_{u}$ (number of unlabelled data).

## Asymptotic Performance Analysis

Theorem ([Mai, C'19] Asymptotic Performance of Improved SSL)
For $x_{i} \in \mathcal{C}_{b}$ unlabelled, score vector $\hat{F}_{i,}, \in \mathbb{R}^{k}$ with $\tilde{K}$ satisfies:

$$
\hat{F}_{i},--\tilde{G}_{b} \rightarrow 0, \tilde{G}_{b} \sim \mathcal{N}\left(\tilde{m}_{b}, \tilde{\Sigma}_{b}\right)
$$

with $\tilde{m}_{b} \in \mathbb{R}^{k}, \tilde{\Sigma}_{b} \in \mathbb{R}^{k \times k}$ still function of $f(\tau), f^{\prime}(\tau), f^{\prime \prime}(\tau), \mu_{1}, \ldots, \mu_{k}, C_{1}, \ldots, C_{k}$.
Most importantly: $\tilde{m}_{b}, \tilde{\Sigma}_{b}$ now dependent of $n_{u}$ (number of unlabelled data).


## Performance as a function of $n_{u}, n_{l}$ for $\mathcal{N}\left( \pm, I_{p}\right)$



Figure: Correct classification rate, at optimal $\alpha$, as a function of (i) $n_{u}$ for fixed $p / n_{l}=5$ (blue) and (ii) $n_{l}$ for fixed $p / n_{u}=5$ (black); $c_{1}=c_{2}=\frac{1}{2}$; different values for $\|\mu\|$. Comparison to optimal Neyman-Pearson performance for known $\mu$ (in red).

## Experimental evidence: MNIST

| Digits | $(0,8)$ | $(2,7)$ | $(6,9)$ |
| :---: | :---: | :---: | :---: |
| $n_{u}=100$ |  |  |  |
| Centered kernel (RMT) | $89.5 \pm 3.6$ | $89.5 \pm 3.4$ | $85.3 \pm 5.9$ |
| Iterated centered kernel (RMT) | $89.5 \pm 3.6$ | $89.5 \pm 3.4$ | $85.3 \pm 5.9$ |
| Laplacian | $75.5 \pm 5.6$ | $74.2 \pm 5.8$ | $70.0 \pm 5.5$ |
| Iterated Laplacian | $87.2 \pm 4.7$ | $86.0 \pm 5.2$ | $81.4 \pm 6.8$ |
| Manifold | $88.0 \pm 4.7$ | $88.4 \pm 3.9$ | $82.8 \pm 6.5$ |
| $n_{u}=1000$ |  |  |  |
| Centered kernel (RMT) | $92.2 \pm 0.9$ | $92.5 \pm 0.8$ | $92.6 \pm 1.6$ |
| Iterated centered kernel (RMT) | $\mathbf{9 2 . 3} \pm \mathbf{0 . 9}$ | $\mathbf{9 2 . 5} \pm 0.8$ | $\mathbf{9 2 . 9} \pm 1.4$ |
| Laplacian | $65.6 \pm 4.1$ | $74.4 \pm 4.0$ | $69.5 \pm 3.7$ |
| Iterated Laplacian | $92.2 \pm 0.9$ | $92.4 \pm 0.9$ | $92.0 \pm 1.6$ |
| Manifold | $91.1 \pm 1.7$ | $91.4 \pm 1.9$ | $91.4 \pm 2.0$ |

Table: Comparison of classification accuracy (\%) on MNIST datasets with $n_{l}=10$. Computed over 1000 random iterations for $n_{u}=100$ and 100 for $n_{u}=1000$.

## Experimental evidence: Traffic signs (HOG features)



| Class ID | $(2,7)$ | $(9,10)$ | $(11,18)$ |
| :---: | :---: | :---: | :---: |
|  | $n_{u}=100$ |  |  |
| Centered kernel (RMT) | $79.0 \pm 10.4$ | $77.5 \pm 9.2$ | $78.5 \pm 7.1$ |
| Iterated centered kernel (RMT) | $\mathbf{8 5 . 3} \pm \mathbf{5 . 9}$ | $\mathbf{8 9 . 2} \pm \mathbf{5 . 6}$ | $\mathbf{9 0 . 1} \pm \mathbf{6 . 7}$ |
| Laplacian | $73.8 \pm 9.8$ | $77.3 \pm 9.5$ | $78.6 \pm 7.2$ |
| Iterated Laplacian | $83.7 \pm 7.2$ | $88.0 \pm 6.8$ | $87.1 \pm 8.8$ |
| Manifold | $77.6 \pm 8.9$ | $81.4 \pm 10.4$ | $82.3 \pm 10.8$ |
| $n_{u}=1000$ |  |  |  |
| Centered kernel (RMT) | $83.6 \pm 2.4$ | $84.6 \pm 2.4$ | $88.7 \pm 9.4$ |
| Iterated centered kernel (RMT) | $\mathbf{8 4 . 8} \pm \mathbf{3 . 8}$ | $\mathbf{8 8 . 0} \pm \mathbf{5 . 5}$ | $\mathbf{9 6 . 4} \pm \mathbf{3 . 0}$ |
| Laplacian | $72.7 \pm 4.2$ | $88.9 \pm 5.7$ | $95.8 \pm 3.2$ |
| Iterated Laplacian | $83.0 \pm 5.5$ | $88.2 \pm 6.0$ | $92.7 \pm 6.1$ |
| Manifold | $77.7 \pm 5.8$ | $85.0 \pm 9.0$ | $90.6 \pm 8.1$ |

Table: Comparison of classification accuracy (\%) on German Traffic Sign datasets with $n_{l}=10$.
Computed over 1000 random iterations for $n_{u}=100$ and 100 for $n_{u}=1000$.

## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
```

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.


## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.


## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

[^0]
## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!


## Definition

Given a normed space $\left(E,\|\cdot\|_{E}\right)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is $q$-exponentially concentrated if for any 1 -Lipschitz function ${ }^{2} \mathcal{F}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, there exists $C, c>0$ s.t.

$$
\mathbb{P}\{|\mathcal{F}(\mathbf{z})-\mathbb{E} \mathcal{F}(\mathbf{z})|>t\} \leq C e^{-c t^{q}}
$$

[^1]
## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!


## Definition

Given a normed space $\left(E,\|\cdot\|_{E}\right)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is $q$-exponentially concentrated if for any 1 -Lipschitz function ${ }^{2} \mathcal{F}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, there exists $C, c>0$ s.t.

$$
\mathbb{P}\{|\mathcal{F}(\mathbf{z})-\mathbb{E} \mathcal{F}(\mathbf{z})|>t\} \leq C e^{-c t^{q}} \xrightarrow{\text { denoted }} \mathbf{z \in \mathcal { O } ( e ^ { - . q } )}
$$

[^2]
## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!


## Definition

Given a normed space $\left(E,\|\cdot\|_{E}\right)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is $q$-exponentially concentrated if for any 1 -Lipschitz function ${ }^{2} \mathcal{F}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, there exists $C, c>0$ s.t.

$$
\mathbb{P}\{|\mathcal{F}(\mathbf{z})-\mathbb{E} \mathcal{F}(\mathbf{z})|>t\} \leq C e^{-c t^{q}} \xrightarrow{\text { denoted }} \mathbf{z \in \mathcal { O } ( e ^ { - . q } )}
$$

(P1) $X \sim \mathcal{N}\left(0, I_{p}\right)$ is 2-exponentially concentrated.

[^3]
## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!


## Definition

Given a normed space $\left(E,\|\cdot\|_{E}\right)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is $q$-exponentially concentrated if for any 1 -Lipschitz function ${ }^{2} \mathcal{F}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, there exists $C, c>0$ s.t.

$$
\mathbb{P}\{|\mathcal{F}(\mathbf{z})-\mathbb{E} \mathcal{F}(\mathbf{z})|>t\} \leq C e^{-c t^{q}} \xrightarrow{\text { denoted }} \mathbf{z \in \mathcal { O } ( e ^ { - . q } )}
$$

(P1) $X \sim \mathcal{N}\left(0, I_{p}\right)$ is 2-exponentially concentrated.
(P2) If $X \in \mathcal{O}\left(e^{-. q}\right)$ and $\mathcal{G}$ is $\|\mathcal{G}\|_{\text {lip }}$-Lipschitz, then

$$
\mathcal{G}(X) \in \mathcal{O}\left(e^{-\left(\cdot /\|\mathcal{G}\|_{l i p}\right)^{q}}\right)
$$

[^4]
## Notion of Concentrated Vectors

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- But Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!


## Definition

Given a normed space $\left(E,\|\cdot\|_{E}\right)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is $q$-exponentially concentrated if for any 1 -Lipschitz function ${ }^{2} \mathcal{F}: \mathbb{R}^{p} \rightarrow \mathbb{R}$, there exists $C, c>0$ s.t.

$$
\mathbb{P}\{|\mathcal{F}(\mathbf{z})-\mathbb{E} \mathcal{F}(\mathbf{z})|>t\} \leq C e^{-c t^{q}} \xrightarrow{\text { denoted }} \mathbf{z \in \mathcal { O } ( e ^ { - . q } )}
$$

(P1) $X \sim \mathcal{N}\left(0, I_{p}\right)$ is 2-exponentially concentrated.
(P2) If $X \in \mathcal{O}\left(e^{-. q}\right)$ and $\mathcal{G}$ is $\|\mathcal{G}\|_{\text {lip }}$-Lipschitz, then

$$
\mathcal{G}(X) \in \mathcal{O}\left(e^{-\left(\cdot /\|\mathcal{G}\|_{l i p}\right)^{q}}\right)
$$

"Concentrated vectors are stable through Lipschitz maps."

[^5]
## GAN data: An Example of Concentrated Vectors



## GAN data: An Example of Concentrated Vectors



We generate data as

$$
\text { Generated image }=\mathcal{G} \text { (Gaussian) }
$$

## GAN data: An Example of Concentrated Vectors



Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

## GAN data: An Example of Concentrated Vectors



Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

$$
\text { GAN Data }=\mathcal{F}_{1} \circ \mathcal{F}_{2} \circ \cdots \circ \mathcal{F}_{N}(\text { Gaussian })
$$

## GAN data: An Example of Concentrated Vectors



Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

$$
\text { GAN Data }=\mathcal{F}_{1} \circ \mathcal{F}_{2} \circ \cdots \circ \mathcal{F}_{N}(\text { Gaussian })
$$

where the $\mathcal{F}_{i}$ 's are either Fully Connected Layers, Convolutional Layers, Pooling Layers and Activation Functions, Residual Connections or Batch Normalizations.

## GAN data: An Example of Concentrated Vectors



Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

$$
\text { GAN Data }=\mathcal{F}_{1} \circ \mathcal{F}_{2} \circ \cdots \circ \mathcal{F}_{N}(\text { Gaussian })
$$

where the $\mathcal{F}_{i}$ 's are either Fully Connected Layers, Convolutional Layers, Pooling Layers and Activation Functions, Residual Connections or Batch Normalizations.

$$
\Rightarrow \text { The } \mathcal{F}_{i} \text { 's are Lipschitz operations. }
$$

## GAN data: An Example of Concentrated Vectors

- Fully Connected Layers and Convolutional Layers are affine operations:

$$
\begin{aligned}
& \qquad \mathcal{F}_{i}(x)=W_{i} x+b_{i} \\
& \text { and }\left\|\mathcal{F}_{i}\right\|_{l i p}=\sup _{u \neq 0} \frac{\left\|W_{i} u\right\|_{p}}{\|u\|_{p}} \text {, for any } p \text {-norm. }
\end{aligned}
$$

## GAN data: An Example of Concentrated Vectors

- Fully Connected Layers and Convolutional Layers are affine operations:

$$
\mathcal{F}_{i}(x)=W_{i} x+b_{i},
$$

and $\left\|\mathcal{F}_{i}\right\|_{l i p}=\sup _{u \neq 0} \frac{\left\|W_{i} u\right\|_{p}}{\|u\|_{p}}$, for any $p$-norm.

- Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect to any $p$-norm (e.g., ReLU and Max-pooling).


## GAN data: An Example of Concentrated Vectors

- Fully Connected Layers and Convolutional Layers are affine operations:

$$
\mathcal{F}_{i}(x)=W_{i} x+b_{i},
$$

and $\left\|\mathcal{F}_{i}\right\|_{l i p}=\sup _{u \neq 0} \frac{\left\|W_{i} u\right\|_{p}}{\|u\|_{p}}$, for any $p$-norm.

- Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect to any $p$-norm (e.g., ReLU and Max-pooling).
- Residual Connections: $\mathcal{F}_{i}(x)=x+\mathcal{F}_{i}^{(1)} \circ \cdots \circ \mathcal{F}_{i}^{(\ell)}(x)$ where the $\mathcal{F}_{i}^{(j)}$ 's are Lipschitz operations, thus $\mathcal{F}_{i}$ is a Lipschitz operation with Lipschitz constant bounded by $1+\prod_{j=1}^{\ell}\left\|\mathcal{F}_{i}^{(j)}\right\|_{l i p}$.
- ...


## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-. q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}, \ldots, x_{n}}_{\in \mathcal{O}\left(e^{-\cdot q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-\cdot q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}, \ldots, x_{n}}_{\in \mathcal{O}\left(e^{-q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

Denote

$$
\mu_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i}\right], \quad C_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i} x_{i}^{\top}\right]
$$

## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-. q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}^{n+\ldots, x_{n}}}_{\in \mathcal{O}\left(e^{-. q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

Denote

$$
\mu_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i}\right], \quad C_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i} x_{i}^{\top}\right]
$$

Assumption (Growth rate)
As $p \rightarrow \infty$,

## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-. q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}^{n+\ldots, x_{n}}}_{\in \mathcal{O}\left(e^{-. q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

Denote

$$
\mu_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i}\right], \quad C_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i} x_{i}^{\top}\right]
$$

Assumption (Growth rate)
As $p \rightarrow \infty$,

$$
\text { 1. } p / n \rightarrow c \in(0, \infty) \text {. }
$$

## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-. q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}, \ldots, x_{n}}_{\in \mathcal{O}\left(e^{-. q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

Denote

$$
\mu_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i}\right], \quad C_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i} x_{i}^{\top}\right]
$$

Assumption (Growth rate)
As $p \rightarrow \infty$,

1. $p / n \rightarrow c \in(0, \infty)$.
2. The number of classes $k$ is bounded.

## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-. q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}, \ldots, x_{n}}_{\in \mathcal{O}\left(e^{-. q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

Denote

$$
\mu_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i}\right], \quad C_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i} x_{i}^{\top}\right]
$$

Assumption (Growth rate)
As $p \rightarrow \infty$,

1. $p / n \rightarrow c \in(0, \infty)$.
2. The number of classes $k$ is bounded.
3. For any $\ell \in[k],\left\|\mu_{\ell}\right\|=\mathcal{O}(\sqrt{p})$.

## Mixture of Concentrated Vectors

Consider data distributed in $k$ classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}$ as

$$
X=[\underbrace{x_{1}, \ldots, x_{n_{1}}}_{\in \mathcal{O}\left(e^{-. q_{1}}\right)}, \underbrace{x_{n_{1}+1}, \ldots, x_{n_{2}}}_{\in \mathcal{O}\left(e^{-. q_{2}}\right)}, \ldots, \underbrace{x_{n-n_{k}+1}, \ldots, x_{n}}_{\in \mathcal{O}\left(e^{-\cdot q_{k}}\right)}] \in \mathbb{R}^{p \times n}
$$

Denote

$$
\mu_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i}\right], \quad C_{\ell}=\mathbb{E}_{x_{i} \in \mathcal{C}_{\ell}}\left[x_{i} x_{i}^{\top}\right]
$$

Assumption (Growth rate)
As $p \rightarrow \infty$,

1. $p / n \rightarrow c \in(0, \infty)$.
2. The number of classes $k$ is bounded.
3. For any $\ell \in[k],\left\|\mu_{\ell}\right\|=\mathcal{O}(\sqrt{p})$.

Notation
$Q(z)=\left(X^{\top} X / p+z I_{n}\right)^{-1}$.

## Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have $Q(z) \in \mathcal{O}\left(e^{-(\sqrt{p} \cdot)^{q}}\right)$ in $\left(\mathbb{R}^{n \times n},\|\cdot\|\right)$. Furthermore,

$$
\|\mathbb{E}[Q(z)]-\tilde{Q}(z)\|=\mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text { where } \tilde{Q}(z)=\frac{1}{z} \Lambda(z)+\frac{1}{p z} J \Omega(z) J^{\top}
$$

## Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have $Q(z) \in \mathcal{O}\left(e^{-(\sqrt{p} \cdot)^{q}}\right)$ in $\left(\mathbb{R}^{n \times n},\|\cdot\|\right)$. Furthermore,

$$
\|\mathbb{E}[Q(z)]-\tilde{Q}(z)\|=\mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text { where } \tilde{Q}(z)=\frac{1}{z} \Lambda(z)+\frac{1}{p z} J \Omega(z) J^{\top}
$$

with $\Lambda(z)=\operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$ and $\Omega(z)=\operatorname{diag}\left\{\mu_{\ell}^{\top} \tilde{R}(z) \mu_{\ell}\right\}_{\ell=1}^{k}$

## Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have $Q(z) \in \mathcal{O}\left(e^{-(\sqrt{p} \cdot)^{q}}\right)$ in $\left(\mathbb{R}^{n \times n},\|\cdot\|\right)$. Furthermore,

$$
\|\mathbb{E}[Q(z)]-\tilde{Q}(z)\|=\mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text { where } \tilde{Q}(z)=\frac{1}{z} \Lambda(z)+\frac{1}{p z} J \Omega(z) J^{\top}
$$

with $\Lambda(z)=\operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$ and $\Omega(z)=\operatorname{diag}\left\{\mu_{\ell}^{\top} \tilde{R}(z) \mu_{\ell}\right\}_{\ell=1}^{k}$

$$
\tilde{R}(z)=\left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1+\delta_{\ell}(z)}+z I_{p}\right)^{-1}
$$

## Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have $Q(z) \in \mathcal{O}\left(e^{-(\sqrt{p} \cdot)^{q}}\right)$ in $\left(\mathbb{R}^{n \times n},\|\cdot\|\right)$. Furthermore,

$$
\|\mathbb{E}[Q(z)]-\tilde{Q}(z)\|=\mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text { where } \tilde{Q}(z)=\frac{1}{z} \Lambda(z)+\frac{1}{p z} J \Omega(z) J^{\top}
$$

with $\Lambda(z)=\operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$ and $\Omega(z)=\operatorname{diag}\left\{\mu_{\ell}^{\top} \tilde{R}(z) \mu_{\ell}\right\}_{\ell=1}^{k}$

$$
\tilde{R}(z)=\left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1+\delta_{\ell}(z)}+z I_{p}\right)^{-1}
$$

with $\delta(z)=\left[\delta_{1}(z), \ldots, \delta_{k}(z)\right]$ is the unique fixed point of the system of equations

$$
\delta_{\ell}(z)=\frac{1}{p} \operatorname{tr}\left(C_{\ell}\left(\frac{1}{k} \sum_{j=1}^{k} \frac{C_{j}}{1+\delta_{j}(z)}+z I_{p}\right)^{-1}\right) \text { for each } \ell \in[k] .
$$

## Behavior of Gram Matrices for Concentrated Vectors

## Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}\left(e^{-(\sqrt{p} \cdot)^{q}}\right)$ in $\left(\mathbb{R}^{n \times n},\|\cdot\|\right)$. Furthermore,

$$
\|\mathbb{E}[Q(z)]-\tilde{Q}(z)\|=\mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text { where } \tilde{R}(z)=\frac{1}{z} \Lambda(z)+\frac{1}{p z} J \Omega(z) J^{\top}
$$

with $\Lambda(z)=\operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$ and $\Omega(z)=\operatorname{diag}\left\{\mu_{\ell}{ }^{\top} \tilde{R}(z) \mu_{\ell}\right\}_{\ell=1}^{k}$

$$
\tilde{R}(z)=\left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1+\delta_{\ell}(z)}+z I_{p}\right)^{-1}
$$

with $\delta(z)=\left[\delta_{1}(z), \ldots, \delta_{k}(z)\right]$ is the unique fixed point of the system of equations

$$
\delta_{\ell}(z)=\operatorname{tr}\left(C_{\ell}\left(\frac{1}{k} \sum_{j=1}^{k} \frac{C_{j}}{1+\delta_{j}(z)}+z I_{p}\right)^{-1}\right) \text { for each } \ell \in[k] .
$$

## Behavior of Gram Matrices for Concentrated Vectors

## Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}\left(e^{-(\sqrt{p} \cdot)^{q}}\right)$ in $\left(\mathbb{R}^{n \times n},\|\cdot\|\right)$. Furthermore,

$$
\|\mathbb{E}[Q(z)]-\tilde{Q}(z)\|=\mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \text { where } \tilde{R}(z)=\frac{1}{z} \Lambda(z)+\frac{1}{p z} J \Omega(z) J^{\top}
$$

with $\Lambda(z)=\operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$ and $\Omega(z)=\operatorname{diag}\left\{\mu_{\ell}{ }^{\top} \tilde{R}(z) \mu_{\ell}\right\}_{\ell=1}^{k}$

$$
\tilde{R}(z)=\left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1+\delta_{\ell}(z)}+z I_{p}\right)^{-1}
$$

with $\delta(z)=\left[\delta_{1}(z), \ldots, \delta_{k}(z)\right]$ is the unique fixed point of the system of equations

$$
\delta_{\ell}(z)=\operatorname{tr}\left(C_{\ell}\left(\frac{1}{k} \sum_{j=1}^{k} \frac{C_{j}}{1+\delta_{j}(z)}+z I_{p}\right)^{-1}\right) \text { for each } \ell \in[k] .
$$

Key Observation: Only first and second order statistics matter!

## Application to CNN Representations of GAN Images



- CNN representations correspond to the one before last layer.

Application to CNN Representations of GAN Images


Representation Network


Application to CNN representations of GAN Images


## Application to CNN representations of GAN Images








## Application to CNN representations of GAN Images



## Application to CNN representations of GAN Images



## Outline

```
Basics of Random Matrix Theory (Romain COUILLET)
    Motivation: Large Sample Covariance Matrices
    The Stieltjes Transform Method
    Spiked Models
    Other Common Random Matrix Models
    Applications
Large dimensional inference and kernels (Malik TIOMOKO)
    Motivation: EEG-based clustering
    Covariance Distance Inference
    Revisiting Motivation
    Kernel Asymptotics
Application to machine learning (Mohamed SEDDIK)
    Support Vector Machines
    Semi-Supervised Learning
    From Gaussian Mixtures to Real Data
```

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

## Take-away messages

- Asymptotic "concentration effect" for large $n, p$


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds!


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! $\Rightarrow$ hyperparameter optimization, algorithm improvement.


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! $\Rightarrow$ hyperparameter optimization, algorithm improvement.
- Complete intuitive change


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! $\Rightarrow$ hyperparameter optimization, algorithm improvement.
- Complete intuitive change $\Rightarrow$ opens way to renewed methods.


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! $\Rightarrow$ hyperparameter optimization, algorithm improvement.
- Complete intuitive change $\Rightarrow$ opens way to renewed methods.
- Strong coincidence with real datasets


## Take-away messages

- Asymptotic "concentration effect" for large $n, p \Rightarrow$ simplification in analyses and models.
- Non-trivial phase transition phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds! $\Rightarrow$ hyperparameter optimization, algorithm improvement.
- Complete intuitive change $\Rightarrow$ opens way to renewed methods.
- Strong coincidence with real datasets $\Rightarrow$ easy link between theory and practice.


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)
- Robust statistics in machine learning


## Perspectives and Open Problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of implicit solution)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)
- Robust statistics in machine learning
- ...

The End

## Thank you.


[^0]:    ${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.

[^1]:    ${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.

[^2]:    ${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.

[^3]:    ${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{\text {lip }}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.

[^4]:    ${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.

[^5]:    ${ }^{2}$ Reminder: $\mathcal{F}: E \rightarrow F$ is $\|\mathcal{F}\|_{l i p}$-Lipschitz if $\forall(x, y) \in E^{2}:\|\mathcal{F}(x)-\mathcal{F}(y)\|_{F} \leq\|\mathcal{F}\|_{l i p}\|x-y\|_{E}$.

