Random Matrix Advances in Large Dimensional Statistics, Machine Learning and Neural Nets (EUSIPCO'2019, A Coruna, Spain)

Romain COUILLET, Malik TIOMOKO, Mohamed SEDDIK

CentraleSupélec, L2S, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-Iab, University Grenoble–Alpes, France.

September 2nd, 2019

Basics of Random Matrix Theory (Romain COUILLET) Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Basics of Random Matrix Theory (Romain COUILLET)

Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Basics of Random Matrix Theory (Romain COUILLET) Motivation: Large Sample Covariance Matrices

The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{R}^p$ (or \mathbb{C}^p) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^{\mathsf{T}}] = C_p$:

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{R}^p$ (or \mathbb{C}^p) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^\mathsf{T}] = C_p$: If $x_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} \sum_{i=1}^n x_i x_i^\mathsf{T}.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{R}^p$ (or \mathbb{C}^p) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^\mathsf{T}] = C_p$: If $x_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} \sum_{i=1}^n x_i x_i^\mathsf{T}$$

• If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p.$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{R}^p$ (or \mathbb{C}^p) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^{\mathsf{T}}] = C_p$: If $x_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} \sum_{i=1}^n x_i x_i^\mathsf{T}.$$

If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_p - C_p \right\| \neq 0.$$

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{R}^p$ (or \mathbb{C}^p) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^{\mathsf{T}}] = C_p$: If $x_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} \sum_{i=1}^n x_i x_i^\mathsf{T}.$$

• If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

 $\blacktriangleright \text{ No longer valid if } p,n \to \infty \text{ with } p/n \to c \in (0,\infty),$

$$\left\| \hat{C}_p - C_p \right\| \neq 0.$$

For practical p, n with $p \simeq n$, leads to dramatically wrong conclusions

Baseline scenario: $x_1, \ldots, x_n \in \mathbb{R}^p$ (or \mathbb{C}^p) i.i.d. with $E[x_1] = 0$, $E[x_1x_1^{\mathsf{T}}] = C_p$: If $x_1 \sim \mathcal{N}(0, C_p)$, ML estimator for C_p is the sample covariance matrix (SCM)

$$\hat{C}_p = \frac{1}{n} \sum_{i=1}^n x_i x_i^\mathsf{T}.$$

If $n \to \infty$, then, strong law of large numbers

$$\hat{C}_p \xrightarrow{\text{a.s.}} C_p$$

or equivalently, in spectral norm

$$\left\| \hat{C}_p - C_p \right\| \xrightarrow{\text{a.s.}} 0.$$

Random Matrix Regime

▶ No longer valid if $p, n \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\left\| \hat{C}_p - C_p \right\| \neq 0.$$

For practical p, n with p ≃ n, leads to dramatically wrong conclusions
Even for n = 100 × p.

Setting: $x_i \in \mathbb{R}^p$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_p)$

 $\begin{array}{l} \textbf{Setting:} \ x_i \in \mathbb{R}^p \ \text{i.i.d.}, \ x_1 \sim \mathcal{CN}(0, I_p) \\ \\ \textbf{ ssume} \ p = p(n) \ \text{such that} \ p/n \rightarrow c > 1 \end{array}$

Setting: $x_i \in \mathbb{R}^p$ i.i.d., $x_1 \sim \mathcal{CN}(0, I_p)$

- \blacktriangleright assume p=p(n) such that $p/n \rightarrow {\it c}>1$
- then, joint point-wise convergence

$$\max_{1 \leq i,j \leq p} \left| \left[\hat{C}_p - I_p \right]_{ij} \right| = \max_{1 \leq i,j \leq p} \left| \frac{1}{n} X_{j,\cdot} X_{i,\cdot}^{\mathsf{T}} - \boldsymbol{\delta}_{ij} \right| \xrightarrow{\text{a.s.}} 0.$$

Setting:
$$x_i \in \mathbb{R}^p$$
 i.i.d., $x_1 \sim \mathcal{CN}(0, I_p)$

- ▶ assume p = p(n) such that $p/n \rightarrow c > 1$
- then, joint point-wise convergence

$$\max_{1 \le i,j \le p} \left| \left[\hat{C}_p - I_p \right]_{ij} \right| = \max_{1 \le i,j \le p} \left| \frac{1}{n} X_{j,\cdot} X_{i,\cdot}^{\mathsf{T}} - \boldsymbol{\delta}_{ij} \right| \xrightarrow{\text{a.s.}} 0.$$

however, eigenvalue mismatch

$$0 = \lambda_1(\hat{C}_p) = \ldots = \lambda_{p-n}(\hat{C}_p) \le \lambda_{p-n+1}(\hat{C}_p) \le \ldots \le \lambda_p(\hat{C}_p)$$

$$1 = \lambda_1(I_p) = \ldots = \lambda_{p-n}(I_p) = \lambda_{p-n+1}(\hat{C}_p) = \ldots = \lambda_p(I_p)$$

Setting:
$$x_i \in \mathbb{R}^p$$
 i.i.d., $x_1 \sim \mathcal{CN}(0, I_p)$

- ▶ assume p = p(n) such that $p/n \rightarrow c > 1$
- then, joint point-wise convergence

$$\max_{1 \le i,j \le p} \left| \left[\hat{C}_p - I_p \right]_{ij} \right| = \max_{1 \le i,j \le p} \left| \frac{1}{n} X_{j,\cdot} X_{i,\cdot}^{\mathsf{T}} - \delta_{ij} \right| \xrightarrow{\text{a.s.}} 0.$$

however, eigenvalue mismatch

$$0 = \lambda_1(\hat{C}_p) = \ldots = \lambda_{p-n}(\hat{C}_p) \le \lambda_{p-n+1}(\hat{C}_p) \le \ldots \le \lambda_p(\hat{C}_p)$$

$$1 = \lambda_1(I_p) = \ldots = \lambda_{p-n}(I_p) = \lambda_{p-n+1}(\hat{C}_p) = \ldots = \lambda_p(I_p)$$

 \Rightarrow no convergence in spectral norm.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Figure: Histogram of the eigenvalues of \hat{C}_p for c = 1/4, $C_p = I_p$.

Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{R}^{p \times p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{R}^{p \times p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^{\mathsf{T}}$ satisfies

$$\mu_p \xrightarrow{\text{a.s.}} \mu_{(c)}$$

in distribution (i.e., $\int f(t)\mu_p(dt) \xrightarrow{a.s.} \int f(t)\mu_{(c)}(dt)$ for all bounded continuous f), where

•
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$

Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) μ_p of Hermitian matrix $A_p \in \mathbb{R}^{p \times p}$ is

$$\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A_p)}.$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^{\mathsf{T}}$ satisfies

$$\mu_p \xrightarrow{\mathrm{a.s.}} \mu_{(c)}$$

in distribution (i.e., $\int f(t)\mu_p(dt) \xrightarrow{a.s.} \int f(t)\mu_{(c)}(dt)$ for all bounded continuous f), where

•
$$\mu_c(\{0\}) = \max\{0, 1 - c^{-1}\}$$

• on $(0,\infty)$, $\mu_{(c)}$ has continuous density f_c supported on $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}.$$

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Figure: Marčenko-Pastur law for different limit ratios $c = \lim_{p \to \infty} p/n$.

Basics of Random Matrix Theory (Romain COUILLET)

Motivation: Large Sample Covariance Matrices

The Stieltjes Transform Method

Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Definition (Stieltjes Transform)

For μ real probability measure of support $supp(\mu)$, Stieltjes transform m_{μ} defined, for $z \in \mathbb{C} \setminus supp(\mu)$, as

$$m_{\mu}(z) = \int \frac{1}{t-z} \mu(dt).$$

Definition (Stieltjes Transform)

For μ real probability measure of support $supp(\mu)$, Stieltjes transform m_{μ} defined, for $z \in \mathbb{C} \setminus supp(\mu)$, as

$$m_{\mu}(z) = \int \frac{1}{t-z} \mu(dt).$$

Property (Inverse Stieltjes Transform) For a < b continuity points of μ ,

$$\mu([a,b]) = \lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im[m_{\mu}(x + \imath \varepsilon)] dx$$

Definition (Stieltjes Transform)

For μ real probability measure of support $\operatorname{supp}(\mu)$, Stieltjes transform m_{μ} defined, for $z \in \mathbb{C} \setminus \operatorname{supp}(\mu)$, as

$$m_{\mu}(z) = \int \frac{1}{t-z} \mu(dt).$$

Property (Inverse Stieltjes Transform) For a < b continuity points of μ ,

$$\mu([a,b]) = \lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{a}^{b} \Im[m_{\mu}(x+\imath\varepsilon)] dx$$

Besides, if μ has a density f at x,

$$f(x) = \lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \Im[m_{\mu}(x + \imath \varepsilon)].$$

Property (Relation to e.s.d.)

If μ e.s.d. of Hermitian $A \in \mathbb{R}^{p imes p}$, (i.e., $\mu = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(A)}$)

$$m_{\mu}(z) = \frac{1}{p} \operatorname{tr} (A - zI_p)^{-1}$$

Property (Relation to e.s.d.)

If μ e.s.d. of Hermitian $A \in \mathbb{R}^{p imes p}$, (i.e., $\mu = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(A)}$)

$$m_{\mu}(z) = \frac{1}{p} \operatorname{tr} (A - zI_p)^{-1}$$

Proof:

$$\begin{split} m_{\mu}(z) &= \int \frac{\mu(dt)}{t-z} = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(A) - z} = \frac{1}{p} \text{tr} \left(\text{diag}\{\lambda_{i}(A)\} - zI_{p} \right)^{-1} \\ &= \frac{1}{p} \text{tr} \left(A - zI_{p} \right)^{-1}. \end{split}$$

Property (Relation to e.s.d.)

If μ e.s.d. of Hermitian $A \in \mathbb{R}^{p imes p}$, (i.e., $\mu = rac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(A)}$)

$$m_{\mu}(z) = \frac{1}{p} \operatorname{tr} (A - zI_p)^{-1}$$

Proof:

$$\begin{split} m_{\mu}(z) &= \int \frac{\mu(dt)}{t-z} = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(A) - z} = \frac{1}{p} \mathrm{tr} \, \left(\mathrm{diag}\{\lambda_{i}(A)\} - zI_{p} \right)^{-1} \\ &= \frac{1}{p} \mathrm{tr} \, \left(A - zI_{p} \right)^{-1}. \end{split}$$

Fundamental object: the resolvent of A

 $Q_A(z) \equiv (A - zI_p)^{-1}.$

Property (Stieltjes transform of Gram matrices) For $X \in \mathbb{C}^{p \times n}$, and $\blacktriangleright \mu$ e.s.d. of XX^{T} $\flat \tilde{\mu}$ e.s.d. of $X^{\mathsf{T}}X$ Then

$$m_{\mu}(z) = \frac{n}{p}m_{\tilde{\mu}}(z) - \frac{p-n}{p}\frac{1}{z}.$$

Property (Stieltjes transform of Gram matrices) For $X \in \mathbb{C}^{p \times n}$, and $\blacktriangleright \mu$ e.s.d. of XX^{T} $\flat \tilde{\mu}$ e.s.d. of $X^{\mathsf{T}}X$ Then

$$m_{\mu}(z) = \frac{n}{p}m_{\tilde{\mu}}(z) - \frac{p-n}{p}\frac{1}{z}.$$

Proof:

$$m_{\mu}(z) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(XX^{\mathsf{T}}) - z} = \frac{1}{p} \sum_{i=1}^{n} \frac{1}{\lambda_{i}(X^{\mathsf{T}}X) - z} + \frac{1}{p}(p-n)\frac{1}{0-z}$$
Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)

For $A,B \in \mathbb{R}^{p \times p}$ invertible,

$$A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}.$$

Proof: Simply left-multiply by A and right-multiply by B on both sides.

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)

For $A, B \in \mathbb{R}^{p \times p}$ invertible,

$$A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}.$$

Proof: Simply left-multiply by A and right-multiply by B on both sides.

Corollary For $t \in \mathbb{C}$, $x \in \mathbb{R}^p$, $A \in \mathbb{R}^{p \times p}$, with A and $A + txx^{\mathsf{T}}$ invertible,

$$(A + txx^{\mathsf{T}})^{-1}x = \frac{A^{-1}x}{1 + tx^{\mathsf{T}}A^{-1}x}$$

Proof Intuition: Left-multiply by $(A + tcc^{\mathsf{T}})$ on both sides.

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)

For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. μ of $A, t > 0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \setminus \text{supp}(\mu)$,

$$\left|\frac{1}{p}\operatorname{tr} B\left(A + txx^{\mathsf{T}} - zI_{p}\right)^{-1} - \frac{1}{p}\operatorname{tr} B\left(A - zI_{p}\right)^{-1}\right| \leq \frac{1}{p}\frac{\|B\|}{\operatorname{dist}(z,\operatorname{supp}(\mu))}$$

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)

For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. μ of $A, t > 0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \setminus \text{supp}(\mu)$,

$$\left|\frac{1}{p}\operatorname{tr} B\left(A + txx^{\mathsf{T}} - zI_{p}\right)^{-1} - \frac{1}{p}\operatorname{tr} B\left(A - zI_{p}\right)^{-1}\right| \leq \frac{1}{p}\frac{\|B\|}{\operatorname{dist}(z,\operatorname{supp}(\mu))}$$

In particular, as $p \to \infty$, if $\limsup_p \|B\| < \infty$,

$$\frac{1}{p}\operatorname{tr} B\left(A + txx^{\mathsf{T}} - zI_{p}\right)^{-1} - \frac{1}{p}\operatorname{tr} B\left(A - zI_{p}\right)^{-1} \to 0.$$

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)

For $A, B \in \mathbb{R}^{p \times p}$ Hermitian nonnegative definite, e.s.d. μ of $A, t > 0, x \in \mathbb{R}^{p}$, $z \in \mathbb{C} \setminus \text{supp}(\mu)$,

$$\left|\frac{1}{p}\operatorname{tr} B\left(A + txx^{\mathsf{T}} - zI_{p}\right)^{-1} - \frac{1}{p}\operatorname{tr} B\left(A - zI_{p}\right)^{-1}\right| \leq \frac{1}{p}\frac{\|B\|}{\operatorname{dist}(z, \operatorname{supp}(\mu))}$$

In particular, as $p \to \infty$, if $\limsup_p \|B\| < \infty$,

$$\frac{1}{p}\operatorname{tr} B\left(A + txx^{\mathsf{T}} - zI_{p}\right)^{-1} - \frac{1}{p}\operatorname{tr} B\left(A - zI_{p}\right)^{-1} \to 0.$$

Proof Intuition: Based on Weyl's interlacing identity (eigenvalues of A and $A + txx^{\mathsf{T}}$ are interlaced).

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)

For

 $\blacktriangleright x \in \mathbb{R}^p$ with i.i.d. entries with zero mean, unit variance, finite 2k order moment,

• $A \in \mathbb{R}^{p \times p}$ deterministic (or independent of x),

then

$$E\left[\left|\frac{1}{p}x^{\mathsf{T}}Ax - \frac{1}{p}\mathsf{tr}\,A\right|^{k}\right] \le K\frac{\|A\|^{p}}{p^{k/2}}.$$

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)

For

• $x \in \mathbb{R}^p$ with i.i.d. entries with zero mean, unit variance, finite 2k order moment,

• $A \in \mathbb{R}^{p \times p}$ deterministic (or independent of x),

then

$$E\left[\left|\frac{1}{p}x^{\mathsf{T}}Ax - \frac{1}{p}\mathsf{tr}\,A\right|^{k}\right] \le K\frac{\|A\|^{p}}{p^{k/2}}.$$

In particular, if $\limsup_p \|A\| < \infty,$ and x has entries with finite eighth-order moment,

$$\frac{1}{p} x^{\mathsf{T}} A x - \frac{1}{p} \operatorname{tr} A \xrightarrow{\text{a.s.}} 0$$

(by Markov inequality and Borel Cantelli lemma).

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^{\mathsf{T}}$ satisfies

 $\mu_p \xrightarrow{\text{a.s.}} \mu_{(c)}$

weakly, where

•
$$\mu_{(c)}(\{0\}) = \max\{0, 1 - c^{-1}\}$$

Theorem (Marčenko–Pastur Law [Marčenko,Pastur'67]) $X_p \in \mathbb{R}^{p \times n}$ with i.i.d. zero mean, unit variance entries. As $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, e.s.d. μ_p of $\frac{1}{n}X_pX_p^{\mathsf{T}}$ satisfies

$$\mu_p \xrightarrow{\text{a.s.}} \mu_{(c)}$$

weakly, where

•
$$\mu_{(c)}(\{0\}) = \max\{0, 1 - c^{-1}\}$$

• on $(0,\infty)$, $\mu_{(c)}$ has continuous density f_c supported on $[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(x - (1 - \sqrt{c})^2)((1 + \sqrt{c})^2 - x)}$$

Stieltjes transform approach.

Stieltjes transform approach.

Proof

• With
$$\mu_p$$
 e.s.d. of $\frac{1}{n}X_pX_p^{\mathsf{T}}$,

$$m_{\mu_p}(z) = \frac{1}{p} \text{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} = \frac{1}{p} \sum_{i=1}^{p} \left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} \right]_{ii}.$$

Stieltjes transform approach.

Proof

• With
$$\mu_p$$
 e.s.d. of $\frac{1}{n}X_pX_p^{\mathsf{T}}$,

$$m_{\mu_p}(z) = \frac{1}{p} \text{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} = \frac{1}{p} \sum_{i=1}^{p} \left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} \right]_{ii}.$$

Write

$$X_p = \begin{bmatrix} y^{\mathsf{T}} \\ Y_{p-1} \end{bmatrix} \in \mathbb{R}^{p \times n}$$

Stieltjes transform approach.

Proof

• With
$$\mu_p$$
 e.s.d. of $\frac{1}{n}X_pX_p^{\mathsf{T}}$,

$$m_{\mu_p}(z) = \frac{1}{p} \text{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} = \frac{1}{p} \sum_{i=1}^{p} \left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} \right]_{ii}$$

Write

$$X_p = \begin{bmatrix} y^{\mathsf{T}} \\ Y_{p-1} \end{bmatrix} \in \mathbb{R}^{p \times n}$$

so that, for $\Im[z] > 0$,

$$\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}}-zI_{p}\right)^{-1} = \left(\frac{\frac{1}{n}y^{\mathsf{T}}y-z}{\frac{1}{n}Y_{p-1}}\frac{\frac{1}{n}y^{\mathsf{T}}Y_{p-1}}{\frac{1}{n}Y_{p-1}y} - \frac{1}{n}\frac{1}{Y_{p-1}}\frac{1}{Y_{p-1}}\right)^{-1}$$

From block matrix inverse formula

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(A - BD^{-1}C)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$

we have

$$\left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} \right]_{11} = \frac{1}{-z - z \frac{1}{n} y^{\mathsf{T}} (\frac{1}{n} Y_{p-1}^{\mathsf{T}} Y_{p-1} - z I_n)^{-1} y}.$$

From block matrix inverse formula

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(A - BD^{-1}C)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$

we have

$$\left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} \right]_{11} = \frac{1}{-z - z \frac{1}{n} y^{\mathsf{T}} (\frac{1}{n} Y_{p-1}^{\mathsf{T}} Y_{p-1} - z I_n)^{-1} y}$$

 $\blacktriangleright \ \, \text{By Trace Lemma, as } p,n \to \infty$

$$\left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - z I_p \right)^{-1} \right]_{11} - \frac{1}{-z - z \frac{1}{n} \mathsf{tr} \left(\frac{1}{n} Y_{p-1}^{\mathsf{T}} Y_{p-1} - z I_n \right)^{-1}} \xrightarrow{\text{a.s.}} 0.$$

▶ By Rank-1 Perturbation Lemma $(X_p^{\mathsf{T}}X_p = Y_{p-1}^{\mathsf{T}}Y_{p-1} + yy^{\mathsf{T}})$, as $p, n \to \infty$

$$\left[\left(\frac{1}{n}X_pX_p^{\mathsf{T}}-zI_p\right)^{-1}\right]_{11}-\frac{1}{-z-z\frac{1}{n}\mathsf{tr}\left(\frac{1}{n}X_p^{\mathsf{T}}X_p-zI_n\right)^{-1}}\xrightarrow{\text{a.s.}}0.$$

▶ By Rank-1 Perturbation Lemma $(X_p^{\mathsf{T}}X_p = Y_{p-1}^{\mathsf{T}}Y_{p-1} + yy^{\mathsf{T}})$, as $p, n \to \infty$

$$\left[\left(\frac{1}{n}X_pX_p^{\mathsf{T}}-zI_p\right)^{-1}\right]_{11}-\frac{1}{-z-z\frac{1}{n}\mathsf{tr}\left(\frac{1}{n}X_p^{\mathsf{T}}X_p-zI_n\right)^{-1}}\xrightarrow{\text{a.s.}}0.$$

• Since
$$\frac{1}{n} \operatorname{tr} \left(\frac{1}{n} X_p^{\mathsf{T}} X_p - zI_n \right)^{-1} = \frac{1}{n} \operatorname{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - zI_p \right)^{-1} - \frac{n-p}{n} \frac{1}{z},$$

$$\left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - zI_p \right)^{-1} \right]_{11} - \frac{1}{1 - \frac{p}{n} - z - z \frac{1}{n} \operatorname{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - zI_p \right)^{-1}} \xrightarrow{\text{a.s.}} 0.$$

▶ By Rank-1 Perturbation Lemma $(X_p^{\mathsf{T}}X_p = Y_{p-1}^{\mathsf{T}}Y_{p-1} + yy^{\mathsf{T}})$, as $p, n \to \infty$

$$\left[\left(\frac{1}{n}X_pX_p^{\mathsf{T}}-zI_p\right)^{-1}\right]_{11}-\frac{1}{-z-z\frac{1}{n}\mathsf{tr}\left(\frac{1}{n}X_p^{\mathsf{T}}X_p-zI_n\right)^{-1}}\xrightarrow{\text{a.s.}}0.$$

• Since
$$\frac{1}{n} \operatorname{tr} \left(\frac{1}{n} X_p^{\mathsf{T}} X_p - zI_n \right)^{-1} = \frac{1}{n} \operatorname{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - zI_p \right)^{-1} - \frac{n-p}{n} \frac{1}{z},$$

$$\left[\left(\frac{1}{n} X_p X_p^{\mathsf{T}} - zI_p \right)^{-1} \right]_{11} - \frac{1}{1 - \frac{p}{n} - z - z \frac{1}{n} \operatorname{tr} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - zI_p \right)^{-1}} \xrightarrow{\text{a.s.}} 0.$$

▶ Repeating for entries $(2,2), \ldots, (p,p)$, and averaging, we get (for $\Im[z] > 0$)

$$m_{\mu_p}(z) - \frac{1}{1 - \frac{p}{n} - z - z\frac{p}{n}m_{\mu_p}(z)} \xrightarrow{\text{a.s.}} 0.$$

Proof (continued)

▶ Then $m_{\mu_p}(z) \xrightarrow{\text{a.s.}} m(z)$ solution to

$$m(z) = \frac{1}{1-c-z-czm(z)}$$

Proof (continued)

▶ Then $m_{\mu_p}(z) \xrightarrow{\text{a.s.}} m(z)$ solution to

$$m(z) = \frac{1}{1 - c - z - czm(z)}$$

i.e., (with branch of $\sqrt{f(z)}$ such that $m(z) \to 0$ as $|z| \to \infty)$

$$m(z) = \frac{1-c}{2cz} - \frac{1}{2c} + \frac{\sqrt{\left(z - (1+\sqrt{c})^2\right)\left(z - (1-\sqrt{c})^2\right)}}{2cz}$$

Proof (continued)

▶ Then $m_{\mu_p}(z) \xrightarrow{\text{a.s.}} m(z)$ solution to

$$m(z) = \frac{1}{1 - c - z - czm(z)}$$

i.e., (with branch of $\sqrt{f(z)}$ such that $m(z) \to 0$ as $|z| \to \infty)$

$$m(z) = \frac{1-c}{2cz} - \frac{1}{2c} + \frac{\sqrt{\left(z - (1+\sqrt{c})^2\right)\left(z - (1-\sqrt{c})^2\right)}}{2cz}$$

Finally, by inverse Stieltjes Transform, for x > 0,

$$\lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \Im[m(x+\imath\varepsilon)] = \frac{\sqrt{\left((1+\sqrt{c})^2 - x\right)\left(x - (1-\sqrt{c})^2\right)}}{2\pi c x} \mathbb{1}_{\{x \in [(1-\sqrt{c})^2, (1+\sqrt{c})^2]\}}.$$

And for x = 0,

$$\lim_{\varepsilon \downarrow 0} i \varepsilon \Im[m(i \varepsilon)] = \left(1 - c^{-1}\right) \mathbb{1}_{\{c > 1\}}.$$

Theorem (Sample Covariance Matrix Model [Silverstein, Bai'95]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with $C_p \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly, $X_p \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance. As $p, n \to \infty$, $p/n \to c \in (0, \infty)$, $\tilde{\mu}_p$ e.s.d. of $\frac{1}{n} Y_p^{\mathsf{T}} Y_p \in \mathbb{R}^{n \times n}$ satisfies

$$\tilde{\mu}_p \xrightarrow{\text{a.s.}} \tilde{\mu}$$

weakly, with $m_{\tilde{\mu}}(z)$, $\Im[z] > 0$, unique solution with $\Im[m_{\tilde{\mu}}(z)] > 0$ of

$$m_{\tilde{\mu}}(z) = \left(-z + c \int \frac{t}{1 + tm_{\tilde{\mu}}(z)}\nu(dt)\right)^{-1}$$

Theorem (Sample Covariance Matrix Model [Silverstein, Bai'95]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with $C_p \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly, $X_p \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance. As $p, n \to \infty$, $p/n \to c \in (0, \infty)$, $\tilde{\mu}_p$ e.s.d. of $\frac{1}{n} Y_p^{\mathsf{T}} Y_p \in \mathbb{R}^{n \times n}$ satisfies

$$\tilde{\mu}_p \xrightarrow{\text{a.s.}} \tilde{\mu}$$

weakly, with $m_{\tilde{\mu}}(z)$, $\Im[z] > 0$, unique solution with $\Im[m_{\tilde{\mu}}(z)] > 0$ of

$$m_{\tilde{\mu}}(z) = \left(-z + c \int \frac{t}{1 + tm_{\tilde{\mu}}(z)}\nu(dt)\right)^{-1}$$

Moreover, $\tilde{\mu}$ is continuous on \mathbb{R}^+ and real analytic wherever positive.

Theorem (Sample Covariance Matrix Model [Silverstein, Bai'95]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with $C_p \in \mathbb{C}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly, $X_p \in \mathbb{C}^{p \times n}$ has i.i.d. entries of zero mean and unit variance. As $p, n \to \infty$, $p/n \to c \in (0, \infty)$, $\tilde{\mu}_p$ e.s.d. of $\frac{1}{n} Y_p^{-1} Y_p \in \mathbb{R}^{n \times n}$ satisfies

$$\tilde{\mu}_p \xrightarrow{\text{a.s.}} \tilde{\mu}$$

weakly, with $m_{\tilde{\mu}}(z)$, $\Im[z] > 0$, unique solution with $\Im[m_{\tilde{\mu}}(z)] > 0$ of

$$m_{\tilde{\mu}}(z) = \left(-z + c \int \frac{t}{1 + tm_{\tilde{\mu}}(z)}\nu(dt)\right)^{-1}$$

Moreover, $\tilde{\mu}$ is continuous on \mathbb{R}^+ and real analytic wherever positive.

Immediate corollary: For μ_p e.s.d. of $\frac{1}{n}Y_pY_p^{\mathsf{T}} = \frac{1}{n}\sum_{i=1}^n C_p^{\frac{1}{2}}x_ix_i^{\mathsf{T}}C_p^{\frac{1}{2}}$,

$$\mu_p \xrightarrow{\text{a.s.}} \mu$$

weakly, with $\tilde{\mu} = c\mu + (1-c)\delta_0$.

Figure: Histogram of the eigenvalues of $\frac{1}{n}Y_pY_p^{\mathsf{T}}$, n = 3000, p = 300, with C_p diagonal with evenly weighted masses in (i) 1, 3, 7, (ii) 1, 3, 4.

Sometimes, μ_p does not converge!

Sometimes, μ_p does not converge!

• if ν_p does not converge

Sometimes, μ_p does not converge!

- if ν_p does not converge
- if p/n does not converge

Sometimes, μ_p does not converge!

- ▶ if v_p does not converge
- if p/n does not converge
- if eigenvectors of deterministic matrices play a role!

Sometimes, μ_p does not converge!

- ▶ if v_p does not converge
- if p/n does not converge
- if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence $\bar{\mu}_p$ of deterministic measures, with

$$\mu_p - \bar{\mu}_p \xrightarrow{\text{a.s.}} 0$$

Sometimes, μ_p does not converge!

- ▶ if v_p does not converge
- if p/n does not converge
- if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence $\bar{\mu}_p$ of deterministic measures, with

$$\mu_p - \bar{\mu}_p \xrightarrow{\text{a.s.}} 0$$

or equivalently, deterministic sequence of m_p with

$$m_{\mu p} - m_p \xrightarrow{\text{a.s.}} 0.$$

Theorem (Doubly-correlated i.i.d. matrices)

Let $B_p = C_p^{\frac{1}{2}} X_p T_p X_p^{\mathsf{T}} C_p^{\frac{1}{2}}$, with e.s.d. μ_p , $X_p \in \mathbb{R}^{p \times n}$ with i.i.d. entries of zero mean, variance 1/n, C_p Hermitian nonnegative definite, T_p diagonal nonnegative, $\limsup_p \max(\|C_p\|, \|T_p\|) < \infty$. Denote c = p/n.

Then, as $p,n \to \infty$ with bounded ratio c, for $z \in \mathbb{C} \setminus \mathbb{R}^-$,

$$m_{\mu_p}(z) - m_p(z) \xrightarrow{\text{a.s.}} 0, \quad m_p(z) = rac{1}{p} tr \left(-zI_p + ar{e}_p(z)C_p\right)^{-1}$$

with $\bar{e}(z)$ unique solution in $\{z \in \mathbb{C}^+, \bar{e}_p(z) \in \mathbb{C}^+\}$ or $\{z \in \mathbb{R}^-, \bar{e}_p(z) \in \mathbb{R}^+\}$ of

$$e_p(z) = \frac{1}{p} tr C_p (-zI_p + \bar{e}_p(z)C_p)^{-1}$$
$$\bar{e}_p(z) = \frac{1}{n} tr T_p (I_n + ce_p(z)T_p)^{-1}.$$

Side note on other models.

Similar results for multiple matrix models:

Side note on other models.

Similar results for multiple matrix models:

• Information-plus-noise: $Y_p = A_p + X_p$, A_p deterministic

▶ Variance profile: $Y_p = P_p \odot X_p$ (entry-wise product)

• Per-column covariance: $Y_p = [y_1, \dots, y_n], y_i = C_{p,i}^{\frac{1}{2}} x_i$

etc.

Outline

Basics of Random Matrix Theory (Romain COUILLET)

Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method **Spiked Models** Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with $\triangleright \ C_p \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly,
Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with

- ▶ $C_p \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \rightarrow \nu$ weakly,
- $X_p \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with

- ▶ $C_p \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \rightarrow \nu$ weakly,
- $X_p \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\blacktriangleright E[|X_p|_{ij}^4] < \infty,$

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai'98]) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with

- $C_p \in \mathbb{R}^{p \times p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly,
- ▶ $X_p \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\blacktriangleright E[|X_p|_{ij}^4] < \infty,$

Theorem (No Eigenvalue Outside the Support **[Silverstein,Bai'98]**) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with

- $C_p \in \mathbb{R}^{p imes p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly,
- $X_p \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\blacktriangleright E[|X_p|_{ij}^4] < \infty,$

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n}Y_p^{\mathsf{T}}Y_p$ as before. Let $[a,b] \subset \mathbb{R}^{\mathsf{T}} \setminus \operatorname{supp}(\tilde{\nu})$. Then,

$$\left\{\lambda_i\left(\frac{1}{n}Y_p^{\mathsf{T}}Y_p\right)\right\}_{i=1}^n \cap [a,b] = \emptyset$$

for all large n, almost surely.

Theorem (No Eigenvalue Outside the Support **[Silverstein,Bai'98]**) Let $Y_p = C_p^{\frac{1}{2}} X_p \in \mathbb{R}^{p \times n}$, with

- $C_p \in \mathbb{R}^{p imes p}$ nonnegative definite with e.s.d. $\nu_p \to \nu$ weakly,
- $X_p \in \mathbb{R}^{p \times n}$ has i.i.d. entries of zero mean and unit variance,
- $\blacktriangleright E[|X_p|_{ij}^4] < \infty,$
- $\max_i \operatorname{dist}(\lambda_i(C_p), \operatorname{supp}(\nu)) \to 0.$

Let $\tilde{\mu}$ be the limiting e.s.d. of $\frac{1}{n}Y_p^{\mathsf{T}}Y_p$ as before. Let $[a,b] \subset \mathbb{R}^{\mathsf{T}} \setminus \operatorname{supp}(\tilde{\nu})$. Then,

$$\left\{\lambda_i\left(\frac{1}{n}Y_p^{\mathsf{T}}Y_p\right)\right\}_{i=1}^n \cap [a,b] = \emptyset$$

for all large n, almost surely.

In practice: This means that eigenvalues of $\frac{1}{n}Y_p^{\mathsf{T}}Y_p$ cannot be bound at macroscopic distance from the bulk, for p, n large.

Breaking the rules. If we break

If we break:

Rule 2: C_p may create isolated eigenvalues in $\frac{1}{n}Y_pY_p^{\mathsf{T}}$, called spikes.

Figure: Eigenvalues of $\frac{1}{n}Y_pY_p^{\mathsf{T}}$, $C_p = \text{diag}(1, \dots, 1, 2, 3, 4, 5)$, p = 500, n = 2000. p - 4

Theorem (Eigenvalues [Baik,Silverstein'06]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

▶ X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$.

•
$$C_p = I_p + P$$
, $P = U\Omega U^{\mathsf{T}}$, where, for K fixed,

$$\Omega = \operatorname{diag}(\omega_1, \ldots, \omega_K) \in \mathbb{R}^{K \times K}, \text{ with } \omega_1 \geq \ldots \geq \omega_K > 0.$$

Theorem (Eigenvalues [Baik,Silverstein'06]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with X_p with i.i.d. zero mean, unit variance, $E[|X_p|_{ij}^4] < \infty$. $C_p = I_p + P$, $P = U\Omega U^T$, where, for K fixed, $\Omega = diag(\omega_1, \dots, \omega_K) \in \mathbb{R}^{K \times K}$, with $\omega_1 \ge \dots \ge \omega_K > 0$. Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, denoting $\lambda_i = \lambda_i (\frac{1}{n} Y_p Y_p^T)$, $if \omega_m > \sqrt{c}$,

$$\lambda_m \xrightarrow{\text{a.s.}} 1 + \omega_m + c \frac{1 + \omega_m}{\omega_m} > (1 + \sqrt{c})^2$$

$$\lambda_m \xrightarrow{\text{a.s.}} 1 + \omega_m + c \frac{1 + \omega_m}{\omega_m} > (1 + \sqrt{c})^2$$

• if $\omega_m \in (0, \sqrt{c}]$,

$$\lambda_m \xrightarrow{\text{a.s.}} (1 + \sqrt{c})^2$$

Figure: Eigenvalues of $\frac{1}{n}Y_pY_p^{\mathsf{T}}$, $C_p = \text{diag}(\underbrace{1, \dots, 1}_{p-2}, 2, 3)$, p = 500, n = 1500.

Proof

► Two ingredients: Algebraic calculus + trace lemma

Proof

- **Two ingredients**: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n}X_pX_p^{\mathsf{T}}$:

$$0 = \det\left(\frac{1}{n}Y_{p}Y_{p}^{\mathsf{T}} - \lambda I_{p}\right), \quad Y_{p} = C_{p}^{\frac{1}{2}}X_{p}$$

$$= \det(C_{p})\det\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}} - \lambda C_{p}^{-1}\right)$$

$$= \det\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}} - \lambda I_{p} + \lambda(I_{p} - C_{p}^{-1})\right)$$

$$= \det\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}} - \lambda I_{p}\right)\det\left(I_{p} + \lambda(I_{p} - C_{p}^{-1})\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}} - \lambda I_{p}\right)^{-1}\right).$$

Proof

- **Two ingredients**: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n}X_pX_p^{\mathsf{T}}$:

$$0 = \det\left(\frac{1}{n}Y_pY_p^{\mathsf{T}} - \lambda I_p\right), \quad Y_p = C_p^{\frac{1}{2}}X_p$$

$$= \det(C_p)\det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda C_p^{-1}\right)$$

$$= \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p + \lambda(I_p - C_p^{-1})\right)$$

$$= \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_p + \lambda(I_p - C_p^{-1})\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}\right)$$

• Use low rank property: $(C_p = I_p + P = I_p + U\Omega U^{\mathsf{T}})$

$$I_p - C_p^{-1} = I_p - (I_p + U\Omega U^{\mathsf{T}})^{-1} = U(I_K + \Omega^{-1})^{-1} U^{\mathsf{T}}, \ \Omega \in \mathbb{C}^{K \times K}$$

Hence

$$0 = \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_p + \lambda U(I_K + \Omega^{-1})^{-1}U^{\mathsf{T}}\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}\right).$$

Proof

- **Two ingredients**: Algebraic calculus + trace lemma
- Find eigenvalues away from eigenvalues of $\frac{1}{n}X_pX_p^{\mathsf{T}}$:

$$0 = \det\left(\frac{1}{n}Y_pY_p^{\mathsf{T}} - \lambda I_p\right), \quad Y_p = C_p^{\frac{1}{2}}X_p$$

$$= \det(C_p)\det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda C_p^{-1}\right)$$

$$= \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p + \lambda(I_p - C_p^{-1})\right)$$

$$= \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_p + \lambda(I_p - C_p^{-1})\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}\right)$$

• Use low rank property: $(C_p = I_p + P = I_p + U\Omega U^{\mathsf{T}})$

$$I_p - C_p^{-1} = I_p - (I_p + U\Omega U^{\mathsf{T}})^{-1} = U(I_K + \Omega^{-1})^{-1} U^{\mathsf{T}}, \ \Omega \in \mathbb{C}^{K \times K}$$

Hence

$$0 = \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_p + \lambda U(I_K + \Omega^{-1})^{-1}U^{\mathsf{T}}\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}\right).$$

Proof (2)

Sylverster's identity $(\det(I + AB) = \det(I + BA))$,

$$0 = \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_K + \lambda(I_K + \Omega^{-1})^{-1}U^{\mathsf{T}}\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}U\right)$$

Proof (2)

Sylverster's identity $(\det(I + AB) = \det(I + BA))$,

$$0 = \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_K + \lambda(I_K + \Omega^{-1})^{-1}U^{\mathsf{T}}\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}U\right)$$

▶ No eigenvalue outside the support [Bai,Sil'98]: $det(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p)$ has no zero beyond $(1 + \sqrt{c})^2$ for all large *n* a.s.

Proof (2)

Sylverster's identity $(\det(I + AB) = \det(I + BA))$,

$$0 = \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right) \det\left(I_K + \lambda(I_K + \Omega^{-1})^{-1}U^{\mathsf{T}}\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}U\right)$$

- ▶ No eigenvalue outside the support [Bai,Sil'98]: $det(\frac{1}{n}X_pX_p^{\mathsf{T}} \lambda I_p)$ has no zero beyond $(1 + \sqrt{c})^2$ for all large *n* a.s.
- **Extension of Trace Lemma**: for each $z \in \mathbb{C} \setminus \text{supp}(\mu)$,

$$U^{\mathsf{T}}\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}}-zI_{p}\right)^{-1}U \xrightarrow{\mathrm{a.s.}} m_{\mu}(z)I_{K}.$$

 $(X_p \text{ being "almost-unitarily invariant", } U \text{ made of "i.i.d.-like" random vectors})$

(

Proof (2)

Sylverster's identity $(\det(I + AB) = \det(I + BA))$,

$$0 = \det\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)\det\left(I_K + \lambda(I_K + \Omega^{-1})^{-1}U^{\mathsf{T}}\left(\frac{1}{n}X_pX_p^{\mathsf{T}} - \lambda I_p\right)^{-1}U\right)$$

- ▶ No eigenvalue outside the support [Bai,Sil'98]: $det(\frac{1}{n}X_pX_p^{\mathsf{T}} \lambda I_p)$ has no zero beyond $(1 + \sqrt{c})^2$ for all large *n* a.s.
- Extension of Trace Lemma: for each $z \in \mathbb{C} \setminus \text{supp}(\mu)$,

$$U^{\mathsf{T}}\left(\frac{1}{n}X_{p}X_{p}^{\mathsf{T}}-zI_{p}\right)^{-1}U \xrightarrow{\mathrm{a.s.}} m_{\mu}(z)I_{K}.$$

 $(X_p \text{ being "almost-unitarily invariant", } U \text{ made of "i.i.d.-like" random vectors})$ As a result, for all large n a.s.,

$$0 = \det\left(I_K + \lambda(I_K + \Omega^{-1})^{-1} U^{\mathsf{T}} \left(\frac{1}{n} X_p X_p^{\mathsf{T}} - \lambda I_p\right)^{-1} U\right)$$
$$\simeq \prod_{k=1}^K \left(1 + \frac{\lambda}{1 + \omega_k^{-1}} m_\mu(\lambda)\right) = \prod_{k=1}^K \left(1 + \frac{\omega_k}{1 + \omega_k} \lambda m_\mu(\lambda)\right)$$

Proof (3)

Limiting solutions: zeros of

$$\lambda m_{\mu}(\lambda) = -\frac{1+\omega_m}{\omega_m}.$$

Theorem (Eigenvectors [Paul'07])

Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

 \blacktriangleright X_p with i.i.d. zero mean, unit variance, finite fourth order moment entries

$$C_p = I_p + P, \ P = \sum_{i=1}^K \omega_i u_i u_i^{\mathsf{T}}, \ \omega_1 > \ldots > \omega_M > 0.$$

Theorem (Eigenvectors [Paul'07]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with $\searrow X_p$ with i.i.d. zero mean, unit variance, finite fourth order moment entries $\bowtie C_p = I_p + P, P = \sum_{i=1}^{K} \omega_i u_i u_i^{\mathsf{T}}, \omega_1 > \ldots > \omega_M > 0.$

Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, for $a, b \in \mathbb{R}^p$ deterministic and \hat{u}_i eigenvector of $\lambda_i(\frac{1}{n}Y_pY_p^{\mathsf{T}})$,

$$a^{\mathsf{T}}\hat{u}_{i}\hat{u}_{i}^{\mathsf{T}}b - \frac{1 - c\omega_{i}^{-2}}{1 + c\omega_{i}^{-1}}a^{\mathsf{T}}u_{i}u_{i}^{\mathsf{T}}b \cdot \mathbf{1}_{\omega_{i} > \sqrt{c}} \xrightarrow{\mathrm{a.s.}} 0$$

In particular,

$$|\hat{u}_i^\mathsf{T} u_i|^2 \xrightarrow{\text{a.s.}} \frac{1 - c \omega_i^{-2}}{1 + c \omega_i^{-1}} \cdot \mathbf{1}_{\omega_i > \sqrt{c}}.$$

Theorem (Eigenvectors [Paul'07]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with $\searrow X_p$ with i.i.d. zero mean, unit variance, finite fourth order moment entries $\bowtie C_p = I_p + P, P = \sum_{i=1}^{K} \omega_i u_i u_i^{\mathsf{T}}, \omega_1 > \ldots > \omega_M > 0.$

Then, as $p, n \to \infty$, $p/n \to c \in (0, \infty)$, for $a, b \in \mathbb{R}^p$ deterministic and \hat{u}_i eigenvector of $\lambda_i(\frac{1}{n}Y_pY_p^{\mathsf{T}})$,

$$a^{\mathsf{T}}\hat{u}_{i}\hat{u}_{i}^{\mathsf{T}}b - \frac{1 - c\omega_{i}^{-2}}{1 + c\omega_{i}^{-1}}a^{\mathsf{T}}u_{i}u_{i}^{\mathsf{T}}b \cdot \mathbf{1}_{\omega_{i} > \sqrt{c}} \xrightarrow{\text{a.s.}} 0$$

In particular,

$$|\hat{u}_i^{\mathsf{T}} u_i|^2 \xrightarrow{\text{a.s.}} \frac{1 - c\omega_i^{-2}}{1 + c\omega_i^{-1}} \cdot \mathbf{1}_{\omega_i > \sqrt{c}}.$$

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

$$a^{\mathsf{T}}\hat{u}_{i}\hat{u}_{i}^{\mathsf{T}}b = \frac{1}{2\pi\iota} \oint_{\mathcal{C}_{i}} a^{\mathsf{T}} \left(\frac{1}{n}Y_{p}Y_{p}^{\mathsf{T}} - zI_{p}\right)^{-1} b \, dz$$

for \mathcal{C}_m contour circling around λ_i only.

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Population spike ω_1

Figure: Simulated versus limiting $|\hat{u}_1^{\mathsf{T}}u_1|^2$ for $Y_p = C_p^{\frac{1}{2}}X_p$, $C_p = I_p + \omega_1 u_1 u_1^{\mathsf{T}}$, p/n = 1/3, varying ω_1 .

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché'05]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

X_p with i.i.d. real or complex Gaussian zero mean, unit variance entries,

•
$$C_p = I_p + P$$
, $P = \sum_{i=1}^{K} \omega_i u_i u_i^{\mathsf{T}}$, $\omega_1 > \ldots > \omega_K > 0$ ($K \ge 0$).

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché'05]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

X_p with i.i.d. real or complex Gaussian zero mean, unit variance entries,

•
$$C_p = I_p + P$$
, $P = \sum_{i=1}^{K} \omega_i u_i u_i^{\mathsf{T}}$, $\omega_1 > \ldots > \omega_K > 0$ $(K \ge 0)$.

Then, as
$$p, n \to \infty$$
, $p/n \to c < 1$,

$$If \omega_1 < \sqrt{c} \text{ (or } K = 0),$$

$$p^{\frac{2}{3}} \frac{\lambda_1 - (1 + \sqrt{c})^2}{(1 + \sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T, \text{ (real or complex Tracy-Widom law)}$$

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché'05]) Let $Y_p = C_p^{\frac{1}{2}} X_p$, with

X_p with i.i.d. real or complex Gaussian zero mean, unit variance entries,

•
$$C_p = I_p + P$$
, $P = \sum_{i=1}^{K} \omega_i u_i u_i^{\mathsf{T}}$, $\omega_1 > \ldots > \omega_K > 0$ $(K \ge 0)$.

Then, as
$$p, n \to \infty$$
, $p/n \to c < 1$,

$$If \omega_1 < \sqrt{c} \text{ (or } K = 0),$$

$$p^{\frac{2}{3}} \frac{\lambda_1 - (1 + \sqrt{c})^2}{(1 + \sqrt{c})^{\frac{4}{3}} c^{\frac{1}{2}}} \xrightarrow{\mathcal{L}} T, \text{ (real or complex Tracy-Widom law)}$$

 $If \omega_1 > \sqrt{c},$ $\left(\frac{(1+\omega_1)^2}{c} - \frac{(1+\omega_1)^2}{\omega_1^2} \right)^{\frac{1}{2}} p^{\frac{1}{2}} \left[\lambda_1 - \left(1 + \omega_1 + c \frac{1+\omega_1}{\omega_1} \right) \right] \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$

Figure: Distribution of $p^{\frac{1}{3}}c^{-\frac{1}{2}}(1+\sqrt{c})^{-\frac{1}{3}}\left[\lambda_1(\frac{1}{n}X_pX_p^{\mathsf{T}})-(1+\sqrt{c})^2\right]$ versus real Tracy–Widom (*T*), p = 500, n = 1500.
Similar results for multiple matrix models:

- ► $Y_p = \frac{1}{n}XX^{\mathsf{T}} + P$, *P* deterministic and low rank ► $Y_p = \frac{1}{n}X^{\mathsf{T}}(I+P)X$ ► $Y_p = \frac{1}{n}(X+P)^{\mathsf{T}}(X+P)$ ► $Y_p = \frac{1}{n}TX^{\mathsf{T}}(I+P)XT$
- etc.

Outline

Basics of Random Matrix Theory (Romain COUILLET)

Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models

Other Common Random Matrix Models

Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Theorem

Let $X_n \in \mathbb{R}^{n \times n}$ Hermitian with e.s.d. μ_n such that $\frac{1}{\sqrt{n}}[X_n]_{i>j}$ are i.i.d. with zero mean and unit variance. Then, as $n \to \infty$,

$$\mu_n \xrightarrow{\text{a.s.}} \mu$$

with $\mu(dt) = \frac{1}{2\pi} \sqrt{(4-t^2)^+} dt$. In particular, m_μ satisfies

$$m_{\mu}(z) = \frac{1}{-z - m_{\mu}(z)}.$$

The Semi-circle law

Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for n=500

Theorem

Let $X_n \in \mathbb{C}^{n \times n}$ with e.s.d. μ_n be such that $\frac{1}{\sqrt{n}}[X_n]_{ij}$ are i.i.d. entries with zero mean and unit variance. Then, as $n \to \infty$,

$$\mu_n \xrightarrow{\text{a.s.}} \mu$$

with μ a complex-supported measure with $\mu(dz) = \frac{1}{2\pi} \delta_{|z| \leq 1} dz.$

The Circular law

Eigenvalues (imaginary part)

Figure: Eigenvalues of X_n with i.i.d. standard Gaussian entries, for n = 500.

From most accessible to least

📎 Couillet, R., & Debbah, M. (2011). Random matrix methods for wireless communications. Cambridge University Press.

Tao, T. (2012). Topics in random matrix theory (Vol. 132). Providence, RI: American Mathematical Society.

😪 Bai, Z., & Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (Vol. 20). New York: Springer.

🌑 Pastur, L. A., Shcherbina, M., & Shcherbina, M. (2011). Eigenvalue distribution of large random matrices (Vol. 171). Providence, RI: American Mathematical Society.

🔪 Anderson, G. W., Guionnet, A., & Zeitouni, O. (2010). An introduction to random matrices (Vol. 118). Cambridge university press.

Outline

Basics of Random Matrix Theory (Romain COUILLET)

Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models

Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Large range of applications:

▶ Wireless communications: capacity of large communication channels $H \in \mathbb{C}^{p \times n}$, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.

- Wireless communications: capacity of large communication channels H ∈ C^{p×n}, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- ▶ Array processing: improved MUSIC methods for large arrays (p ~ n), optimal beamforming (MVDR), detection filters (ANMF), etc.

- Wireless communications: capacity of large communication channels H ∈ C^{p×n}, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- ▶ Array processing: improved MUSIC methods for large arrays (p ~ n), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.

- Wireless communications: capacity of large communication channels H ∈ C^{p×n}, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- ▶ Array processing: improved MUSIC methods for large arrays (p ~ n), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- **Brain signal processing:** EEG covariance estimation on short windows.

Large range of applications:

- Wireless communications: capacity of large communication channels H ∈ C^{p×n}, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- ▶ Array processing: improved MUSIC methods for large arrays (p ~ n), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- **Brain signal processing:** EEG covariance estimation on short windows.

Any application where $p \sim n$ "rather large"

(convergence speed in up to O(n) and not $O(\sqrt{n})$ as usual!)

Large range of applications:

- Wireless communications: capacity of large communication channels H ∈ C^{p×n}, optimal precoding in mu-MIMO, power allocation in large networks, sensing in cognitive radios, etc.
- ▶ Array processing: improved MUSIC methods for large arrays (p ~ n), optimal beamforming (MVDR), detection filters (ANMF), etc.
- Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios and short time windows.
- **Brain signal processing:** EEG covariance estimation on short windows.

Any application where $p \sim n$ "rather large"

(convergence speed in up to O(n) and not $O(\sqrt{n})$ as usual!)

BUT mostly linear settings...

Specificities in statistical and machine learning:

• Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

Specificities in statistical and machine learning:

- ▶ Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

we will see that small-dimensional intuitions dramatically fail

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand,

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and

Specificities in statistical and machine learning:

- Matrix of non-linear entries: kernel matrices $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$, activation functions in neural nets $x_{l+1} = \sigma(Wx_l)$, non-linear features, etc.
- Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin constraints, logistic regression, etc.

<u>CENTRAL ISSUE</u>: Given that basic sample covariance matrices are not consistent for large n, p, what happens to machine learning methods?

- we will see that small-dimensional intuitions dramatically fail
- some classical and widely-used algorithms become ineffective
- **BUT** random matrix theory provides a renewed understanding.

TUTORIAL: first answers to **understand**, **improve**, and **change paradigm**.

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO)

Motivation: EEG-based clustering Covariance Distance Inference *Revisiting Motivation* Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering

Covariance Distance Inference *Revisiting Motivation* Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

 Hard classification on raw data X_i: Need Features

- Hard classification on raw data X_i: Need Features
- Relevant Feature: Covariance C_i

- Hard classification on raw data X_i: Need Features
- Relevant Feature: Covariance C_i
- Distance between features: $D(C_i, C_j)$

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO)

Motivation: EEG-based clustering

Covariance Distance Inference

Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Observations:

 \blacktriangleright two data vector classes $x_i^{(1)} \in \mathcal{C}_1$ and $x_i^{(2)} \in \mathcal{C}_2$

Observations:

 \blacktriangleright two data vector classes $x_i^{(1)} \in \mathcal{C}_1$ and $x_i^{(2)} \in \mathcal{C}_2$

•
$$X_a = [x_1^{(a)}, \dots, x_{n_a}^{(a)}], x_i^{(a)} \in \mathbb{R}^p$$
 with $E[x_i^{(a)}] = 0, E[x_i^{(a)}x_i^{(a)\mathsf{T}}] = C_a.$

Observations:

 \blacktriangleright two data vector classes $x_i^{(1)} \in \mathcal{C}_1$ and $x_i^{(2)} \in \mathcal{C}_2$

$$\blacktriangleright \ X_a = [x_1^{(a)}, \dots, x_{n_a}^{(a)}], \ x_i^{(a)} \in \mathbb{R}^p \text{ with } E[x_i^{(a)}] = 0, \ E[x_i^{(a)}x_i^{(a)}^{\mathsf{T}}] = C_a.$$

Objective:

 \blacktriangleright From the data $x_i^{(a)}$, estimate some distance function

 $D \equiv D(C_1, C_2).$

Observations:

 \blacktriangleright two data vector classes $x_i^{(1)} \in \mathcal{C}_1$ and $x_i^{(2)} \in \mathcal{C}_2$

$$\blacktriangleright \ X_a = [x_1^{(a)}, \dots, x_{n_a}^{(a)}], \ x_i^{(a)} \in \mathbb{R}^p \text{ with } E[x_i^{(a)}] = 0, \ E[x_i^{(a)}x_i^{(a)\mathsf{T}}] = C_a.$$

Objective:

From the data $x_i^{(a)}$, estimate some distance function

$$D \equiv D(C_1, C_2).$$

Classical approach:

$$\hat{D} \equiv D(\hat{C}_1, \hat{C}_2), \quad \text{with } \hat{C}_a = \frac{1}{n_a} \sum_{i=1}^{n_a} x_i^{(a)} x_i^{(a)\mathsf{T}} = \frac{1}{n_a} X_a X_a^\mathsf{T}.$$

Observations:

 \blacktriangleright two data vector classes $x_i^{(1)} \in \mathcal{C}_1$ and $x_i^{(2)} \in \mathcal{C}_2$

$$\blacktriangleright \ X_a = [x_1^{(a)}, \dots, x_{n_a}^{(a)}], \ x_i^{(a)} \in \mathbb{R}^p \text{ with } E[x_i^{(a)}] = 0, \ E[x_i^{(a)}x_i^{(a)\mathsf{T}}] = C_a.$$

Objective:

From the data $x_i^{(a)}$, estimate some distance function

$$D \equiv D(C_1, C_2).$$

Classical approach:

$$\hat{D} \equiv D(\hat{C}_1, \hat{C}_2), \quad \text{with } \hat{C}_a = \frac{1}{n_a} \sum_{i=1}^{n_a} x_i^{(a)} x_i^{(a)\mathsf{T}} = \frac{1}{n_a} X_a X_a^\mathsf{T}.$$

 $\longrightarrow \text{Often justified by Law of Large Numbers: } \hat{D} \xrightarrow{\text{a.s.}} D \text{ as } n \to \infty.$
Example:

The Fisher distance

$$D(C_1, C_2) = \frac{1}{p} \left\| \log^2(C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}}) \right\|_F^2$$

Example:

The Fisher distance

$$D(C_1, C_2) = \frac{1}{p} \left\| \log^2(C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}}) \right\|_F^2 = \frac{1}{p} \sum_{i=1}^p \log^2\left(\lambda_i(C_1^{-1} C_2)\right)$$

Example:

The Fisher distance

$$D(C_1, C_2) = \frac{1}{p} \left\| \log^2(C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}}) \right\|_F^2 = \frac{1}{p} \sum_{i=1}^p \log^2\left(\lambda_i(C_1^{-1} C_2)\right) = \int \log^2(t) \nu_p(dt)$$

with $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}.$

Example:

The Fisher distance

$$D(C_1, C_2) = \frac{1}{p} \left\| \log^2(C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}}) \right\|_F^2 = \frac{1}{p} \sum_{i=1}^p \log^2\left(\lambda_i(C_1^{-1} C_2)\right) = \int \log^2(t) \nu_p(dt)$$

with $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}.$

▶ for $n_1 = 1024$, $n_2 = 2048$, different p (here $[C_1^{-\frac{1}{2}}C_2C_1^{-\frac{1}{2}}]_{ij} = .3^{|i-j|}$):

Example:

The Fisher distance

$$D(C_1, C_2) = \frac{1}{p} \left\| \log^2(C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}}) \right\|_F^2 = \frac{1}{p} \sum_{i=1}^p \log^2\left(\lambda_i(C_1^{-1} C_2)\right) = \int \log^2(t) \nu_p(dt)$$

with $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$.

▶ for $n_1 = 1024$, $n_2 = 2048$, different p (here $[C_1^{-\frac{1}{2}}C_2C_1^{-\frac{1}{2}}]_{ij} = .3^{|i-j|}$):

p	Fisher distance	Classical estimator	
2	0.0980	0.1002	
4	0.1456	0.1520	
8	0.1694	0.1820	
16	0.1812	0.2081	
32	0.1872	0.2363	
64	0.1901	0.2892	
128	0.1916	0.3955	
256	0.1924	0.6338	
512	0.1927	<u>1.2715</u>	

(error < 5%) (error > 50%) (error > 100%) (error > 500%)

Example:

The Fisher distance

$$D(C_1, C_2) = \frac{1}{p} \left\| \log^2(C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}}) \right\|_F^2 = \frac{1}{p} \sum_{i=1}^p \log^2\left(\lambda_i(C_1^{-1} C_2)\right) = \int \log^2(t) \nu_p(dt)$$

with $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$.

▶ for $n_1 = 1024$, $n_2 = 2048$, different p (here $[C_1^{-\frac{1}{2}}C_2C_1^{-\frac{1}{2}}]_{ij} = .3^{|i-j|}$):

p	Fisher distance	Classical estimator	RMT estimator
2	0.0980	0.1002	0.0973
4	0.1456	0.1520	0.1461
8	0.1694	0.1820	0.1703
16	0.1812	0.2081	0.1845
32	0.1872	0.2363	0.1886
64	0.1901	0.2892	0.1920
128	0.1916	0.3955	0.1934
256	0.1924	0.6338	0.1942
512	0.1927	<u>1.2715</u>	0.1953

(error < 5%) (error > 50%) (error > 100%) (error > 500%)

Figure: Population and Sample Eigenvalues for $n_1 = 1024$, $n_2 = 2048$, varying $p, C_1 = C_2$.

Figure: Population and Sample Eigenvalues for $n_1 = 1024$, $n_2 = 2048$, varying p, $C_1 = C_2$.

Figure: Population and Sample Eigenvalues for $n_1 = 1024$, $n_2 = 2048$, varying p, $C_1 = C_2$.

Figure: Population and Sample Eigenvalues for $n_1 = 1024$, $n_2 = 2048$, varying p, $C_1 = C_2$.

Figure: Population and Sample Eigenvalues for $n_1 = 1024$, $n_2 = 2048$, varying p, $C_1 = C_2$.

Assumptions

• [Spatial independence] $x_i^{(a)} = C_a^{\frac{1}{2}} \tilde{x}_i^{(a)}$, $\tilde{x}_i^{(a)} \in \mathbb{R}^p$ with i.i.d. zero mean, unit variance, finite $4 + \varepsilon$ order moment.

Assumptions

- [Spatial independence] $x_i^{(a)} = C_a^{\frac{1}{2}} \tilde{x}_i^{(a)}$, $\tilde{x}_i^{(a)} \in \mathbb{R}^p$ with i.i.d. zero mean, unit variance, finite $4 + \varepsilon$ order moment.
- [RMT regime] As $n_a \to \infty$,

$$\frac{p}{n_a} = c_a \to c_a^\infty \in (0, 1).$$

▶ [Studied distances] for f a complex-analytic extensible function,

$$D(C_1, C_2) = \int f(t)\nu_p(dt)$$

Assumptions

- [Spatial independence] $x_i^{(a)} = C_a^{\frac{1}{2}} \tilde{x}_i^{(a)}$, $\tilde{x}_i^{(a)} \in \mathbb{R}^p$ with i.i.d. zero mean, unit variance, finite $4 + \varepsilon$ order moment.
- [RMT regime] As $n_a \to \infty$,

$$\frac{p}{n_a} = c_a \to c_a^\infty \in (0, 1).$$

▶ [Studied distances] for f a complex-analytic extensible function,

$$D(C_1, C_2) = \int f(t)\nu_p(dt), \quad \nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}.$$

Assumptions

- [Spatial independence] $x_i^{(a)} = C_a^{\frac{1}{2}} \tilde{x}_i^{(a)}$, $\tilde{x}_i^{(a)} \in \mathbb{R}^p$ with i.i.d. zero mean, unit variance, finite $4 + \varepsilon$ order moment.
- [RMT regime] As $n_a \to \infty$,

$$\frac{p}{n_a} = c_a \to c_a^\infty \in (0, 1).$$

▶ [Studied distances] for f a complex-analytic extensible function,

$$D(C_1, C_2) = \int f(t)\nu_p(dt), \quad \nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}.$$

Examples

- Fisher geodesic distance: $f(t) = \log^2(t)$
- ▶ Bhattacharyya distance: $f(t) = -\frac{1}{4}\log(t) + \frac{1}{2}\log(1+t) \frac{1}{2}\log(2)$
- Kullback-Leibler divergence for Gaussian: $f(t) = \frac{1}{2}t \frac{1}{2}\log(t) \frac{1}{2}$
- Rényi divergence for Gaussian: $f(t) = \frac{-1}{2(\alpha-1)}\log(\alpha + (1-\alpha)t) + \frac{1}{2}\log(t)$

Notations:

Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i (C_1^{-1} C_2)}$

- ▶ Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$
- Sample eigenvalue distribution: $\mu_p = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(\hat{C}_1^{-1} \hat{C}_2)}$

- ▶ Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$
- Sample eigenvalue distribution: $\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i} (\hat{c}_1^{-1} \hat{c}_2) \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i}$

- ▶ Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$
- **Sample eigenvalue distribution**: $\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(\hat{C}_1^{-1}\hat{C}_2)} \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i}$
- ▶ Recall Stieltjes transform $m_{\theta}(z)$, $z \in \mathbb{C} \setminus \text{Supp}(\theta)$, of measure θ :

$$m_{\theta}(z) = \int \frac{1}{\lambda - z} d\theta(\lambda)$$

Notations:

- ▶ Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$
- **Sample eigenvalue distribution**: $\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i} (\hat{G}_1^{-1} \hat{G}_2) \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i}$
- ▶ Recall Stieltjes transform $m_{\theta}(z)$, $z \in \mathbb{C} \setminus \text{Supp}(\theta)$, of measure θ :

$$m_{\theta}(z) = \int \frac{1}{\lambda - z} d\theta(\lambda)$$

e.g., $m_{\mu_p}(z) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_i - z}$.

Notations:

- ▶ Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$
- **Sample eigenvalue distribution**: $\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(\hat{C}_1^{-1}\hat{C}_2)} \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i}$
- ▶ Recall Stieltjes transform $m_{\theta}(z)$, $z \in \mathbb{C} \setminus \text{Supp}(\theta)$, of measure θ :

$$m_{\theta}(z) = \int \frac{1}{\lambda - z} d\theta(\lambda)$$

e.g.,
$$m_{\mu_p}(z) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_i - z}$$
.

Theorem (Estimation via contour integral) For $z \in \mathbb{C} \setminus \text{Supp}(\mu_p)$, let

$$\varphi_p(z) \equiv z + c_1 z^2 m_{\mu_p}(z)$$

$$\psi_p(z) \equiv 1 - c_2 - c_2 z m_{\mu_p}(z)$$

Notations:

- ▶ Population eigenvalue distribution: $\nu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(C_1^{-1}C_2)}$
- **Sample eigenvalue distribution**: $\mu_p = \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(\hat{C}_1^{-1}\hat{C}_2)} \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i}$
- ▶ Recall Stieltjes transform $m_{\theta}(z)$, $z \in \mathbb{C} \setminus \text{Supp}(\theta)$, of measure θ :

$$m_{\theta}(z) = \int \frac{1}{\lambda - z} d\theta(\lambda)$$

e.g.,
$$m_{\mu_p}(z) = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_i - z}$$
.

Theorem (Estimation via contour integral) For $z \in \mathbb{C} \setminus \text{Supp}(\mu_p)$, let

$$\begin{split} \varphi_p(z) &\equiv z + c_1 z^2 m_{\mu_p}(z) \\ \psi_p(z) &\equiv 1 - c_2 - c_2 z m_{\mu_p}(z) \end{split}$$

Then, for any (positively oriented) contour $\Gamma \subset \{z \in \mathbb{C}, \Re[z] > 0\}$ surrounding $\operatorname{Supp}(\mu_p)$.

$$\int f d\nu_p - \frac{1}{2\pi \imath} \oint_{\Gamma} f\left(\frac{\varphi_p(z)}{\psi_p(z)}\right) \left(\frac{\varphi_p'(z)}{\varphi_p(z)} - \frac{\psi_p'(z)}{\psi_p(z)}\right) \frac{\psi_p(z)}{c_2} dz \xrightarrow{\text{a.s.}} 0.$$

From [Bai-Silverstein'95]¹, limiting spectra of C and \hat{C} related through Stieljes transform.

From [Bai-Silverstein'95]¹, limiting spectra of C and \hat{C} related through Stieljes transform.

Besides, by Cauchy's integral,

$$\int f(t)\nu_p(dt) = \int \left[\frac{-1}{2\pi\imath} \oint_{\Gamma} \frac{f(z)}{t-z} dz\right] \nu_p(dt)$$

From [Bai-Silverstein'95]¹, limiting spectra of C and \hat{C} related through Stieljes transform.

Besides, by Cauchy's integral,

$$\int f(t)\nu_p(dt) = \int \left[\frac{-1}{2\pi\imath} \oint_{\Gamma} \frac{f(z)}{t-z} dz\right] \nu_p(dt) = \frac{-1}{2\pi\imath} \oint_{\Gamma} f(z) \underbrace{\left[\int \frac{1}{t-z} \nu_p(dt)\right]}_{=m_{\nu_p}(z)} dz.$$

From [Bai-Silverstein'95]¹, limiting spectra of C and \hat{C} related through Stieljes transform.

Besides, by Cauchy's integral,

Object of interest: Evaluate in closed-form

$$\frac{1}{2\pi\iota}\oint_{\Gamma} f\left(\frac{\varphi_p(z)}{\psi_p(z)}\right) \left(\frac{\varphi_p'(z)}{\varphi_p(z)} - \frac{\psi_p'(z)}{\psi_p(z)}\right) \frac{\psi_p(z)}{c_2} dz.$$

Object of interest: Evaluate in closed-form

$$\frac{1}{2\pi\imath}\oint_{\Gamma}f\left(\frac{\varphi_p(z)}{\psi_p(z)}\right)\left(\frac{\varphi_p'(z)}{\varphi_p(z)}-\frac{\psi_p'(z)}{\psi_p(z)}\right)\frac{\psi_p(z)}{c_2}dz.$$

Reminder: functions of interest

- Fisher geodesic distance: $f(t) = \log^2(t)$
- Bhattacharyya distance: $f(t) = -\frac{1}{4}\log(t) + \frac{1}{2}\log(1+t) \frac{1}{2}\log(2)$
- Kullback-Leibler divergence for Gaussian: $f(t) = \frac{1}{2}t \frac{1}{2}\log(t) \frac{1}{2}$
- Rényi divergence for Gaussian: $f(t) = \frac{-1}{2(\alpha-1)} \log(\alpha + (1-\alpha)t) + \frac{1}{2} \log(t)$

Object of interest: Evaluate in closed-form

$$\frac{1}{2\pi\imath}\oint_{\Gamma}f\left(\frac{\varphi_p(z)}{\psi_p(z)}\right)\left(\frac{\varphi_p'(z)}{\varphi_p(z)}-\frac{\psi_p'(z)}{\psi_p(z)}\right)\frac{\psi_p(z)}{c_2}dz.$$

Reminder: functions of interest

- Fisher geodesic distance: $f(t) = \log^2(t)$
- ▶ Bhattacharyya distance: $f(t) = -\frac{1}{4}\log(t) + \frac{1}{2}\log(1+t) \frac{1}{2}\log(2)$
- Kullback-Leibler divergence for Gaussian: $f(t) = \frac{1}{2}t \frac{1}{2}\log(t) \frac{1}{2}$
- Rényi divergence for Gaussian: $f(t) = \frac{-1}{2(\alpha-1)} \log(\alpha + (1-\alpha)t) + \frac{1}{2} \log(t)$

Cases of interest:

Object of interest: Evaluate in closed-form

$$\frac{1}{2\pi\imath}\oint_{\Gamma}f\left(\frac{\varphi_p(z)}{\psi_p(z)}\right)\left(\frac{\varphi_p'(z)}{\varphi_p(z)}-\frac{\psi_p'(z)}{\psi_p(z)}\right)\frac{\psi_p(z)}{c_2}dz.$$

Reminder: functions of interest

- Fisher geodesic distance: $f(t) = \log^2(t)$
- Bhattacharyya distance: $f(t) = -\frac{1}{4}\log(t) + \frac{1}{2}\log(1+t) \frac{1}{2}\log(2)$
- Kullback-Leibler divergence for Gaussian: $f(t) = \frac{1}{2}t \frac{1}{2}\log(t) \frac{1}{2}$
- Rényi divergence for Gaussian: $f(t) = \frac{-1}{2(\alpha-1)} \log(\alpha + (1-\alpha)t) + \frac{1}{2} \log(t)$

Cases of interest:

- Entire functions (e.g., f(t) = t): residue calculus
- Functions with branch cuts: $f(t) = \log(t)$, $f(t) = \log(1 + st)$, $f(t) = \log^2(t)$, etc. \rightarrow Much more technical!

Sketch of Proof

The case $f(t) = \log^k(t)$

• Much less trivial due to branch cuts of log(z)!!

```
\log(z) \equiv \log(|z|) + i \arg(z), \quad \arg(z) \in (-\pi, \pi].
```

Sketch of Proof

The case $f(t) = \log^k(t)$

• Much less trivial due to branch cuts of log(z)!!

```
\log(z) \equiv \log(|z|) + \imath \arg(z), \quad \arg(z) \in (-\pi, \pi].
```

Singularities arise when $\log(\varphi_p(z)/\psi_p(z))$ discontinuous.

Sketch of Proof

The case $f(t) = \log^k(t)$

• Much less trivial due to branch cuts of log(z)!!

```
\log(z) \equiv \log(|z|) + \imath \arg(z), \quad \arg(z) \in (-\pi, \pi].
```

Singularities arise when $\log(\varphi_p(z)/\psi_p(z))$ discontinuous.

The situation in image...

with

Sketch of proof

The case $f(t) = \log^k(t)$ (continued)

Sketch of proof

The case $f(t) = \log^k(t)$ (continued)

Integration method: avoid branch cuts:

Detailed method:

- careful control of integrals on circles I_i^A , I_i^C , I_i^E (Jordan's identity does not apply!)
- linear integrals on segments, up to integrability... easy for $\log(t)$, difficult for $\log^2(t)$!
Corollary (Case
$$f(t) = t$$
)

$$\int t\nu_p(dt) - (1 - c_1) \int t\mu_p(dt) \xrightarrow{\text{a.s.}} 0.$$

Corollary (Case f(t) = t)

Under the same assumptions,

$$\int t\nu_p(dt) - (1 - c_1) \int t\mu_p(dt) \xrightarrow{\text{a.s.}} 0.$$

(i.e., $\frac{1}{p} \operatorname{tr} C_1^{-1} C_2 \simeq (1 - \frac{p}{n_1}) \frac{1}{p} \operatorname{tr} \hat{C}_1^{-1} \hat{C}_2$)

Corollary (Case f(t) = t)

Under the same assumptions,

$$\int t\nu_p(dt) - (1 - c_1) \int t\mu_p(dt) \xrightarrow{\text{a.s.}} 0.$$

(i.e.,
$$\frac{1}{p} \operatorname{tr} C_1^{-1} C_2 \simeq (1 - \frac{p}{n_1}) \frac{1}{p} \operatorname{tr} \hat{C}_1^{-1} \hat{C}_2$$
)

 \longrightarrow Just a scaling factor!

Corollary (Case f(t) = t)

Under the same assumptions,

$$\int t\nu_p(dt) - (1 - c_1) \int t\mu_p(dt) \xrightarrow{\text{a.s.}} 0.$$

(i.e.,
$$\frac{1}{p}$$
tr $C_1^{-1}C_2 \simeq (1 - \frac{p}{n_1})\frac{1}{p}$ tr $\hat{C}_1^{-1}\hat{C}_2$)
 \longrightarrow Just a scaling factor!

Corollary (Case
$$f(t) = \log(t)$$
)

$$\int \log(t)\nu_p(dt) - \left[\int \log(t)\mu_p(dt) - \frac{1-c_1}{c_1}\log(1-c_1) + \frac{1-c_2}{c_2}\log(1-c_2)\right] \xrightarrow{\text{a.s.}} 0.$$

Corollary (Case f(t) = t)

Under the same assumptions,

$$\int t\nu_p(dt) - (1 - c_1) \int t\mu_p(dt) \xrightarrow{\text{a.s.}} 0.$$

(i.e.,
$$\frac{1}{p}$$
tr $C_1^{-1}C_2 \simeq (1 - \frac{p}{n_1})\frac{1}{p}$ tr $\hat{C}_1^{-1}\hat{C}_2$)
 \longrightarrow Just a scaling factor!

Corollary (Case
$$f(t) = \log(t)$$
)

$$\int \log(t)\nu_p(dt) - \left[\int \log(t)\mu_p(dt) - \frac{1-c_1}{c_1}\log(1-c_1) + \frac{1-c_2}{c_2}\log(1-c_2)\right] \xrightarrow{\text{a.s.}} 0.$$

$$\left(\text{i.e., } \frac{1}{p}\log\det(C_1^{-1}C_2) \simeq \frac{1}{p}\log\det(\hat{C}_1^{-1}\hat{C}_2) - \frac{n_1 - p}{n_1}\log(1 - \frac{p}{n_1}) + \frac{n_2 - p}{n_2}\log(1 - \frac{p}{n_2})\right)$$

Corollary (Case f(t) = t)

Under the same assumptions,

$$\int t\nu_p(dt) - (1 - c_1) \int t\mu_p(dt) \xrightarrow{\text{a.s.}} 0.$$

(i.e.,
$$\frac{1}{p}$$
tr $C_1^{-1}C_2 \simeq (1 - \frac{p}{n_1})\frac{1}{p}$ tr $\hat{C}_1^{-1}\hat{C}_2$)
 \longrightarrow Just a scaling factor!

Corollary (Case
$$f(t) = \log(t)$$
)

$$\int \log(t)\nu_p(dt) - \left[\int \log(t)\mu_p(dt) - \frac{1-c_1}{c_1}\log(1-c_1) + \frac{1-c_2}{c_2}\log(1-c_2)\right] \xrightarrow{\text{a.s.}} 0.$$

$$\begin{array}{l} (\text{i.e., } \frac{1}{p}\log\det(C_1^{-1}C_2) \simeq \frac{1}{p}\log\det(\hat{C}_1^{-1}\hat{C}_2) - \frac{n_1-p}{n_1}\log(1-\frac{p}{n_1}) + \frac{n_2-p}{n_2}\log(1-\frac{p}{n_2})) \\ \longrightarrow \text{Just a bias term!} \end{array}$$

Corollary (Case $f(t) = \log(1 + st)$) Denoting $\kappa_0 < 0$ unique negative solution to $1 + s \frac{\varphi_p(x)}{\psi_p(x)} = 0$,

$$\int \log(1+st)d\nu_p(t) - \left[\frac{c_1+c_2-c_1c_2}{c_1c_2}\log\left(\frac{c_1+c_2-c_1c_2}{(1-c_1)(c_2-sc_1\kappa_0)}\right) + \frac{1}{c_2}\log\left(-s\kappa_0(1-c_1)\right) + \int \log\left(1-\frac{t}{\kappa_0}\right)d\mu_p(t)\right] \xrightarrow{\text{a.s.}} 0.$$

Corollary (Case $f(t) = \log(1 + st)$) Denoting $\kappa_0 < 0$ unique negative solution to $1 + s \frac{\varphi_p(x)}{\psi_p(x)} = 0$,

$$\int \log(1+st)d\nu_p(t) - \left[\frac{c_1+c_2-c_1c_2}{c_1c_2}\log\left(\frac{c_1+c_2-c_1c_2}{(1-c_1)(c_2-sc_1\kappa_0)}\right) + \frac{1}{c_2}\log\left(-s\kappa_0(1-c_1)\right) + \int \log\left(1-\frac{t}{\kappa_0}\right)d\mu_p(t)\right] \xrightarrow{\text{a.s.}} 0.$$

 \longrightarrow Highly non-trivial!

Corollary (Case $f(t) = \log^2(t)$)

$$\begin{split} &\frac{1}{2\pi i} \oint_{\Gamma} \log^2 \left(\frac{\varphi_p(z)}{\psi_p(z)} \right) \left(\frac{\varphi'_p(z)}{\varphi_p(z)} - \frac{\psi'_p(z)}{\psi_p(z)} \right) \frac{\psi_p(z)}{c_2} dz \\ &= \frac{c_1 + c_2 - c_1 c_2}{c_1 c_2} \left[\sum_{i=1}^p \left\{ \log^2 \left((1 - c_1) \eta_i \right) - \log^2 \left((1 - c_1) \lambda_i \right) \right\} \right. \\ &+ 2 \sum_{1 \le i, j \le p} \left\{ \operatorname{Li}_2 \left(1 - \frac{\zeta_i}{\lambda_j} \right) - \operatorname{Li}_2 \left(1 - \frac{\eta_i}{\lambda_j} \right) + \operatorname{Li}_2 \left(1 - \frac{\eta_i}{\eta_j} \right) - \operatorname{Li}_2 \left(1 - \frac{\zeta_i}{\eta_j} \right) \right\} \right] \\ &- \frac{1 - c_2}{c_2} \left[\log^2 (1 - c_2) - \log^2 (1 - c_1) + \sum_{i=1}^p \left\{ \log^2 \left(\eta_i \right) - \log^2 \left(\zeta_i \right) \right\} \right] \\ &- \frac{1}{p} \left[2 \sum_{1 \le i, j \le p} \left\{ \operatorname{Li}_2 \left(1 - \frac{\zeta_i}{\lambda_j} \right) - \operatorname{Li}_2 \left(1 - \frac{\eta_i}{\lambda_j} \right) \right\} - \sum_{i=1}^p \log^2 \left((1 - c_1) \lambda_i \right) \right] \end{split}$$

Corollary (Case $f(t) = \log^2(t)$)

$$\begin{split} &\frac{1}{2\pi i} \oint_{\Gamma} \log^2 \left(\frac{\varphi_p(z)}{\psi_p(z)}\right) \left(\frac{\varphi_p'(z)}{\varphi_p(z)} - \frac{\psi_p'(z)}{\psi_p(z)}\right) \frac{\psi_p(z)}{c_2} dz \\ &= \frac{c_1 + c_2 - c_1 c_2}{c_1 c_2} \left[\sum_{i=1}^p \left\{ \log^2 \left((1 - c_1)\eta_i\right) - \log^2 \left((1 - c_1)\lambda_i\right) \right\} \right. \\ &\left. + 2 \sum_{1 \le i,j \le p} \left\{ \operatorname{Li}_2 \left(1 - \frac{\zeta_i}{\lambda_j}\right) - \operatorname{Li}_2 \left(1 - \frac{\eta_i}{\lambda_j}\right) + \operatorname{Li}_2 \left(1 - \frac{\eta_i}{\eta_j}\right) - \operatorname{Li}_2 \left(1 - \frac{\zeta_i}{\eta_j}\right) \right\} \right] \\ &- \frac{1 - c_2}{c_2} \left[\log^2 (1 - c_2) - \log^2 (1 - c_1) + \sum_{i=1}^p \left\{ \log^2 \left(\eta_i\right) - \log^2 \left(\zeta_i\right) \right\} \right] \\ &- \frac{1}{p} \left[2 \sum_{1 \le i,j \le p} \left\{ \operatorname{Li}_2 \left(1 - \frac{\zeta_i}{\lambda_j}\right) - \operatorname{Li}_2 \left(1 - \frac{\eta_i}{\lambda_j}\right) \right\} - \sum_{i=1}^p \log^2 \left((1 - c_1)\lambda_i\right) \right] \end{split}$$

 \longrightarrow Involves dilogarithm functions!

Spectral clustering with feature C_i

Setting:

• "m" observations, X_1, \ldots, X_m with $X_i = [x_1^{(i)}, \ldots, x_{n_i}^{(i)}]$

• Two classes:
$$C_i = C^{(1)}$$
 for $i \le m/2$, $C_i = C^{(2)}$ for $i > m/2$.

Objective:

• Classify observations X_i based on $C^{(1)}$ and $C^{(2)}$.

Method:

Spectral clustering with kernel

$$K_{ij} = D(C_i, C_j)$$

estimated by $D(\hat{C}_i, \hat{C}_j)$ versus RMT estimator.

Simulation: random n_i

Figure: Eigenvectors 1 and 2 of K for traditional (red circles) versus RMT estimator (blue crosses).

Classical

- Wide spread of eigenvectors
- Small inter space
- \blacktriangleright \rightarrow Poor clustering

RMT estimator

- Well centered eigenvector
- Large inter space
- ► → Good clustering

Simulation: outlier $n_1 = \ldots = n_{m-1}$, $n_m = n_1/2$

Figure: Eigenvectors 1 and 2 of K for traditional (red circles) versus RMT estimator (blue crosses).

Classical

- Isolated outlier
- Adversarial effect of outlier ("draws" eigenvector to itself)
- Effect increased by more outliers

RMT estimator

- No outlier effect
- Large inter space

Observations:

•
$$X = [x_1, \ldots, x_n], x_i \in \mathbb{R}^p$$
 with $\mathbb{E}[x_i] = 0, \mathbb{E}[x_i x_i^{\mathsf{T}}] = C.$

Observations:

•
$$X = [x_1, \ldots, x_n], x_i \in \mathbb{R}^p$$
 with $\mathbb{E}[x_i] = 0, \mathbb{E}[x_i x_i^\mathsf{T}] = C.$

Objective:

From the data x_i , estimate C.

Observations:

$$\blacktriangleright X = [x_1, \dots, x_n], x_i \in \mathbb{R}^p \text{ with } \mathbb{E}[x_i] = 0, \mathbb{E}[x_i x_i^{\mathsf{T}}] = C.$$

Objective:

From the data x_i , estimate C.

State of the Art:

Sample Covariance Matrix (SCM):

$$\hat{C} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^\mathsf{T} = \frac{1}{n} X X^\mathsf{T}.$$

Observations:

$$\blacktriangleright X = [x_1, \dots, x_n], x_i \in \mathbb{R}^p \text{ with } \mathbb{E}[x_i] = 0, \mathbb{E}[x_i x_i^{\mathsf{T}}] = C.$$

Objective:

From the data x_i , estimate C.

State of the Art:

Sample Covariance Matrix (SCM):

$$\hat{C} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^\mathsf{T} = \frac{1}{n} X X^\mathsf{T}.$$

 \longrightarrow Often justified by Law of Large Numbers: $n \rightarrow \infty$.

Observations:

•
$$X = [x_1, \ldots, x_n], x_i \in \mathbb{R}^p$$
 with $\mathbb{E}[x_i] = 0, \mathbb{E}[x_i x_i^\mathsf{T}] = C.$

Objective:

From the data x_i , estimate C.

State of the Art:

Sample Covariance Matrix (SCM):

$$\hat{C} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^\mathsf{T} = \frac{1}{n} X X^\mathsf{T}.$$

 \longrightarrow Often justified by Law of Large Numbers: $n \rightarrow \infty$.

- Numerical inversion of asymptotic spectrum (QuEST).
 - 1. Bai-Silverstein equation: Estimate $\lambda(\hat{C})$ from $\lambda(C)$ in "large p, n" regime.
 - 2. Need for non trivial inversion of the equation.

Elementary idea

 $C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

Elementary idea

$$C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

• Divergence
$$\delta(M, C) = \int f(t) d\nu_p(t)$$
 inaccessible, $\nu_p \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(M^{-1}C)}$.

Elementary idea

$$C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

► Divergence $\delta(M, C) = \int f(t) d\nu_p(t)$ inaccessible, $\nu_p \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(M^{-1}C)}$.

Elementary idea

$$C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

► Divergence $\delta(M, C) = \int f(t) d\nu_p(t)$ inaccessible, $\nu_p \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(M^{-1}C)}$.

► Random Matrix improved estimate $\hat{\delta}(M, X)$ of $\delta(M, C)$ using $\mu_p \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(M^{-1}\hat{C})}$. $\int f(t)\nu_p(dt)$ $f(t)\mu_p(dt)$ $f(t)\mu_p(dt)$ $f(t)\mu_p(dt)$ $f(t)\mu_p(dt)$

• $\hat{\delta}(M, X) < 0$ with non zero probability.

Elementary idea

$$C \equiv \operatorname{argmin}_{M \succ 0} \delta(M, C)$$

where $\delta(M, C)$ can be the Fisher, Bhattacharyya, KL, Rényi divergence.

▶ Divergence $\delta(M, C) = \int f(t) d\nu_p(t)$ inaccessible, $\nu_p \equiv \frac{1}{p} \sum_{i=1}^p \delta_{\lambda_i(M^{-1}C)}$.

- $\hat{\delta}(M, X) < 0$ with non zero probability.
- RMT estimation

$$\check{C} \equiv \operatorname{argmin}_{M \succ 0} h(M), \quad h(M) = \hat{\delta}(M, X)^2$$

Gradient descent over the Positive Definite manifold.

Algorithm 1 RMT estimation algorithm.

 $\begin{array}{l} \mbox{Require } M_0 \in C_n^{++}. \\ \mbox{Repeat } M \leftarrow M^{\frac{1}{2}} \exp\left(-tM^{-\frac{1}{2}} \nabla h_X(M)M^{-\frac{1}{2}}\right) M^{\frac{1}{2}} \ . \\ \mbox{Until Convergence.} \\ \mbox{Return } \check{C} = M. \end{array}$

▶ 2 Data classes
$$x_1^{(1)}, \ldots, x_{n_1}^{(1)} \sim N(\mu_1, C_1)$$
 and $x_1^{(2)}, \ldots, x_{n_2}^{(2)} \sim N(\mu_2, C_2)$.

 \blacktriangleright Classify point x using Linear Discriminant Analysis based on the sign of

$$\delta_x^{\text{LDA}} = (\hat{\mu}_1 - \hat{\mu}_2)^{\mathsf{T}} \check{C}^{-1} x + \frac{1}{2} \hat{\mu}_2^{\mathsf{T}} \check{C}^{-1} \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_1^{\mathsf{T}} \check{C}^{-1} \hat{\mu}_1.$$

• Estimate $\check{C} \equiv \frac{n_1}{n_1+n_2}\check{C}_1 + \frac{n_2}{n_1+n_2}\check{C}_2.$

▶ 2 Data classes
$$x_1^{(1)}, \ldots, x_{n_1}^{(1)} \sim N(\mu_1, C_1)$$
 and $x_1^{(2)}, \ldots, x_{n_2}^{(2)} \sim N(\mu_2, C_2)$.

 \blacktriangleright Classify point x using Linear Discriminant Analysis based on the sign of

$$\delta_x^{\text{LDA}} = (\hat{\mu}_1 - \hat{\mu}_2)^{\mathsf{T}} \check{C}^{-1} x + \frac{1}{2} \hat{\mu}_2^{\mathsf{T}} \check{C}^{-1} \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_1^{\mathsf{T}} \check{C}^{-1} \hat{\mu}_1$$

Figure: Mean accuracy obtained over 10 realizations of LDA classification. (Left) C_1 and C_2 Toeplitz-0.2/Toeplitz-0.4, and (Right) real EEG data.

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO)

Motivation: EEG-based clustering Covariance Distance Inference

Revisiting Motivation

Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

 Hard classification on raw data x_i: Need Features

- Hard classification on raw data x_i: Need Features
- ► Relevant Feature: Covariance C_i →Learn features from data

- Hard classification on raw data x_i: Need Features
- ► Relevant Feature: Covariance C_i →Learn features from data
- $\blacktriangleright D(C_i, C_j) \leftrightarrow \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$

- Hard classification on raw data x_i: Need Features
- ► Relevant Feature: Covariance C_i →Learn features from data
- $\blacktriangleright D(C_i, C_j) \leftrightarrow \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$
- ► Kernel trick $\varphi(x_i)^{\mathsf{T}}\varphi(x_j) \rightarrow f(||x_i - x_j||^2) \text{ or } f(x_i^{\mathsf{T}}x_j)$

- Hard classification on raw data x_i: Need Features
- ► Relevant Feature: Covariance C_i →Learn features from data
- $\blacktriangleright D(C_i, C_j) \leftrightarrow \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$
- ► Kernel trick $\varphi(x_i)^{\mathsf{T}}\varphi(x_j) \rightarrow f(||x_i - x_j||^2) \text{ or } f(x_i^{\mathsf{T}}x_j)$
- Asymptotic performance of kernel methods?

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO)

Motivation: EEG-based clustering Covariance Distance Inference *Revisiting Motivation* Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes C_1, \ldots, C_k .

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes C_1, \ldots, C_k .
- Kernel spectral clustering based on kernel matrix

$$K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$$

Problem Statement

- Dataset $x_1, \ldots, x_n \in \mathbb{R}^p$
- Objective: "cluster" data in k similarity classes C_1, \ldots, C_k .
- Kernel spectral clustering based on kernel matrix

 $K = \{\kappa(x_i, x_j)\}_{i,j=1}^n$

▶ Usually, $\kappa(x, y) = f(x^{\mathsf{T}}y)$ or $\kappa(x, y) = f(||x - y||^2)$
Kernel spectral clustering Intuition (from small dimensions)

▶ *K* essentially low rank with class structure in eigenvectors.

Kernel spectral clustering Intuition (from small dimensions)

- K essentially low rank with class structure in eigenvectors.
- ▶ Ng–Weiss–Jordan key remark: $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}(D^{\frac{1}{2}}j_a) \simeq D^{\frac{1}{2}}j_a$ (j_a canonical vector of C_a)

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data, RBF kernel $(f(t)=\exp(-t^2/2)).$

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data, RBF kernel $(f(t)=\exp(-t^2/2)).$

Important Remark: eigenvectors informative **BUT** far from $D^{\frac{1}{2}}j_a!$

Gaussian mixture model:

- $\blacktriangleright x_1,\ldots,x_n\in\mathbb{R}^p$,
- \blacktriangleright k classes C_1, \ldots, C_k ,
- $\blacktriangleright x_1,\ldots,x_{n_1}\in \mathcal{C}_1,\ldots,x_{n-n_k+1},\ldots,x_n\in \mathcal{C}_k,$
- $\blacktriangleright x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i}).$

Gaussian mixture model:

 $\begin{array}{l} x_1, \ldots, x_n \in \mathbb{R}^p, \\ k \text{ classes } \mathcal{C}_1, \ldots, \mathcal{C}_k, \\ x_1, \ldots, x_{n_1} \in \mathcal{C}_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in \mathcal{C}_k, \\ x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i}). \end{array}$

Assumption (Growth Rate)

As $n o \infty$,

- 1. Data scaling: $\frac{p}{n} \to c_0 \in (0,\infty)$, $\frac{n_a}{n} \to c_a \in (0,1)$,
- 2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a$ and $\mu_a^{\circ} \triangleq \mu_a \mu^{\circ}$, then $\|\mu_a^{\circ}\| = O(1)$
- 3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a$ and $C_a^{\circ} \triangleq C_a C^{\circ}$, then

 $\|C_a\| = O(1), \quad \operatorname{tr} C_a^\circ = O(\sqrt{p}), \quad \operatorname{tr} C_a^\circ C_b^\circ = O(p)$

Gaussian mixture model:

$$\begin{array}{l} x_1, \ldots, x_n \in \mathbb{R}^p, \\ k \text{ classes } \mathcal{C}_1, \ldots, \mathcal{C}_k, \\ x_1, \ldots, x_{n_1} \in \mathcal{C}_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in \mathcal{C}_k, \\ x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i}). \end{array}$$

Assumption (Growth Rate)

As $n o \infty$,

- 1. Data scaling: $\frac{p}{n} \to c_0 \in (0,\infty)$, $\frac{n_a}{n} \to c_a \in (0,1)$,
- 2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a$ and $\mu_a^{\circ} \triangleq \mu_a \mu^{\circ}$, then $\|\mu_a^{\circ}\| = O(1)$
- 3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a$ and $C_a^{\circ} \triangleq C_a C^{\circ}$, then

$$\|C_a\| = O(1), \quad \operatorname{tr} C_a^\circ = O(\sqrt{p}), \quad \operatorname{tr} C_a^\circ C_b^\circ = O(p)$$

For 2 classes, this is

$$\|\mu_1 - \mu_2\| = O(1), \quad tr(C_1 - C_2) = O(\sqrt{p}), \quad \|C_i\| = O(1), \quad tr([C_1 - C_2]^2) = O(p).$$

Gaussian mixture model:

$$\begin{array}{l} x_1, \ldots, x_n \in \mathbb{R}^p, \\ k \text{ classes } \mathcal{C}_1, \ldots, \mathcal{C}_k, \\ x_1, \ldots, x_{n_1} \in \mathcal{C}_1, \ldots, x_{n-n_k+1}, \ldots, x_n \in \mathcal{C}_k, \\ x_i \sim \mathcal{N}(\mu_{g_i}, C_{g_i}). \end{array}$$

Assumption (Growth Rate)

As $n o \infty$,

- 1. Data scaling: $\frac{p}{n} \to c_0 \in (0,\infty)$, $\frac{n_a}{n} \to c_a \in (0,1)$,
- 2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a$ and $\mu_a^{\circ} \triangleq \mu_a \mu^{\circ}$, then $\|\mu_a^{\circ}\| = O(1)$
- 3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a$ and $C_a^{\circ} \triangleq C_a C^{\circ}$, then

$$\|C_a\| = O(1), \quad \operatorname{tr} C_a^\circ = O(\sqrt{p}), \quad \operatorname{tr} C_a^\circ C_b^\circ = O(p)$$

For 2 classes, this is

 $\|\mu_1 - \mu_2\| = O(1), \quad tr(C_1 - C_2) = O(\sqrt{p}), \quad \|C_i\| = O(1), \quad tr([C_1 - C_2]^2) = O(p).$

Remark: [Neyman-Pearson optimality]

- $x \sim \mathcal{N}(\pm \mu, I_p)$ (known μ) decidable iif $\|\mu\| \ge O(1)$.
- $x \sim \mathcal{N}(0, (1 \pm \varepsilon)I_p)$ (known ε) decidable iif $\|\epsilon\| \ge O(p^{-\frac{1}{2}})$.

Kernel Matrix:

Kernel matrix of interest:

$$K = \left\{ f\left(\frac{1}{p} \|x_i - x_j\|^2\right) \right\}_{i,j=1}^n$$

for some sufficiently smooth nonnegative $f(f(\frac{1}{p}x_i^{\mathsf{T}}x_j) \text{ simpler})$.

Kernel Matrix:

Kernel matrix of interest:

$$K = \left\{ f\left(\frac{1}{p} \|x_i - x_j\|^2\right) \right\}_{i,j=1}^n$$

for some sufficiently smooth nonnegative $f\left(f\left(\frac{1}{p}x_i^{\mathsf{T}}x_j\right) \text{ simpler}\right)$.

We study the normalized Laplacian:

$$L = nD^{-\frac{1}{2}} \left(K - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right) D^{-\frac{1}{2}}$$

with $d = K1_n$, D = diag(d). (more stable both theoretically and in practice)

Key Remark: Under growth rate assumptions,

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0.$$

where $\tau = \frac{1}{p} \operatorname{tr} C^{\circ}$.

Key Remark: Under growth rate assumptions,

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \left\| x_i - x_j \right\|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0.$$

where $\tau = \frac{1}{p} \operatorname{tr} C^{\circ}$. \Rightarrow Suggests that (up to diagonal) $K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}!$

Key Remark: Under growth rate assumptions,

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0.$$

where $\tau = \frac{1}{p} \operatorname{tr} C^{\circ}$. \Rightarrow Suggests that (up to diagonal) $K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}!$

In fact, information hidden in low order fluctuations! from "matrix-wise" Taylor expansion of K:

$$K = \underbrace{f(\tau)\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}}_{O_{\|\cdot\|}(n)} + \underbrace{\sqrt{n}K_{1}}_{\text{low rank, } O_{\|\cdot\|}(\sqrt{n})} + \underbrace{K_{2}}_{\text{informative terms, } O_{\|\cdot\|}(1)}$$

Key Remark: Under growth rate assumptions,

$$\max_{1 \le i \ne j \le n} \left\{ \left| \frac{1}{p} \| x_i - x_j \|^2 - \tau \right| \right\} \xrightarrow{\text{a.s.}} 0.$$

where $\tau = \frac{1}{p} \operatorname{tr} C^{\circ}$. \Rightarrow Suggests that (up to diagonal) $K \simeq f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}!$

In fact, information hidden in low order fluctuations! from "matrix-wise" Taylor expansion of K:

$$K = \underbrace{f(\tau) \mathbf{1}_n \mathbf{1}_n^\mathsf{T}}_{O_{\|\cdot\|}(n)} + \underbrace{\sqrt{n} K_1}_{\text{low rank, } O_{\|\cdot\|}(\sqrt{n})} + \underbrace{K_2}_{\text{informative terms, } O_{\|\cdot\|}(1)}$$

Clearly not the (small dimension) expected behavior.

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \to \infty$, $||L - \hat{L}|| \stackrel{\text{a.s.}}{\longrightarrow} 0$, where

$$L = nD^{-\frac{1}{2}} \left(K - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$$
$$\hat{L} = -2\frac{f'(\tau)}{f(\tau)} \frac{1}{p} P W^{\mathsf{T}} W P + \frac{1}{p} J B J^{\mathsf{T}} + *$$

et $W = [w_1, \dots, w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^\mathsf{T}$,

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \to \infty$, $||L - \hat{L}|| \stackrel{\text{a.s.}}{\longrightarrow} 0$, where

$$L = nD^{-\frac{1}{2}} \left(K - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$$
$$\hat{L} = -2\frac{f'(\tau)}{f(\tau)} \frac{1}{p} PW^{\mathsf{T}}WP + \frac{1}{p} JBJ^{\mathsf{T}} + *$$

et $W = [w_1, ..., w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$,

$$J = [j_1, \dots, j_k], \ j_a^{\mathsf{T}} = (0 \dots 0, 1_{n_a}, 0, \dots, 0)$$

$$B = -2\frac{f'(\tau)}{f(\tau)}M^{\mathsf{T}}M + \left(\frac{f''(\tau)}{f(\tau)} - \frac{5f'(\tau)^2}{4f(\tau)^2}\right)tt^{\mathsf{T}} + 2\frac{f''(\tau)}{f(\tau)}T + *.$$

 $\textit{Recall } M = [\mu_1^\circ, \dots, \mu_k^\circ], \ t = [\frac{1}{\sqrt{p}} tr C_1^\circ, \dots, \frac{1}{\sqrt{p}} tr C_k^\circ]^\mathsf{T}, \ T = \left\{ \frac{1}{p} tr C_a^\circ C_b^\circ \right\}_{a,b=1}^k.$

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \to \infty$, $||L - \hat{L}|| \stackrel{\text{a.s.}}{\longrightarrow} 0$, where

$$L = nD^{-\frac{1}{2}} \left(K - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$$
$$\hat{L} = -2\frac{f'(\tau)}{f(\tau)} \frac{1}{p} PW^{\mathsf{T}}WP + \frac{1}{p} JBJ^{\mathsf{T}} + *$$

et $W = [w_1, ..., w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$,

$$J = [j_1, \dots, j_k], \ j_a^{\mathsf{T}} = (0 \dots 0, 1_{n_a}, 0, \dots, 0)$$
$$B = -2\frac{f'(\tau)}{f(\tau)}M^{\mathsf{T}}M + \left(\frac{f''(\tau)}{f(\tau)} - \frac{5f'(\tau)^2}{4f(\tau)^2}\right)tt^{\mathsf{T}} + 2\frac{f''(\tau)}{f(\tau)}T + *.$$

 $\textit{Recall } M = [\mu_1^\circ, \dots, \mu_k^\circ], \ t = [\frac{1}{\sqrt{p}} tr C_1^\circ, \dots, \frac{1}{\sqrt{p}} tr C_k^\circ]^\mathsf{T}, \ T = \left\{ \frac{1}{p} tr C_a^\circ C_b^\circ \right\}_{a,b=1}^k.$

Fundamental conclusions:

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \to \infty$, $||L - \hat{L}|| \stackrel{\text{a.s.}}{\longrightarrow} 0$, where

$$L = nD^{-\frac{1}{2}} \left(K - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$$
$$\hat{L} = -2\frac{f'(\tau)}{f(\tau)} \frac{1}{p} PW^{\mathsf{T}}WP + \frac{1}{p} JBJ^{\mathsf{T}} + *$$

et $W = [w_1, ..., w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$,

$$J = [j_1, \dots, j_k], \ j_a^{\mathsf{T}} = (0 \dots 0, 1_{n_a}, 0, \dots, 0)$$

$$B = -2 \frac{f'(\tau)}{f(\tau)} M^{\mathsf{T}} M + \left(\frac{f''(\tau)}{f(\tau)} - \frac{5f'(\tau)^2}{4f(\tau)^2}\right) tt^{\mathsf{T}} + 2 \frac{f''(\tau)}{f(\tau)} T + *.$$

 $\textit{Recall } M = [\mu_1^\circ, \dots, \mu_k^\circ], \ t = [\frac{1}{\sqrt{p}} tr C_1^\circ, \dots, \frac{1}{\sqrt{p}} tr C_k^\circ]^\mathsf{T}, \ T = \left\{ \frac{1}{p} tr C_a^\circ C_b^\circ \right\}_{a,b=1}^k.$

Fundamental conclusions:

> asymptotic kernel impact only through $f'(\tau)$ and $f''(\tau)$, that's all!

Theorem (Random Matrix Equivalent [Couillet, Benaych'2015]) As $n, p \to \infty$, $||L - \hat{L}|| \stackrel{\text{a.s.}}{\longrightarrow} 0$, where

$$L = nD^{-\frac{1}{2}} \left(K - \frac{dd^{\mathsf{T}}}{d^{\mathsf{T}} \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ avec } K_{ij} = f\left(\frac{1}{p} \|x_i - x_j\|^2\right)$$
$$\hat{L} = -2\frac{f'(\tau)}{f(\tau)} \frac{1}{p} PW^{\mathsf{T}}WP + \frac{1}{p} JBJ^{\mathsf{T}} + *$$

et $W = [w_1, ..., w_n] \in \mathbb{R}^{p \times n}$ $(x_i = \mu_a + w_i)$, $P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$,

$$J = [j_1, \dots, j_k], \ j_a^{\mathsf{T}} = (0 \dots 0, 1_{n_a}, 0, \dots, 0)$$

$$B = -2 \frac{f'(\tau)}{f(\tau)} M^{\mathsf{T}} M + \left(\frac{f''(\tau)}{f(\tau)} - \frac{5f'(\tau)^2}{4f(\tau)^2}\right) tt^{\mathsf{T}} + 2 \frac{f''(\tau)}{f(\tau)} T + *.$$

 $\textit{Recall } M = [\mu_1^\circ, \dots, \mu_k^\circ], \ t = [\frac{1}{\sqrt{p}} tr C_1^\circ, \dots, \frac{1}{\sqrt{p}} tr C_k^\circ]^\mathsf{T}, \ T = \left\{ \frac{1}{p} tr C_a^\circ C_b^\circ \right\}_{a,b=1}^k.$

Fundamental conclusions:

- asymptotic kernel impact only through $f'(\tau)$ and $f''(\tau)$, that's all!
- **•** spectral clustering reads $M^{\mathsf{T}}M$, tt^{T} and T, that's all!

Isolated eigenvalues: Gaussian inputs

Figure: Eigenvalues of L and $\hat{L},~k=3,~p=2048,~n=512,~c_1=c_2=1/4,~c_3=1/2,~[\mu_a]_j=4\delta_{aj},~C_a=(1+2(a-1)/\sqrt{p})I_p,~f(x)=\exp(-x/2).$

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) \hat{L} (white), MNIST data, p=784, n=192.

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) \hat{L} (white), MNIST data, p=784, n=192.

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

Figure: Leading four eigenvectors of $D^{-\frac{1}{2}}KD^{-\frac{1}{2}}$ for MNIST data (red) and theoretical findings (blue).

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1and 2-standard deviations in **blue**. Class 1 in **red**, Class 2 in **black**, Class 3 in green.

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1and 2-standard deviations in **blue**. Class 1 in **red**, Class 2 in **black**, Class 3 in green.

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_a)$, with $C_1 = I_p$, $[C_2]_{i,j} = .4^{|i-j|}$, $c_0 = \frac{1}{4}$.

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_a)$, with $C_1 = I_p$, $[C_2]_{i,j} = .4^{|i-j|}$, $c_0 = \frac{1}{4}$.

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_a)$, with $C_1 = I_p$, $[C_2]_{i,j} = .4^{|i-j|}$, $c_0 = \frac{1}{4}$.

Figure: Polynomial kernel with $f(\tau) = 4$, $f''(\tau) = 2$, $x_i \in \mathcal{N}(0, C_a)$, with $C_1 = I_p$, $[C_2]_{i,j} = .4^{|i-j|}$, $c_0 = \frac{1}{4}$.

Trivial classification when t = 0, M = 0 and ||T|| = O(1).

Spectral Clustering: The case $f'(\tau) = 0$ Position of the problem

Problem: Cluster large data $x_1, \ldots, x_n \in \mathbb{R}^p$ based on "spanned subspaces".

Spectral Clustering: The case $f'(\tau) = 0$ Position of the problem

Problem: Cluster large data $x_1, \ldots, x_n \in \mathbb{R}^p$ based on "spanned subspaces".

Method:

- Still assume x_1, \ldots, x_n belong to k classes C_1, \ldots, C_k .
- ▶ Zero-mean Gaussian model for the data: for $x_i \in C_k$,

 $x_i \sim \mathcal{N}(0, C_k).$

Spectral Clustering: The case $f'(\tau) = 0$ Position of the problem

Problem: Cluster large data $x_1, \ldots, x_n \in \mathbb{R}^p$ based on "spanned subspaces".

Method:

- Still assume x_1, \ldots, x_n belong to k classes C_1, \ldots, C_k .
- ▶ Zero-mean Gaussian model for the data: for $x_i \in C_k$,

 $x_i \sim \mathcal{N}(0, C_k).$

▶ Performance of
$$L = nD^{-\frac{1}{2}} \left(K - \frac{1n1_n^T}{1_n^T D 1_n} \right) D^{-\frac{1}{2}}$$
, with
 $K = \left\{ f \left(\|\bar{x}_i - \bar{x}_j\|^2 \right) \right\}_{1 \le i, j \le n}, \quad \bar{x} = \frac{x}{\|x\|}$

in the regime $n, p \to \infty$. (alternatively, we can ask $\frac{1}{p} \operatorname{tr} C_i = 1$ for all $1 \le i \le k$)
Model and Reminders

Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in \mathcal{C}_k \Leftrightarrow x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Model and Reminders

Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in \mathcal{C}_k \Leftrightarrow x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

- 1. $\frac{n}{p} \to c_0 \in (0, \infty)$ 2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
- 3. $\frac{1}{p}$ tr $C_a = 1$ and tr $C_a^{\circ} C_b^{\circ} = O(p)$, with $C_a^{\circ} = C_a C^{\circ}$, $C^{\circ} = \sum_{b=1}^k c_b C_b$.

Model and Reminders

Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in \mathcal{C}_k \Leftrightarrow x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1.
$$\frac{n}{p} \to c_0 \in (0, \infty)$$

2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \text{tr} C_a = 1 \text{ and } \text{tr} C_a^{\circ} C_b^{\circ} = O(p)$, with $C_a^{\circ} = C_a - C^{\circ}$, $C^{\circ} = \sum_{b=1}^k c_b C_b$

Theorem (Corollary of Previous Section) Let f smooth with $f'(2) \neq 0$. Then, under Assumptions 2a,

$$L = nD^{-\frac{1}{2}} \left(K - \frac{1_n \mathbf{1}_n^{\mathsf{T}}}{\mathbf{1}_n^{\mathsf{T}} D \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ with } K = \left\{ f \left(\|\bar{x}_i - \bar{x}_j\|^2 \right) \right\}_{i,j=1}^n \ (\bar{x} = x/\|x\|)$$

exhibits phase transition phenomenon

Model and Reminders

Assumption 1 [Classes]. Vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ i.i.d. from k-class Gaussian mixture, with $x_i \in \mathcal{C}_k \Leftrightarrow x_i \sim \mathcal{N}(0, C_k)$ (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

1.
$$\frac{n}{p} \to c_0 \in (0, \infty)$$

2. $\frac{n_a}{n} \to c_a \in (0, \infty)$
3. $\frac{1}{p} \operatorname{tr} C_a = 1$ and $\operatorname{tr} C_a^{\circ} C_b^{\circ} = O(p)$, with $C_a^{\circ} = C_a - C^{\circ}$, $C^{\circ} = \sum_{b=1}^k c_b C_b$.

Theorem (Corollary of Previous Section) Let f smooth with $f'(2) \neq 0$. Then, under Assumptions 2a,

$$L = nD^{-\frac{1}{2}} \left(K - \frac{1_n \mathbf{1}_n^{\mathsf{T}}}{\mathbf{1}_n^{\mathsf{T}} D \mathbf{1}_n} \right) D^{-\frac{1}{2}}, \text{ with } K = \left\{ f \left(\|\bar{x}_i - \bar{x}_j\|^2 \right) \right\}_{i,j=1}^n (\bar{x} = x/\|x\|)$$

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically contain structural information about C_1, \ldots, C_k if and only if

$$T = \left\{\frac{1}{p} \operatorname{tr} C_a^{\circ} C_b^{\circ}\right\}_{a,b=1}^k$$

has sufficiently large eigenvalues (here M = 0, t = 0).

Assumption 2b [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \dots, k\}$,

1. $\frac{n}{p} \to c_0 \in (0, \infty)$ 2. $\frac{n_a}{n} \to c_a \in (0, \infty)$ 3. $\frac{1}{a} \operatorname{tr} C_a = 1$ and $\operatorname{tr} \frac{C_o^o C_o^o}{a} = O(p)$, with $C_a^o = C_a - C^o$, $C^o = \sum_{b=1}^k c_b C_b$.

Assumption 2b [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \ldots, k\}$,

- 1. $\frac{n}{p} \to c_0 \in (0,\infty)$
- 2. $\frac{n_a}{n} \to c_a \in (0,\infty)$
- 3. $\frac{1}{p}$ tr $C_a = 1$ and tr $C_a^{\circ} C_b^{\circ} = O(\sqrt{p})$, with $C_a^{\circ} = C_a C^{\circ}$, $C^{\circ} = \sum_{b=1}^k c_b C_b$. (in this regime, previous kernels clearly fail)

Remark: [Neyman-Pearson optimality]

• if $C_i = I_p \pm E$ with $||E|| \rightarrow 0$, detectability iif $\frac{1}{p}tr(C_1 - C_2)^2 \ge O(p^{-\frac{1}{2}})$.

Assumption 2b [Growth Rates]. As $n \to \infty$, for each $a \in \{1, \dots, k\}$,

- 1. $\frac{n}{n} \to c_0 \in (0,\infty)$
- 2. $\frac{n_a}{n} \to c_a \in (0,\infty)$

3. $\frac{1}{p}$ tr $C_a = 1$ and tr $C_a^{\circ} C_b^{\circ} = O(\sqrt{p})$, with $C_a^{\circ} = C_a - C^{\circ}$, $C^{\circ} = \sum_{b=1}^k c_b C_b$. (in this regime, previous kernels clearly fail)

Remark: [Neyman-Pearson optimality]

• if $C_i = I_p \pm E$ with $||E|| \rightarrow 0$, detectability iif $\frac{1}{p}tr(C_1 - C_2)^2 \ge O(p^{-\frac{1}{2}})$.

Theorem (Random Equivalent for f'(2) = 0) Let f be smooth with f'(2) = 0 and

$$\mathcal{L} \equiv \sqrt{p} \frac{f(2)}{2f''(2)} \left[L - \frac{f(0) - f(2)}{f(2)} P \right], \quad P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}.$$

Then, under Assumptions 2b,

$$\mathcal{L} = P\Phi P + \left\{\frac{1}{\sqrt{p}} tr(C_a^{\circ}C_b^{\circ}) \frac{\mathbf{1}_{n_a} \mathbf{1}_{n_b}^{\mathsf{T}}}{p}\right\}_{a,b=1}^k + o_{\|\cdot\|}(1)$$

where $\Phi_{ij} = \delta_{i \neq j} \sqrt{p} \left[(x_i^\mathsf{T} x_j)^2 - E[(x_i^\mathsf{T} x_j)^2] \right].$

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, $c_1 = c_2 = 1/4$, $c_3 = 1/2$, $C_i \propto I_p + (p/8)^{-\frac{5}{4}} W_i W_i^{\mathsf{T}}$, $W_i \in \mathbb{R}^{p \times (p/8)}$ of i.i.d. $\mathcal{N}(0, 1)$ entries, $f(t) = \exp(-(t-2)^2)$.

\Rightarrow No longer a Marcenko–Pastur like bulk, but rather a semi-circle bulk!

Roadmap. We now need to:

 \blacktriangleright study the spectrum of Φ

Roadmap. We now need to:

- \blacktriangleright study the spectrum of Φ
- **>** study the isolated eigenvalues of \mathcal{L} (and the phase transition)

Roadmap. We now need to:

- \blacktriangleright study the spectrum of Φ
- study the isolated eigenvalues of \mathcal{L} (and the phase transition)
- retrieve information from the eigenvectors.

Roadmap. We now need to:

- \blacktriangleright study the spectrum of Φ
- study the isolated eigenvalues of L (and the phase transition)
- retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ) Let $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(\mathcal{L})}$. Then, under Assumption 2b,

$$\mu_n \xrightarrow{\text{a.s.}} \mu$$

with μ the semi-circle distribution

$$\mu(dt) = \frac{1}{2\pi c_0 \omega^2} \sqrt{(4c_0 \omega^2 - t^2)^+} dt, \quad \omega = \lim_{p \to \infty} \sqrt{2} \frac{1}{p} tr(C^\circ)^2.$$

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, $c_1 = c_2 = 1/4$, $c_3 = 1/2$, $C_i \propto I_p + (p/8)^{-\frac{5}{4}} W_i W_i^{\mathsf{T}}$, $W_i \in \mathbb{R}^{p \times (p/8)}$ of i.i.d. $\mathcal{N}(0, 1)$ entries, $f(t) = \exp(-(t-2)^2)$.

Denote now

$$\mathcal{T} \equiv \lim_{p \to \infty} \left\{ \frac{\sqrt{c_a c_b}}{\sqrt{p}} \mathrm{tr} \, C_a^\circ C_b^\circ \right\}_{a,b=1}^k$$

Denote now

$$\mathcal{T} \equiv \lim_{p \to \infty} \left\{ \frac{\sqrt{c_a c_b}}{\sqrt{p}} \mathrm{tr} \, C_a^{\circ} C_b^{\circ} \right\}_{a,b=1}^k$$

Theorem (Isolated Eigenvalues)

Let $\nu_1 \geq \ldots \geq \nu_k$ eigenvalues of \mathcal{T} . Then, if $\sqrt{c_0}|\nu_i| > \omega$, \mathcal{L} has an isolated eigenvalue λ_i satisfying

$$\lambda_i \xrightarrow{\text{a.s.}} \rho_i \equiv c_0 \nu_i + \frac{\omega^2}{\nu_i}.$$

Theorem (Isolated Eigenvectors)

For each isolated eigenpair (λ_i, u_i) of \mathcal{L} corresponding to (ν_i, v_i) of \mathcal{T} , write

$$u_i = \sum_{a=1}^k \frac{\alpha_i^a}{\sqrt{n_a}} \frac{j_a}{\sqrt{n_a}} + \frac{\sigma_i^a}{\sigma_i^a} w_i^a$$

with $j_a = [0_{1_1}^{\mathsf{T}}, \dots, 1_{n_a}^{\mathsf{T}}, \dots, 0_{n_k}^{\mathsf{T}}]^{\mathsf{T}}$, $(w_i^a)^{\mathsf{T}} j_a = 0$, $\operatorname{supp}(w_i^a) = \operatorname{supp}(j_a)$, $||w_i^a|| = 1$. Then, under Assumptions 1–2b,

$$\begin{split} \alpha_i^a \alpha_i^b & \stackrel{\text{a.s.}}{\longrightarrow} \left(1 - \frac{1}{c_0} \frac{\omega^2}{\nu_i^2} \right) [v_i v_i^{\mathsf{T}}]_{ab} \\ (\sigma_i^a)^2 & \stackrel{\text{a.s.}}{\longrightarrow} \frac{c_a}{c_0} \frac{\omega^2}{\nu_i^2} \end{split}$$

and the fluctuations of $u_i, u_j, i \neq j$, are asymptotically uncorrelated.

Eigenvector 1 Eigenvector 2 200 800 0 400600 1,000 1,200 1,400 1,600 1,800 2,000

Figure: Leading two eigenvectors of \mathcal{L} (or equivalently of L) versus deterministic approximations of $\alpha_i^a \pm \sigma_i^a$.

Figure: Leading two eigenvectors of $\mathcal L$ (or equivalently of L) versus deterministic approximations of $\alpha_i^a \pm \sigma_i^a$.

Figure: Leading two eigenvectors of $\mathcal L$ (or equivalently of L) versus deterministic approximations of $\alpha_i^a\pm\sigma_i^a.$

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- $\blacktriangleright E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- $\blacktriangleright E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source i.

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- $\blacktriangleright E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source *i*.

Objective. Cluster sources based on covariance C_i .

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- $\blacktriangleright E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- ▶ n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source *i*.

Objective. Cluster sources based on covariance C_i .

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- ► $E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- ▶ n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source *i*.

Objective. Cluster sources based on covariance C_i .

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then \mathcal{L} , based on mn_i vectors $x_1^{(1)}, \ldots, x_m^{(n_i)}$ (as if mn_i values to cluster).

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- ► $E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source *i*.

Objective. Cluster sources based on covariance C_i .

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

- 1. Build kernel matrix K, then \mathcal{L} , based on mn_i vectors $x_1^{(1)}, \ldots, x_m^{(n_i)}$ (as if mn_i values to cluster).
- 2. Extract dominant isolated eigenvectors u_1, \ldots, u_{κ}

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- ► $E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- ▶ n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source *i*.

Objective. Cluster sources based on covariance C_i .

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

- 1. Build kernel matrix K, then \mathcal{L} , based on mn_i vectors $x_1^{(1)}, \ldots, x_m^{(n_i)}$ (as if mn_i values to cluster).
- 2. Extract dominant isolated eigenvectors u_1, \ldots, u_κ
- 3. For each *i*, create $\tilde{u}_i = \frac{1}{n_i} (I_m \otimes 1_{n_i}^{\mathsf{T}}) u_i$, i.e., average eigenvectors along time.

Application: Clustering data vectors with close covariances

Setting.

- p dimensional vector observations.
- m data sources.
- ► $E[x_i] = 0, \ E[x_i x_i^{\mathsf{T}}] = C_i.$
- ▶ n_i independent observations $x_i^{(1)}, \ldots, x_i^{(n_i)}$ for source *i*.

Objective. Cluster sources based on covariance C_i .

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

- 1. Build kernel matrix K, then \mathcal{L} , based on mn_i vectors $x_1^{(1)}, \ldots, x_m^{(n_i)}$ (as if mn_i values to cluster).
- 2. Extract dominant isolated eigenvectors u_1, \ldots, u_{κ}
- 3. For each *i*, create $\tilde{u}_i = \frac{1}{n_i} (I_m \otimes 1_{n_i}^{\mathsf{T}}) u_i$, i.e., average eigenvectors along time.
- 4. Perform k-class clustering on vectors $\tilde{u}_1, \ldots, \tilde{u}_{\kappa}$.

Application Example: Clustering data vectors with close covariances

Figure: Clustering data vectors with close covariances application: Leading two eigenvectors before (left figure) and after (right figure) n_i -averaging. Setting: p = 400, m = 40, $n_i = 10$, k = 3, $c_1 = c_3 = 1/4$, $c_2 = 1/2$.Kernel function $f(t) = \exp(-(t-2)^2)$.

Application Example: Clustering data vectors with close covariances

Figure: Overlap for different m, using the k-means or EM starting from actual centroid solutions (oracle) or randomly.

Application Example: Clustering data vectors with close covariances

Figure: Overlap for optimal kernel f(t) (here $f(t) = \exp(-(t-2)^2)$) and Gaussian kernel $f(t) = \exp(-t^2)$, for different m, using the k-means or EM.

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f(\frac{1}{p}||x_i x_j||^2)$ with $f'(\tau) \neq 0$:
 - optimal in $\|\mu_a^{\circ}\| = O(1), \frac{1}{p} \operatorname{tr} C_a^{\circ} = O(p^{-\frac{1}{2}})$
 - suboptimal in $\frac{1}{p}$ tr $C_a^{\circ}C_b^{\circ} = O(1)$
 - \longrightarrow Model type: Marčenko–Pastur + spikes.

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f(\frac{1}{p}||x_i x_j||^2)$ with $f'(\tau) \neq 0$:
 - optimal in $\|\mu_a^{\circ}\| = O(1), \frac{1}{p} \operatorname{tr} C_a^{\circ} = O(p^{-\frac{1}{2}})$
 - suboptimal in $\frac{1}{p}$ tr $C_a^{\circ}C_b^{\circ} = O(1)$
 - \longrightarrow Model type: Marčenko–Pastur + spikes.

 \longrightarrow Model type: smaller order semi-circle law + spikes.

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f(\frac{1}{p}||x_i x_j||^2)$ with $f'(\tau) \neq 0$:
 - optimal in $\|\mu_a^{\circ}\| = O(1), \frac{1}{p} \operatorname{tr} C_a^{\circ} = O(p^{-\frac{1}{2}})$
 - suboptimal in $\frac{1}{p}$ tr $C_a^{\circ}C_b^{\circ} = O(1)$
 - \longrightarrow Model type: Marčenko–Pastur + spikes.

Jointly optimal solution:

evenly weighing Marčenko–Pastur and semi-circle laws

Optimal growth rates and optimal kernels

Conclusion of previous analyses:

- kernel $f(\frac{1}{p}||x_i x_j||^2)$ with $f'(\tau) \neq 0$:
 - optimal in $\|\mu_a^\circ\| = O(1)$, $\frac{1}{p} \operatorname{tr} C_a^\circ = O(p^{-\frac{1}{2}})$
 - suboptimal in $\frac{1}{p}$ tr $C_a^{\circ}C_b^{\circ} = O(1)$
 - \longrightarrow Model type: Marčenko–Pastur + spikes.

Jointly optimal solution:

- evenly weighing Marčenko–Pastur and semi-circle laws
- the " α - β " kernel:

$$f'(\tau) = \frac{\alpha}{\sqrt{p}}, \quad \frac{1}{2}f''(\tau) = \beta.$$

New assumption setting

We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)

As $n o \infty$,

- 1. Data scaling: $\frac{p}{n} \to c_0 \in (0,\infty)$, $\frac{n_a}{n} \to c_a \in (0,1)$,
- 2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a$ and $\mu_a^{\circ} \triangleq \mu_a \mu^{\circ}$, then $\|\mu_a^{\circ}\| = O(1)$
- 3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a$ and $C_a^{\circ} \triangleq C_a C^{\circ}$, then

$$||C_a|| = O(1), \quad \operatorname{tr} C_a^\circ = O(\sqrt{p}), \quad \operatorname{tr} C_a^\circ C_b^\circ = O(\sqrt{p}).$$
Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{n}}$

New assumption setting

We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)

As $n o \infty$,

- 1. Data scaling: $\frac{p}{n} \to c_0 \in (0,\infty)$, $\frac{n_a}{n} \to c_a \in (0,1)$,
- 2. Mean scaling: with $\mu^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} \mu_a$ and $\mu_a^{\circ} \triangleq \mu_a \mu^{\circ}$, then $\|\mu_a^{\circ}\| = O(1)$
- 3. Covariance scaling: with $C^{\circ} \triangleq \sum_{a=1}^{k} \frac{n_a}{n} C_a$ and $C_a^{\circ} \triangleq C_a C^{\circ}$, then

$$||C_a|| = O(1), \quad trC_a^\circ = O(\sqrt{p}), \quad trC_a^\circ C_b^\circ = O(\sqrt{p}).$$

Kernel:

For technical simplicity, we consider

$$\tilde{K} = PKP = P\left\{f\left(\frac{1}{p}(x^{\circ})^{\mathsf{T}}(x_{j}^{\circ})\right)\right\}_{i,j=1}^{n}P, \quad P = I_{n} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}}.$$

i.e., τ replaced by 0.

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$ Main Results

Theorem As $n \to \infty$. $\left\|\sqrt{p}\left(PKP + \left(f(0) + \tau f'(0)\right)P\right) - \hat{\mathcal{K}}\right\| \stackrel{\text{a.s.}}{\longrightarrow} 0$ with, for $\alpha = \sqrt{p}f'(0) = O(1)$ and $\beta = \frac{1}{2}f''(0) = O(1)$, $\hat{\mathcal{K}} = \alpha P W^{\mathsf{T}} W P + \beta P \Phi P + U A U^{\mathsf{T}}$ $A = \begin{bmatrix} \alpha M^{\mathsf{T}} M + \beta T & \alpha I_k \\ \alpha I_k & 0 \end{bmatrix}$ $U = \left[\frac{J}{\sqrt{n}}, PW^{\mathsf{T}}M\right]$ $\frac{\Phi}{\sqrt{p}} = \left\{ ((\omega_i^{\circ})^{\mathsf{T}} \omega_j^{\circ})^2 \boldsymbol{\delta}_{i \neq j} \right\}_{i,j=1}^n - \left\{ \frac{\operatorname{tr}(C_a C_b)}{p^2} \mathbf{1}_{n_a} \mathbf{1}_{n_b}^{\mathsf{T}} \right\}_{i=1}^k.$

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$ Main Results

Theorem As $n \to \infty$, $\left\|\sqrt{p}\left(PKP + \left(f(0) + \tau f'(0)\right)P\right) - \hat{\mathcal{K}}\right\| \xrightarrow{\text{a.s.}} 0$ with, for $\alpha = \sqrt{p}f'(0) = O(1)$ and $\beta = \frac{1}{2}f''(0) = O(1)$, $\hat{\mathcal{K}} = \alpha PW^{\mathsf{T}}WP + \beta P\Phi P + UAU^{\mathsf{T}}$ $A = \begin{bmatrix} \alpha M^{\mathsf{T}}M + \beta T & \alpha I_k \\ \alpha I_k & 0 \end{bmatrix}$ $U = \begin{bmatrix} J \\ \sqrt{p}, PW^{\mathsf{T}}M \end{bmatrix}$

$$\frac{\Phi}{\sqrt{p}} = \left\{ ((\omega_i^{\circ})^{\mathsf{T}} \omega_j^{\circ})^2 \boldsymbol{\delta}_{i \neq j} \right\}_{i,j=1}^n - \left\{ \frac{\operatorname{tr}(C_a C_b)}{p^2} \mathbf{1}_{n_a} \mathbf{1}_{n_b}^{\mathsf{T}} \right\}_{a,b=1}^k.$$

Role of α , β :

Weighs Marčenko–Pastur versus semi-circle parts.

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$

Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk) As $p \to \infty$,

$$\nu_n \triangleq \frac{1}{n} \sum_{i=1}^n \boldsymbol{\delta}_{\lambda_i(\hat{K})} \xrightarrow{\text{a.s.}} \nu$$

with ν having Stieltjes transform m(z) solution of

$$\frac{1}{m(z)} = -z + \frac{\alpha}{p} \operatorname{tr} C^{\circ} \left(I_k + \frac{\alpha m(z)}{c_0} C^{\circ} \right)^{-1} - \frac{2\beta^2}{c_0} \omega^2 m(z)$$

where $\omega = \lim_{p \to \infty} \frac{1}{p} tr(C^{\circ})^2$.

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{n}}$

Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, p = 2048, n = 4096, k = 2, $n_1 = n_2$, $\mu_i = 3\delta_i$, $f(x) = \frac{1}{2}\beta \left(x + \frac{1}{\sqrt{p}}\frac{\alpha}{\beta}\right)^2$. (Top left): $\alpha = 8, \beta = 1$, (Top right): $\alpha = 4, \beta = 3$, (Bottom left): $\alpha = 3, \beta = 4$, (Bottom right): $\alpha = 1, \beta = 8$.

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$

Asymptotic performances: MNIST

Datasets	$\ oldsymbol{\mu}_1^\circ-oldsymbol{\mu}_2^\circ\ ^2$	$rac{1}{\sqrt{p}} \operatorname{TR} \left(\mathbf{C}_1 - \mathbf{C}_2 \right)^2$	$\frac{1}{p}$ TR $(\mathbf{C}_1 - \mathbf{C}_2)^2$
MNIST (digits $1, 7$)	613	1990	71.1
MNIST (DIGITS 3, 6)	441	1119	39.9
MNIST (DIGITS 3, 8)	212	652	23.5

MNIST is "means-dominant" but not that much!

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{n}}$

MNIST is "means-dominant" but not that much!

Asymptotic performances: MNIST

 $\frac{\|\boldsymbol{\mu}_{1}^{\circ}-\boldsymbol{\mu}_{2}^{\circ}\|^{2}}{613} \quad \frac{1}{\sqrt{p}}\operatorname{Tr}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2} \quad \left| \begin{array}{c} \frac{1}{p}\operatorname{Tr}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right)^{2} \\ 71.1 \end{array} \right|$ DATASETS MNIST (DIGITS 1,7) MNIST (DIGITS 3, 6) 441 1119 39.9 MNIST (DIGITS 3, 8) 212652 23.51 Overlap 0.8Digits 1,7 0.6Digits 3,6 Digits 3,8 -15-10-50 510 15

Figure: Spectral clustering of the MNIST database for varying $\frac{\alpha}{\beta}$.

 $\frac{\alpha}{\beta}$

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{p}}$

Asymptotic performances: EEG data

EEG data are "variance-dominant"				
Datasets	$\ oldsymbol{\mu}_1^\circ-oldsymbol{\mu}_2^\circ\ ^2$	$\frac{1}{\sqrt{p}}$ TR $(\mathbf{C}_1 - \mathbf{C}_2)^2$	$\frac{1}{p}$ TR $(\mathbf{C}_1 - \mathbf{C}_2)^2$	
EEG (SETS A, E)	2.4	10.9	1.1	

Kernel Spectral Clustering: The case $f'(\tau) = \frac{\alpha}{\sqrt{n}}$

Asymptotic performances: EEG data

Figure: Spectral clustering of the EEG database for varying $\frac{\alpha}{\beta}$.

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)

Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines

Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Optimization problem: find separating hyperplane (linear separability case)

$$\underset{w}{\operatorname{arg\,min}} \quad J(w,e) = \|w\|^2 + \frac{\gamma}{n} \sum_{i=1}^{n} e_i^2$$

such that $y_i = w^{\mathsf{T}} x_i + b + e_i$
for $i = 1, \dots, n$

Advantage of LS-SVM

Explicit form, as opposed to SVM \Rightarrow easier to analyze.

LS-SVM Problem Statement

When no linear separability: \Rightarrow Kernel method

LS-SVM Problem Statement

When no linear separability: \Rightarrow Kernel method

To solve the optimization problem:

$$\underset{w}{\operatorname{arg\,min}} \quad J(w,e) = \|w\|^2 + \frac{\gamma}{n} \sum_{i=1}^n e_i^2$$

such that $y_i = w^{\mathsf{T}} \varphi(x_i) + b + e_i$
for $i = 1, \dots, n$

• Training: Solution given by $w = \sum_{i=1}^n \alpha_i \varphi(x_i)$, where

$$\begin{cases} \alpha &= S\left(I_n - \frac{1_n \mathbf{l}_n^T S}{\mathbf{l}_n^T S \mathbf{l}_n}\right) y = S\left(y - b\mathbf{l}_n\right) \\ b &= \frac{\mathbf{l}_n^T S y}{\mathbf{l}_n^T S \mathbf{l}_n} \end{cases}$$

with $S \equiv \left(K + \frac{n}{\gamma}I_n\right)^{-1}$ resolvent of kernel matrix:

 $K \equiv \{\varphi(x_i)^{\mathsf{T}}\varphi(x_j)\}_{i,j=1}^n$

• Training: Solution given by $w = \sum_{i=1}^n \alpha_i \varphi(x_i)$, where

$$\begin{cases} \alpha &= S\left(I_n - \frac{1_n \mathbf{l}_n^T S}{\mathbf{l}_n^T S \mathbf{l}_n}\right) y = S\left(y - b\mathbf{l}_n\right) \\ b &= \frac{\mathbf{l}_n^T S y}{\mathbf{l}_n^T S \mathbf{l}_n} \end{cases}$$

with $S \equiv \left(K + \frac{n}{\gamma}I_n\right)^{-1}$ resolvent of kernel matrix:

 $K \equiv \{\varphi(x_i)^{\mathsf{T}}\varphi(x_j)\}_{i,j=1}^n$

▶ Training: Solution given by $w = \sum_{i=1}^{n} \alpha_i \varphi(x_i)$, where

$$\begin{cases} \alpha &= S\left(I_n - \frac{1_n \mathbf{1}_n^{\mathsf{T}} \mathbf{S}}{\mathbf{1}_n^{\mathsf{T}} \mathbf{S} \mathbf{1}_n}\right) y = S\left(y - b\mathbf{1}_n\right) \\ b &= \frac{\mathbf{1}_n^{\mathsf{T}} Sy}{\mathbf{1}_n^{\mathsf{T}} \mathbf{S} \mathbf{1}_n} \end{cases}$$

with $S \equiv \left(K + \frac{n}{\gamma}I_n\right)^{-1}$ resolvent of kernel matrix:

$$K \equiv \{\varphi(x_i)^{\mathsf{T}} \varphi(x_j)\}_{i,j=1}^n \underbrace{=}_{\text{kernel trick}} \left\{ f\left(\frac{\|x_i - x_j\|^2}{p}\right) \right\}_{i,j=1}^n$$

for some translation invariant kernel function $f : \mathbb{R}_+ \mapsto \mathbb{R}_+, y \equiv [y_1, \dots, y_n]^{\mathsf{T}}$ and $\alpha \equiv [\alpha_1, \dots, \alpha_n]^{\mathsf{T}}$.

▶ Training: Solution given by $w = \sum_{i=1}^{n} \alpha_i \varphi(x_i)$, where

$$\begin{cases} \alpha &= S\left(I_n - \frac{1_n \mathbf{1}_n^{\mathsf{T}} \mathbf{S}}{\mathbf{1}_n^{\mathsf{T}} \mathbf{S} \mathbf{1}_n}\right) y = S\left(y - b\mathbf{1}_n\right) \\ b &= \frac{\mathbf{1}_n^{\mathsf{T}} Sy}{\mathbf{1}_n^{\mathsf{T}} \mathbf{S} \mathbf{1}_n} \end{cases}$$

with $S \equiv \left(K + \frac{n}{\gamma}I_n\right)^{-1}$ resolvent of kernel matrix:

$$K \equiv \{\varphi(x_i)^{\mathsf{T}} \varphi(x_j)\}_{i,j=1}^n \underbrace{=}_{\text{kernel trick}} \left\{ f\left(\frac{\|x_i - x_j\|^2}{p}\right) \right\}_{i,j=1}^n$$

for some translation invariant kernel function $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$, $y \equiv [y_1, \dots, y_n]^{\mathsf{T}}$ and $\alpha \equiv [\alpha_1, \dots, \alpha_n]^{\mathsf{T}}$.

▶ Inference: Decision for new x

$$g(x) = \alpha^{\mathsf{T}} k(x) + b \text{ where } k(x) = \left\{ f\left(\|x_j - x\|^2 / p \right) \right\}_{j=1}^n \in \mathbb{R}^n$$

• Training: Solution given by $w = \sum_{i=1}^{n} \alpha_i \varphi(x_i)$, where

$$\begin{cases} \alpha &= S\left(I_n - \frac{1_n \mathbf{1}_n^{\mathsf{T}} \mathbf{S}}{\mathbf{1}_n^{\mathsf{T}} \mathbf{S} \mathbf{1}_n}\right) y = S\left(y - b\mathbf{1}_n\right) \\ b &= \frac{\mathbf{1}_n^{\mathsf{T}} Sy}{\mathbf{1}_n^{\mathsf{T}} \mathbf{S} \mathbf{1}_n} \end{cases}$$

with $S \equiv \left(K + \frac{n}{\gamma}I_n\right)^{-1}$ resolvent of kernel matrix:

$$K \equiv \{\varphi(x_i)^{\mathsf{T}} \varphi(x_j)\}_{i,j=1}^n \underbrace{=}_{\text{kernel trick}} \left\{ f\left(\frac{\|x_i - x_j\|^2}{p}\right) \right\}_{i,j=1}^n$$

for some translation invariant kernel function $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$, $y \equiv [y_1, \dots, y_n]^{\mathsf{T}}$ and $\alpha \equiv [\alpha_1, \dots, \alpha_n]^{\mathsf{T}}$.

▶ Inference: Decision for new x

$$g(x) = \alpha^{\mathsf{T}} k(x) + b \text{ where } k(x) = \left\{ f\left(\|x_j - x\|^2 / p \right) \right\}_{j=1}^n \in \mathbb{R}^n$$

ln practice, sign(g(x)) to predict the class.

• Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

 $x_i \sim \mathcal{N}(\mu_a, C_a)$

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

 $x_i \sim \mathcal{N}(\mu_a, C_a)$

▶ Non-trivial regime: to ensure $P(x_i \rightarrow C_b \mid x_i \in C_a) \not\rightarrow 0$ nor 1

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

 $x_i \sim \mathcal{N}(\mu_a, C_a)$

▶ Non-trivial regime: to ensure $P(x_i \to C_b \mid x_i \in C_a) \not\to 0$ nor 1 ▶ $\|\mu_2 - \mu_1\| = O(1)$

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

$$x_i \sim \mathcal{N}(\mu_a, C_a)$$

- ▶ Non-trivial regime: to ensure $P(x_i \to C_b \mid x_i \in C_a) \not\to 0$ nor 1

 - $\|\mu_2 \mu_1\| = \mathcal{O}(1)$ $\|C_a\| = \mathcal{O}(1)$ and tr $(C_2 C_1) = \mathcal{O}(\sqrt{n})$

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

$$x_i \sim \mathcal{N}(\mu_a, C_a)$$

- ▶ Non-trivial regime: to ensure $P(x_i \to C_b \mid x_i \in C_a) \not\to 0$ nor 1

 - $\|\mu_2 \mu_1\| = \mathcal{O}(1)$ $\|C_a\| = \mathcal{O}(1)$ and tr $(C_2 C_1) = \mathcal{O}(\sqrt{n})$
- ► Notations:

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

$$x_i \sim \mathcal{N}(\mu_a, C_a)$$

▶ Non-trivial regime: to ensure $P(x_i \to C_b \mid x_i \in C_a) \not\to 0$ nor 1

- $\|\mu_2 \mu_1\| = \mathcal{O}(1)$ $\|C_a\| = \mathcal{O}(1)$ and tr $(C_2 C_1) = \mathcal{O}(\sqrt{n})$

► Notations:

•
$$C^{\circ} \equiv c_1 C_1 + c_2 C_2$$
, $c_1 \equiv \frac{n_1}{n}$ and $c_2 \equiv \frac{n_2}{n} = 1 - c_1$

- Large dimension: $n, p \to \infty$ and $\frac{p}{n} \to c_0$
- Gaussian mixture model: for $a \in \{1, 2\}$:

$$x_i \sim \mathcal{N}(\mu_a, C_a)$$

▶ Non-trivial regime: to ensure $P(x_i \rightarrow C_b \mid x_i \in C_a) \not\rightarrow 0$ nor 1

- $\|\mu_2 \mu_1\| = \mathcal{O}(1)$
- $\|C_a\| = \mathcal{O}(1) \text{ and tr } (C_2 C_1) = \mathcal{O}(\sqrt{n})$

Notations:

• $C^{\circ} \equiv c_1 C_1 + c_2 C_2, c_1 \equiv \frac{n_1}{n} \text{ and } c_2 \equiv \frac{n_2}{n} = 1 - c_1$ • Key Notation: $\tau \equiv \frac{2}{n} \operatorname{tr} C^{\circ}$

RMT Analysis: Kernel Linearization

Reminder: kernel matrix

$$K_{i,j} = f\left(\frac{\|x_i - x_j\|^2}{p}\right)$$

For $x_i\in\mathcal{C}_a$ and $x_j\in\mathcal{C}_b\colon \frac{1}{p}\|x_i-x_j\|^2=\tau+\mathcal{O}(n^{-1/2}),$ thus for $K_{i,j}$

$$K_{i,j} = f\left(\tau + \mathcal{O}(n^{-1/2})\right) = f(\tau) + f'(\tau)[\ldots] + f''(\tau)[\ldots] + \ldots$$

or in matrix form

$$K = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + f'(\tau) [\ldots] + f''(\tau) [\ldots] + \ldots$$

RMT Analysis: Kernel Linearization

Reminder: kernel matrix

$$K_{i,j} = f\left(\frac{\|x_i - x_j\|^2}{p}\right)$$

For $x_i \in \mathcal{C}_a$ and $x_j \in \mathcal{C}_b$: $\frac{1}{p} \|x_i - x_j\|^2 = \tau + \mathcal{O}(n^{-1/2})$, thus for $K_{i,j}$

$$K_{i,j} = f\left(\tau + \mathcal{O}(n^{-1/2})\right) = f(\tau) + f'(\tau)[\ldots] + f''(\tau)[\ldots] + \ldots$$

or in matrix form

$$K = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + f'(\tau) [\ldots] + f''(\tau) [\ldots] + \ldots$$

Consequence

Asymptotic statistics of K, thus of

 $g(x) = \alpha^{\mathsf{T}} k(x) + b$

RMT Analysis: Kernel Linearization

Reminder: kernel matrix

$$K_{i,j} = f\left(\frac{\|x_i - x_j\|^2}{p}\right)$$

For $x_i \in \mathcal{C}_a$ and $x_j \in \mathcal{C}_b$: $\frac{1}{p} \|x_i - x_j\|^2 = \tau + \mathcal{O}(n^{-1/2})$, thus for $K_{i,j}$

$$K_{i,j} = f\left(\tau + \mathcal{O}(n^{-1/2})\right) = f(\tau) + f'(\tau)[\ldots] + f''(\tau)[\ldots] + \ldots$$

or in matrix form

$$K = f(\tau) \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + f'(\tau) [\ldots] + f''(\tau) [\ldots] + \ldots$$

Consequence

Asymptotic statistics of K, thus of

$$g(x) = \alpha^{\mathsf{T}} k(x) + b$$

$$\begin{cases} \alpha &= S\left(I_n - \frac{1_n I_n^{\mathsf{T}} S}{1_n^{\mathsf{T}} S 1_n}\right) y = S\left(y - b 1_n\right) \\ b &= \frac{1_n^{\mathsf{T}} S y}{1_n^{\mathsf{T}} S 1_n} \end{cases}, \ S \equiv \left(K + \frac{n}{\gamma} I_n\right)^{-1}$$

Asymptotic Behavior of the Decision Function

Theorem ([Liao,C'19])

Under previous assumptions, for $x \in C_a$, $a \in \{1, 2\}$

$$n\left(g(x) - G_a\right) \stackrel{d}{\to} 0$$

where $G_a \sim \mathcal{N}(\mathbf{E}_a, \operatorname{Var}_a)$

Asymptotic Behavior of the Decision Function

Theorem ([Liao,C'19])

Under previous assumptions, for $x \in C_a$, $a \in \{1, 2\}$

$$n\left(g(x) - G_a\right) \stackrel{d}{\to} 0$$

where $G_a \sim \mathcal{N}(E_a, \operatorname{Var}_a)$ with

$$\mathbf{E}_{a} = \begin{cases} c_{2} - c_{1} - \frac{2}{p}c_{2} \cdot c_{1}c_{2}\gamma\mathfrak{D} , & a = 1\\ c_{2} - c_{1} + \frac{2}{p}2c_{1} \cdot c_{1}c_{2}\gamma\mathfrak{D} , & a = 2 \end{cases}$$
$$\mathbf{Var}_{a} = \frac{8}{p^{2}}\gamma^{2}c_{1}^{2}c_{2}^{2}\left(\mathcal{V}_{1}^{a} + \mathcal{V}_{2}^{a} + \mathcal{V}_{3}^{a}\right)$$

Asymptotic Behavior of the Decision Function

Theorem ([Liao,C'19])

Under previous assumptions, for $x \in C_a$, $a \in \{1, 2\}$

$$n\left(g(x) - G_a\right) \stackrel{d}{\to} 0$$

where $G_a \sim \mathcal{N}(E_a, \operatorname{Var}_a)$ with

$$\mathbf{E}_{a} = \begin{cases} c_{2} - c_{1} - \frac{2}{p}c_{2} \cdot c_{1}c_{2}\gamma\mathfrak{D} , & a = 1\\ c_{2} - c_{1} + \frac{2}{p}2c_{1} \cdot c_{1}c_{2}\gamma\mathfrak{D} , & a = 2 \end{cases}$$
$$\mathbf{Var}_{a} = \frac{8}{p^{2}}\gamma^{2}c_{1}^{2}c_{2}^{2}\left(\mathcal{V}_{1}^{a} + \mathcal{V}_{2}^{a} + \mathcal{V}_{3}^{a}\right)$$

and

$$\begin{split} \mathfrak{D} &= -2f'(\tau) \|\mu_2 - \mu_1\|^2 + \frac{f''(\tau)}{p} \left(tr \left(C_2 - C_1 \right) \right)^2 + \frac{2f''(\tau)}{p} tr \left((C_2 - C_1)^2 \right) \\ \mathcal{V}_1^a &= \frac{\left(f''(\tau) \right)^2}{p^2} \left(tr \left(C_2 - C_1 \right) \right)^2 tr C_a^2 \\ \mathcal{V}_2^a &= 2 \left(f'(\tau) \right)^2 \left(\mu_2 - \mu_1 \right)^\mathsf{T} C_a \left(\mu_2 - \mu_1 \right) \\ \mathcal{V}_3^a &= \frac{2 \left(f'(\tau) \right)^2}{n} \left(\frac{tr C_1 C_a}{c_1} + \frac{tr C_2 C_a}{c_2} \right) \end{split}$$

Simulations on Gaussian data

 $\begin{array}{l} \mbox{Figure: Gaussian approximation of } g(x), \\ n=256, p=512, \, c_1=1/4, \, c_2=3/4, \, \gamma=1, \\ \mbox{Gaussian kernel with } \sigma^2=1, \, x\sim \mathcal{N}(\mu_a, C_a) \\ \mbox{with } \mu_a=[0_{a-1};3;0_{p-a}], \, C_1=I_p \mbox{ and } \\ \mbox{\{} C_2\}_{i,j}=.4^{|i-j|}(1+\frac{5}{\sqrt{p}}). \end{array}$

Simulations on Gaussian data

 $\begin{array}{l} \mbox{Figure: Gaussian approximation of } g(x), \\ n=256, p=512, \, c_1=1/4, \, c_2=3/4, \, \gamma=1, \\ \mbox{Gaussian kernel with } \sigma^2=1, \, x\sim \mathcal{N}(\mu_a, C_a) \\ \mbox{with } \mu_a=[0_{a-1}; 3; 0_{p-a}], \, C_1=I_p \mbox{ and } \\ \mbox{\{} C_2 \}_{i,j}=.4^{|i-j|}(1+\frac{5}{\sqrt{p}}). \end{array}$
Simulations on Gaussian data

 $\begin{array}{l} \mbox{Figure: Gaussian approximation of } g(x), \\ n=256, p=512, \, c_1=1/4, \, c_2=3/4, \, \gamma=1, \\ \mbox{Gaussian kernel with } \sigma^2=1, \, x\sim \mathcal{N}(\mu_a, C_a) \\ \mbox{with } \mu_a=[0_{a-1}; 3; 0_{p-a}], \, C_1=I_p \mbox{ and } \\ \mbox{\{} C_2 \}_{i,j}=.4^{|i-j|}(1+\frac{5}{\sqrt{p}}). \end{array}$

 $\begin{array}{l} \mbox{Figure: Performance of LS-SVM, $c_0=2$,}\\ c_1=c_2=1/2, $\gamma=1$, Gaussian kernel $f(t)=\exp(-\frac{t}{2\sigma^2})$. $x\sim\mathcal{N}(\mu_a,C_a)$, with $\mu_a=[0_{a-1};2;0_{p-a}]$, $C_1=I_p$ and $\{C_2\}_{i,j}=.4^{|i-j|}(1+\frac{4}{\sqrt{p}})$. \end{tabular}$

Simulations on Gaussian data

 $\begin{array}{l} \mbox{Figure: Gaussian approximation of } g(x), \\ n=256, p=512, \, c_1=1/4, \, c_2=3/4, \, \gamma=1, \\ \mbox{Gaussian kernel with } \sigma^2=1, \, x\sim \mathcal{N}(\mu_a, C_a) \\ \mbox{with } \mu_a=[0_{a-1}; 3; 0_{p-a}], \, C_1=I_p \mbox{ and } \\ \mbox{\{} C_2 \}_{i,j}=.4^{|i-j|}(1+\frac{5}{\sqrt{p}}). \end{array}$

 $\begin{array}{l} \mbox{Figure: Performance of LS-SVM, $c_0=2$,}\\ c_1=c_2=1/2, $\gamma=1$, Gaussian kernel$\\ f(t)=\exp(-\frac{t}{2\sigma^2}). $x \sim \mathcal{N}(\mu_a,C_a)$, with$\\ \mu_a=[0_{a-1};2;0_{p-a}], $C_1=I_p$ and$\\ \{C_2\}_{i,j}=.4^{|i-j|}(1+\frac{4}{\sqrt{p}}). \end{array}$

Simulations on Gaussian data

 $\begin{array}{l} \mbox{Figure: Gaussian approximation of } g(x), \\ n=256, p=512, \, c_1=1/4, \, c_2=3/4, \, \gamma=1, \\ \mbox{Gaussian kernel with } \sigma^2=1, \, x\sim \mathcal{N}(\mu_a, C_a) \\ \mbox{with } \mu_a=[0_{a-1}; 3; 0_{p-a}], \, C_1=I_p \mbox{ and } \\ \mbox{\{} C_2 \}_{i,j}=.4^{|i-j|}(1+\frac{5}{\sqrt{p}}). \end{array}$

 $\begin{array}{l} \mbox{Figure: Performance of LS-SVM, $c_0=2$,}\\ c_1=c_2=1/2, $\gamma=1$, Gaussian kernel $f(t)=\exp(-\frac{t}{2\sigma^2})$. $x \sim \mathcal{N}(\mu_a,C_a)$, with $\mu_a=[0_{a-1};2;0_{p-a}]$, $C_1=I_p$ and $\{C_2\}_{i,j}=.4^{|i-j|}(1+\frac{4}{\sqrt{p}})$. \end{tabular}$

Simulations on MNIST data

Figure: Gaussian approximation of $g(\mathbf{x})$, n = 256, p = 784, $c_1 = c_2 = 1/2$, $\gamma = 1$, Gaussian kernel with $\sigma^2 = 1$, MNIST data (numbers 1 and 7) without and with 0dB noise.

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)

Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Context: Similar to clustering:

Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, with n_l labelled and n_u unlabelled data.

Context: Similar to clustering:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, with n_l labelled and n_u unlabelled data.
- ▶ Problem statement: give scores F_{ia} $(d_i = [K1_n]_i)$

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} - F_{ja})^2$$

such that $F_{ia} = \delta_{\{x_i \in C_a\}}$, for all labelled x_i .

Context: Similar to clustering:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, with n_l labelled and n_u unlabelled data.
- ▶ Problem statement: give scores F_{ia} $(d_i = [K1_n]_i)$

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2$$

such that $F_{ia} = \delta_{\{x_i \in C_a\}}$, for all labelled x_i .

Context: Similar to clustering:

- Classify $x_1, \ldots, x_n \in \mathbb{R}^p$ in k classes, with n_l labelled and n_u unlabelled data.
- Problem statement: give scores F_{ia} $(d_i = [K1_n]_i)$

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2$$

such that $F_{ia} = \delta_{\{x_i \in C_a\}}$, for all labelled x_i .

▶ Solution: for $F^{(u)} \in \mathbb{R}^{n_u \times k}$, $F^{(l)} \in \mathbb{R}^{n_l \times k}$ scores of unlabelled/labelled data,

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

where we naturally decompose

$$K = \begin{bmatrix} K_{(l,l)} & K_{(l,u)} \\ K_{(u,l)} & K_{(u,u)} \end{bmatrix}$$
$$D = \begin{bmatrix} D_{(l)} & 0 \\ 0 & D^{(u)} \end{bmatrix} = \operatorname{diag} \{K1_n\}$$

The finite-dimensional intuition: What we expect

Figure: Typical expected performance output

The finite-dimensional intuition: What we expect

Figure: Typical expected performance output

The finite-dimensional intuition: What we expect

Figure: Typical expected performance output

The reality: What we see!

Setting. $p = 400, n = 1000, x_i \sim \mathcal{N}(\pm \mu, I_p)$. Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$. Display. Scores F_{ik} (left) and $F_{ik} - \frac{1}{2}(F_{i1} + F_{i2})$ (right).

The reality: What we see!

Setting. $p = 400, n = 1000, x_i \sim \mathcal{N}(\pm \mu, I_p)$. Kernel $K_{ij} = \exp(-\frac{1}{2p} ||x_i - x_j||^2)$. Display. Scores F_{ik} (left) and $F_{ik} - \frac{1}{2}(F_{i1} + F_{i2})$ (right).

Score are almost all identical... and do not follow the labelled data!

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

Figure: Vectors $[F^{(u)}]_{\cdot,a}, a=1,2,3,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

Theoretical Findings

Method: Assume $n_l/n \rightarrow c_l \in (0, 1)$

We aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

Theoretical Findings

Method: Assume $n_l/n \rightarrow c_l \in (0, 1)$

We aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

• Taylor expansion of K as $n, p \to \infty$,

$$\begin{split} K_{(u,u)} &= f(\tau) \mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}} + O_{\|\cdot\|}(n^{-\frac{1}{2}}) \\ D_{(u)} &= n f(\tau) I_{n_u} + O(n^{\frac{1}{2}}) \end{split}$$

and similarly for $K_{(u,l)}$, $D_{(l)}$.

Theoretical Findings

Method: Assume $n_l/n \rightarrow c_l \in (0, 1)$

We aim at characterizing

$$F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha-1} F^{(l)}$$

• Taylor expansion of K as $n, p \to \infty$,

$$\begin{split} K_{(u,u)} &= f(\tau) \mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}} + O_{\|\cdot\|} (n^{-\frac{1}{2}}) \\ D_{(u)} &= n f(\tau) I_{n_u} + O(n^{\frac{1}{2}}) \end{split}$$

and similarly for $K_{(u,l)}$, $D_{(l)}$.

So that

$$\left(I_{n_{u}} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1}\right)^{-1} = \left(I_{n_{u}} - \frac{\mathbf{1}_{n_{u}} \mathbf{1}_{n_{u}}^{\mathsf{T}}}{n} + O_{\|\cdot\|}(n^{-\frac{1}{2}})\right)^{-1}$$

easily Taylor expanded.

Results: Assuming $n_l/n \rightarrow c_l \in (0,1)$, by previous Taylor expansion,

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[\underbrace{v}_{O(1)} + \underbrace{\alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}}}_{O(n^{-\frac{1}{2}})} \right] + \underbrace{O(n^{-1})}_{\text{Informative terms}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

Results: Assuming $n_l/n \rightarrow c_l \in (0,1),$ by previous Taylor expansion,

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[\underbrace{v}_{O(1)} + \underbrace{\alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}}}_{O(n^{-\frac{1}{2}})} \right] + \underbrace{O(n^{-1})}_{\text{Informative terms}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

Consequences:

Results: Assuming $n_l/n \rightarrow c_l \in (0,1),$ by previous Taylor expansion,

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[\underbrace{v}_{O(1)} + \underbrace{\alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}}}_{O(n^{-\frac{1}{2}})} \right] + \underbrace{O(n^{-1})}_{\text{Informative terms}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Consequences:
 - Random non-informative bias v

Results: Assuming $n_l/n \rightarrow c_l \in (0,1),$ by previous Taylor expansion,

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[\underbrace{v}_{O(1)} + \underbrace{\alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}}}_{O(n^{-\frac{1}{2}})} \right] + \underbrace{O(n^{-1})}_{\text{Informative terms}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Consequences:
 - Random non-informative bias v
 - Strong Impact of n_{l,a}

 $F_{\cdot,a}^{(u)}$ to be scaled by $n_{l,a}$

Results: Assuming $n_l/n \rightarrow c_l \in (0,1),$ by previous Taylor expansion,

In the first order,

$$F_{\cdot,a}^{(u)} = C \frac{n_{l,a}}{n} \left[\underbrace{v}_{O(1)} + \underbrace{\alpha \frac{t_a \mathbf{1}_{n_u}}{\sqrt{n}}}_{O(n^{-\frac{1}{2}})} \right] + \underbrace{O(n^{-1})}_{\text{Informative terms}}$$

where v = O(1) random vector (entry-wise) and $t_a = \frac{1}{\sqrt{p}} \operatorname{tr} C_a^{\circ}$.

- Consequences:
 - Random non-informative bias v
 - Strong Impact of n_{l,a}

$$F^{(u)}_{\cdot,a}$$
 to be scaled by $n_{l,a}$

Additional per-class bias $\alpha t_a 1_{n_u}$

$$\alpha = 0 + \frac{\beta}{\sqrt{p}}.$$

As a consequence of the remarks above, we take

$$\alpha = \frac{\beta}{\sqrt{p}}$$

and define

$$\hat{F}_{i,a}^{(u)} = \frac{np}{n_{l,a}} F_{ia}^{(u)}$$

As a consequence of the remarks above, we take

$$\alpha = \frac{\beta}{\sqrt{p}}$$

and define

$$\hat{F}_{i,a}^{(u)} = \frac{np}{n_{l,a}} F_{ia}^{(u)}$$

Theorem For $x_i \in C_b$ unlabelled,

$$\hat{F}_{i,\cdot} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$$

where $m_b \in \mathbb{R}^k$, $\Sigma_b \in \mathbb{R}^{k \times k}$ given by

$$(m_b)_a = -\frac{2f'(\tau)}{f(\tau)}\tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)}\tilde{t}_a\tilde{t}_b + \frac{2f''(\tau)}{f(\tau)}\tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2}t_at_b + \beta\frac{n}{n_l}\frac{f'(\tau)}{f(\tau)}t_a + B_b$$

$$(\Sigma_b)_{a_1a_2} = \frac{2\text{tr}C_b^2}{p}\left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)}\right)^2t_{a_1}t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2}\left([M^{\mathsf{T}}C_bM]_{a_1a_2} + \frac{\delta_{a_1}^{a_2}p}{n_{l,a_1}}T_{ba_1}\right)$$

with t,T,M as before, $\tilde{X}_a = X_a - \sum_{d=1}^k \frac{n_{l,d}}{n_l} X_d^{\circ}$ and B_b bias independent of a.

Corollary (Asymptotic Classification Error) For k = 2 classes and $a \neq b$,

$$P(\hat{F}_{i,a} > \hat{F}_{ib} \mid x_i \in \mathcal{C}_b) - Q\left(\frac{(m_b)_b - (m_b)_a}{\sqrt{[1,-1]\Sigma_b[1,-1]^{\mathsf{T}}}}\right) \to 0.$$

Corollary (Asymptotic Classification Error) For k = 2 classes and $a \neq b$,

$$P(\hat{F}_{i,a} > \hat{F}_{ib} \mid x_i \in \mathcal{C}_b) - Q\left(\frac{(m_b)_b - (m_b)_a}{\sqrt{[1, -1]\Sigma_b[1, -1]^{\mathsf{T}}}}\right) \to 0.$$

Some consequences:

- non obvious choices of appropriate kernels
- non obvious choice of optimal β (induces a possibly beneficial bias)
- importance of n_l versus n_u .

Figure: Performance as a function of $\alpha,$ for 3-class MNIST data (zeros, ones, twos), n=192, p=784, $n_l/n=1/16,$ Gaussian kernel.

Figure: Performance as a function of α , for 3-class MNIST data (zeros, ones, twos), n = 192, p = 784, $n_l/n = 1/16$, Gaussian kernel.

Figure: Performance as a function of α , for 2-class MNIST data (zeros, ones), $n=1568, p=784, n_l/n=1/16$, Gaussian kernel.

Figure: Performance as a function of α , for 2-class MNIST data (zeros, ones), $n=1568, p=784, n_l/n=1/16$, Gaussian kernel.

Is semi-supervised learning really semi-supervised?

Reminder:

For $x_i \in \mathcal{C}_b$ unlabelled, $\hat{F}_{i,\cdot} - G_b \to 0, \ G_b \sim \mathcal{N}(m_b, \Sigma_b)$ with

$$(m_b)_a = -\frac{2f'(\tau)}{f(\tau)}\tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)}\tilde{t}_a\tilde{t}_b + \frac{2f''(\tau)}{f(\tau)}\tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2}t_at_b + \beta\frac{n}{n_l}\frac{f'(\tau)}{f(\tau)}t_a + B_b$$

$$(\Sigma_b)_{a_1a_2} = \frac{2\text{tr}\,C_b^2}{p}\left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)}\right)^2t_{a_1}t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2}\left([M^{\mathsf{T}}C_bM]_{a_1a_2} + \frac{\delta^{a_2}_{a_1}p}{n_{l,a_1}}T_{ba_1}\right)$$

with t,T,M as before, $\tilde{X}_a = X_a - \sum_{d=1}^k \frac{n_{l,d}}{n_l} X_d^{\circ}$ and B_b bias independent of a.

Is semi-supervised learning really semi-supervised?

Reminder:

For $x_i\in \mathcal{C}_b$ unlabelled, $\hat{F}_{i,\cdot}-G_b\to 0,~G_b\sim \mathcal{N}(m_b,\Sigma_b)$ with

$$(m_b)_a = -\frac{2f'(\tau)}{f(\tau)}\tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)}\tilde{t}_a\tilde{t}_b + \frac{2f''(\tau)}{f(\tau)}\tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2}t_at_b + \beta\frac{n}{n_l}\frac{f'(\tau)}{f(\tau)}t_a + B_b$$
$$(\Sigma_b)_{a_1a_2} = \frac{2\text{tr}\,C_b^2}{p}\left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)}\right)^2t_{a_1}t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2}\left([M^{\mathsf{T}}C_bM]_{a_1a_2} + \frac{\delta^{a_2}_{a_1}p}{n_{l,a_1}}T_{ba_1}\right)$$

with t,T,M as before, $\tilde{X}_a = X_a - \sum_{d=1}^k \frac{n_{l,d}}{n_l} X_d^{\circ}$ and B_b bias independent of a.

The problem with unlabelled data:

- Result **does not** depend on $n_u!$
 - \longrightarrow increasing n_u asymptotically non beneficial.

Is semi-supervised learning really semi-supervised?

Reminder:

For $x_i\in \mathcal{C}_b$ unlabelled, $\hat{F}_{i,\cdot}-G_b\to 0,~G_b\sim \mathcal{N}(m_b,\Sigma_b)$ with

$$(m_b)_a = -\frac{2f'(\tau)}{f(\tau)}\tilde{M}_{ab} + \frac{f''(\tau)}{f(\tau)}\tilde{t}_a\tilde{t}_b + \frac{2f''(\tau)}{f(\tau)}\tilde{T}_{ab} - \frac{f'(\tau)^2}{f(\tau)^2}t_at_b + \beta\frac{n}{n_l}\frac{f'(\tau)}{f(\tau)}t_a + B_b$$

$$(\Sigma_b)_{a_1a_2} = \frac{2\mathrm{tr}\,C_b^2}{p}\left(\frac{f'(\tau)^2}{f(\tau)^2} - \frac{f''(\tau)}{f(\tau)}\right)^2t_{a_1}t_{a_2} + \frac{4f'(\tau)^2}{f(\tau)^2}\left([M^{\mathsf{T}}C_bM]_{a_1a_2} + \frac{\delta_{a_1}^{a_2}p}{n_{l,a_1}}T_{ba_1}\right)$$

with t,T,M as before, $\tilde{X}_a=X_a-\sum_{d=1}^k\frac{n_{l,d}}{n_l}X_d^\circ$ and B_b bias independent of a.

The problem with unlabelled data:

- Result does not depend on $n_u!$ \rightarrow increasing n_u asymptotically non beneficial.
- Even best Laplacian regularizer brings SSL to be merely supervised learning.
Consequences of the finite-dimensional "mismatch"

A priori, the algorithm should not work

- A priori, the algorithm should not work
- Indeed "in general" it does not!

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

Asymptotic performance analysis: clear understanding of what we see!

Consequences of the finite-dimensional "mismatch"

- A priori, the algorithm should not work
- Indeed "in general" it does not!
- But, luckily, after some (not clearly motivated) renormalization, it works again...
- BUT it does not use efficiently unlabelled data!

Chapelle, Schölkopf, Zien, "Semi-Supervised Learning", Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding the unlabeled data and employing a supervised method, rather than taking a semi-supervised route. Thus we worry about the embarrassing situation where the addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it

- Asymptotic performance analysis: clear understanding of what we see!
- Update the algorithm and provably improve unlabelled data use.

Resurrecting SSL by centering (SSL Improved)

Reminder:

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2 \quad \text{with } F_{ia}^{(l)} = \delta_{\{x_i \in \mathcal{C}_a\}}$$
$$\Leftrightarrow F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha - 1} \right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha - 1} F^{(l)}.$$

Resurrecting SSL by centering (SSL Improved)

Reminder:

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2 \quad \text{with } F_{ia}^{(l)} = \delta_{\{x_i \in \mathcal{C}_a\}}$$
$$\Leftrightarrow F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha - 1} \right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha - 1} F^{(l)}.$$

Domination of score flattening:

► Consequence of $\frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_i \|^2 \to \tau$: $D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1} \simeq \frac{1}{n} \mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}}$ and clustering information vanishes (not so obvious but can be shown).

Resurrecting SSL by centering (SSL Improved)

Reminder:

$$F = \operatorname{argmin}_{F \in \mathbb{R}^{n \times k}} \sum_{a=1}^{k} \sum_{i,j} K_{ij} (F_{ia} d_i^{\alpha - 1} - F_{ja} d_j^{\alpha - 1})^2 \quad \text{with } F_{ia}^{(l)} = \delta_{\{x_i \in \mathcal{C}_a\}}$$
$$\Leftrightarrow F^{(u)} = \left(I_{n_u} - D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha - 1} \right)^{-1} D_{(u)}^{-\alpha} K_{(u,l)} D_{(l)}^{\alpha - 1} F^{(l)}.$$

Domination of score flattening:

► Consequence of $\frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_i \|^2 \to \tau$: $D_{(u)}^{-\alpha} K_{(u,u)} D_{(u)}^{\alpha-1} \simeq \frac{1}{n} \mathbf{1}_{n_u} \mathbf{1}_{n_u}^{\mathsf{T}}$ and clustering information vanishes (not so obvious but can be shown).

Solution:

Forgetting finite-dimensional intuition: "recenter" K to kill flattening, i.e., use

$$\tilde{K} = PKP$$
, $P = I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}$.

Asymptotic Performance Analysis

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For $x_i \in C_b$ unlabelled, score vector $\hat{F}_{i,\cdot} \in \mathbb{R}^k$ with \tilde{K} satisfies:

 $\hat{F}_{i,\cdot} - \tilde{G}_b \to 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$

with $\tilde{m}_b \in \mathbb{R}^k$, $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$ still function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$.

Asymptotic Performance Analysis

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For $x_i \in C_b$ unlabelled, score vector $\hat{F}_{i,\cdot} \in \mathbb{R}^k$ with \tilde{K} satisfies:

$$\hat{F}_{i,\cdot} - \tilde{G}_b \to 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with $\tilde{m}_b \in \mathbb{R}^k$, $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$ still function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$.

Most importantly: $\tilde{m}_b, \tilde{\Sigma}_b$ now dependent of n_u (number of unlabelled data).

Asymptotic Performance Analysis

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL) For $x_i \in C_b$ unlabelled, score vector $\hat{F}_{i,\cdot} \in \mathbb{R}^k$ with \tilde{K} satisfies:

$$\hat{F}_{i,\cdot} - \tilde{G}_b \to 0, \ \tilde{G}_b \sim \mathcal{N}(\tilde{m}_b, \tilde{\Sigma}_b)$$

with $\tilde{m}_b \in \mathbb{R}^k$, $\tilde{\Sigma}_b \in \mathbb{R}^{k \times k}$ still function of $f(\tau), f'(\tau), f''(\tau), \mu_1, \dots, \mu_k, C_1, \dots, C_k$.

Most importantly: $\tilde{m}_b, \tilde{\Sigma}_b$ now dependent of n_u (number of unlabelled data).

Performance as a function of n_u , n_l for $\mathcal{N}(\pm, I_p)$

Figure: Correct classification rate, at optimal α , as a function of (i) n_u for fixed $p/n_l = 5$ (blue) and (ii) n_l for fixed $p/n_u = 5$ (black); $c_1 = c_2 = \frac{1}{2}$; different values for $||\mu||$. Comparison to optimal Neyman–Pearson performance for known μ (in red).

Experimental evidence: MNIST

O	١		2			
Digits	(0,8)	(2,7)	(6,9)			
$n_u = 100$						
Centered kernel (RMT) Iterated centered kernel (RMT) Laplacian Iterated Laplacian Manifold	89.5±3.6 89.5±3.6 75.5±5.6 87.2±4.7 88.0±4.7 = 1000	89.5±3.4 89.5±3.4 74.2±5.8 86.0±5.2 88.4±3.9	85.3±5.9 85.3±5.9 70.0±5.5 81.4±6.8 82.8±6.5			
Centered kernel (RMT) Iterated centered kernel (RMT) Laplacian Iterated Laplacian Manifold	92.2±0.9 92.3±0.9 65.6±4.1 92.2±0.9 91.1±1.7	$\begin{array}{c} 92.5{\pm}0.8\\ \textbf{92.5}{\pm}~\textbf{0.8}\\ 74.4{\pm}4.0\\ 92.4{\pm}0.9\\ 91.4{\pm}1.9\end{array}$	$\begin{array}{c} 92.6{\pm}1.6\\ \textbf{92.9}{\pm}1.4\\ 69.5{\pm}3.7\\ 92.0{\pm}1.6\\ 91.4{\pm}2.0 \end{array}$			

Table: Comparison of classification accuracy (%) on MNIST datasets with $n_l = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.

Experimental evidence: Traffic signs (HOG features)

		0	9		30
	62	-		30	
-4 💽 🕥	70	Ø		0	

Class ID	(2,7)	(9,10)	(11,18)			
$n_u = 100$						
Centered kernel (RMT)	79.0±10.4	77.5±9.2	78.5±7.1			
Iterated centered kernel (RMT)	85.3±5.9	89.2±5.6	90.1±6.7			
Laplacian	73.8±9.8	77.3±9.5	78.6±7.2			
Iterated Laplacian	83.7±7.2	88.0±6.8	87.1±8.8			
Manifold	77.6 ± 8.9	$81.4{\pm}10.4$	$82.3{\pm}10.8$			
$n_u = 1000$						
Centered kernel (RMT)	83.6±2.4	84.6±2.4	88.7±9.4			
Iterated centered kernel (RMT)	84.8±3.8	$88.0{\pm}5.5$	96.4±3.0			
Laplacian	72.7±4.2	88.9±5.7	95.8±3.2			
Iterated Laplacian	$83.0 {\pm} 5.5$	88.2±6.0	$92.7{\pm}6.1$			
Manifold	77.7±5.8	$85.0{\pm}9.0$	$90.6{\pm}8.1$			

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with $n_l = 10$. Computed over 1000 random iterations for $n_u = 100$ and 100 for $n_u = 1000$.

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)

Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!

 $^{2}\text{Reminder:} \ \mathcal{F}: E \to F \text{ is } \|\mathcal{F}\|_{lip} \text{-Lipschitz if } \forall (x,y) \in E^{2}: \|\mathcal{F}(x) - \mathcal{F}(y)\|_{F} \leq \|\mathcal{F}\|_{lip} \|x-y\|_{E}.$

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.

²Reminder: $\mathcal{F}: E \to F$ is $\|\mathcal{F}\|_{lip}$ -Lipschitz if $\forall (x, y) \in E^2: \|\mathcal{F}(x) - \mathcal{F}(y)\|_F \le \|\mathcal{F}\|_{lip} \|x - y\|_E$.

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

²Reminder: $\mathcal{F}: E \to F$ is $\|\mathcal{F}\|_{lip}$ -Lipschitz if $\forall (x, y) \in E^2: \|\mathcal{F}(x) - \mathcal{F}(y)\|_F \leq \|\mathcal{F}\|_{lip} \|x - y\|_E$.

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space $(E, \|\cdot\|_E)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is *q*-exponentially concentrated if for any 1-Lipschitz function² $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}$, there exists C, c > 0 s.t.

$$\mathbb{P}\left\{\left|\mathcal{F}(\mathbf{z}) - \mathbb{E}\mathcal{F}(\mathbf{z})\right| > t\right\} \le Ce^{-c t^{q}}$$

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space $(E, \|\cdot\|_E)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is *q*-exponentially concentrated if for any 1-Lipschitz function² $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}$, there exists C, c > 0 s.t.

$$\mathbb{P}\left\{\left|\mathcal{F}(\mathbf{z}) - \mathbb{E}\mathcal{F}(\mathbf{z})\right| > t\right\} \le Ce^{-c t^{q}} \xrightarrow{\text{denoted}} \boxed{\mathbf{z} \in \mathcal{O}(e^{-.q})}$$

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space $(E, \|\cdot\|_E)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is *q*-exponentially concentrated if for any 1-Lipschitz function² $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}$, there exists C, c > 0 s.t.

$$\mathbb{P}\left\{\left|\mathcal{F}(\mathbf{z}) - \mathbb{E}\mathcal{F}(\mathbf{z})\right| > t\right\} \le Ce^{-c t^{q}} \xrightarrow{\text{denoted}} \boxed{\mathbf{z} \in \mathcal{O}(e^{-.q})}$$

(P1) $X \sim \mathcal{N}(0, I_p)$ is 2-exponentially concentrated.

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space $(E, \|\cdot\|_E)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is *q*-exponentially concentrated if for any 1-Lipschitz function² $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}$, there exists C, c > 0 s.t.

$$\mathbb{P}\left\{|\mathcal{F}(\mathbf{z}) - \mathbb{E}\mathcal{F}(\mathbf{z})| > t\right\} \le Ce^{-c t^{q}} \xrightarrow{\text{denoted}} \boxed{\mathbf{z} \in \mathcal{O}(e^{-.q})}$$

(P1) $X \sim \mathcal{N}(0, I_p)$ is 2-exponentially concentrated. (P2) If $X \in \mathcal{O}(e^{-.q})$ and \mathcal{G} is $\|\mathcal{G}\|_{lip}$ -Lipschitz, then

$$\mathcal{G}(\mathbf{X}) \in \mathcal{O}\left(e^{-\left(\cdot/\|\mathcal{G}\|_{lip}\right)^{q}}\right).$$

- Observation: RMT seems to predict ML performances for real data even with Gaussian assumptions!
- **But** Real data are unlikely close to Gaussian.
- Gaussian vectors fall within a larger, more useful, class of random vectors!

Definition

Given a normed space $(E, \|\cdot\|_E)$ and $q \in \mathbb{R}$, a random vector $\mathbf{z} \in E$ is *q*-exponentially concentrated if for any 1-Lipschitz function² $\mathcal{F} : \mathbb{R}^p \to \mathbb{R}$, there exists C, c > 0 s.t.

$$\mathbb{P}\left\{|\mathcal{F}(\mathbf{z}) - \mathbb{E}\mathcal{F}(\mathbf{z})| > t\right\} \le Ce^{-c t^{q}} \xrightarrow{\text{denoted}} \boxed{\mathbf{z} \in \mathcal{O}(e^{-.q})}$$

(P1) $X \sim \mathcal{N}(0, I_p)$ is 2-exponentially concentrated. (P2) If $X \in \mathcal{O}(e^{-.q})$ and \mathcal{G} is $\|\mathcal{G}\|_{lip}$ -Lipschitz, then

$$\mathcal{G}(\mathbf{X}) \in \mathcal{O}\left(e^{-\left(\cdot/\|\mathcal{G}\|_{lip}\right)^{q}}\right).$$

"Concentrated vectors are stable through Lipschitz maps."

²Reminder: $\mathcal{F}: E \to F$ is $\|\mathcal{F}\|_{lip}$ -Lipschitz if $\forall (x, y) \in E^2: \|\mathcal{F}(x) - \mathcal{F}(y)\|_F \le \|\mathcal{F}\|_{lip} \|x - y\|_E$.

137 / 151

Generated image = $\mathcal{G}(Gaussian)$

Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

GAN Data =
$$\mathcal{F}_1 \circ \mathcal{F}_2 \circ \cdots \circ \mathcal{F}_N$$
(**Gaussian**)

Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

GAN Data = $\mathcal{F}_1 \circ \mathcal{F}_2 \circ \cdots \circ \mathcal{F}_N$ (**Gaussian**)

where the \mathcal{F}_i 's are either Fully Connected Layers, Convolutional Layers, Pooling Layers and Activation Functions, Residual Connections or Batch Normalizations.

Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

GAN Data = $\mathcal{F}_1 \circ \mathcal{F}_2 \circ \cdots \circ \mathcal{F}_N$ (**Gaussian**)

where the \mathcal{F}_i 's are either Fully Connected Layers, Convolutional Layers, Pooling Layers and Activation Functions, Residual Connections or Batch Normalizations.

 \Rightarrow The \mathcal{F}_i 's are *Lipschitz* operations.

Fully Connected Layers and Convolutional Layers are affine operations:

$$\mathcal{F}_i(x) = W_i x + b_i,$$

and $\|\mathcal{F}_i\|_{lip} = \sup_{u \neq 0} \frac{\|W_i u\|_p}{\|u\|_p}$, for any *p*-norm.

Fully Connected Layers and Convolutional Layers are affine operations:

$$\mathcal{F}_i(x) = W_i x + b_i,$$

and $\|\mathcal{F}_i\|_{lip} = \sup_{u \neq 0} \frac{\|W_i u\|_p}{\|u\|_p}$, for any *p*-norm.

Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect to any *p*-norm (e.g., ReLU and Max-pooling).

Fully Connected Layers and Convolutional Layers are affine operations:

$$\mathcal{F}_i(x) = W_i x + b_i,$$

and $\|\mathcal{F}_i\|_{lip} = \sup_{u \neq 0} \frac{\|W_i u\|_p}{\|u\|_p}$, for any *p*-norm.

Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect to any p-norm (e.g., ReLU and Max-pooling).

▶ Residual Connections: $\mathcal{F}_i(x) = x + \mathcal{F}_i^{(1)} \circ \cdots \circ \mathcal{F}_i^{(\ell)}(x)$ where the $\mathcal{F}_i^{(j)}$'s are Lipschitz operations, thus \mathcal{F}_i is a Lipschitz operation with Lipschitz constant bounded by $1 + \prod_{i=1}^{\ell} \|\mathcal{F}_i^{(j)}\|_{lip}$.

▶ ...
Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{x_1, \dots, x_{n_1}}_{\in \mathcal{O}(e^{-.q_1})}, \underbrace{x_{n_1+1}, \dots, x_{n_2}}_{\in \mathcal{O}(e^{-.q_2})}, \dots, \underbrace{x_{n-n_k+1}, \dots, x_n}_{\in \mathcal{O}(e^{-.q_k})}] \in \mathbb{R}^{p \times n}$$

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\in \mathcal{O}(e^{-\cdot q_1})}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\in \mathcal{O}(e^{-\cdot q_2})}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\in \mathcal{O}(e^{-\cdot q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i], \ C_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i x_i^{\mathsf{T}}]$$

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{x_1, \dots, x_{n_1}}_{\in \mathcal{O}(e^{-\cdot, q_1})}, \underbrace{x_{n_1+1}, \dots, x_{n_2}}_{\in \mathcal{O}(e^{-\cdot, q_2})}, \dots, \underbrace{x_{n-n_k+1}, \dots, x_n}_{\in \mathcal{O}(e^{-\cdot, q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i], \ C_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i x_i^{\mathsf{T}}]$$

Assumption (Growth rate) As $p \to \infty$,

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{x_1, \dots, x_{n_1}}_{\in \mathcal{O}(e^{-\cdot, q_1})}, \underbrace{x_{n_1+1}, \dots, x_{n_2}}_{\in \mathcal{O}(e^{-\cdot, q_2})}, \dots, \underbrace{x_{n-n_k+1}, \dots, x_n}_{\in \mathcal{O}(e^{-\cdot, q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i], \ C_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i x_i^{\mathsf{T}}]$$

Assumption (Growth rate) As $p \to \infty$, 1. $p/n \to c \in (0, \infty)$.

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\in \mathcal{O}(e^{-.q_1})}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\in \mathcal{O}(e^{-.q_2})}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\in \mathcal{O}(e^{-.q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i], \ C_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i x_i^{\mathsf{T}}]$$

Assumption (Growth rate)

As $p
ightarrow \infty$,

- 1. $p/n \rightarrow c \in (0, \infty)$.
- 2. The number of classes k is bounded.

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\in \mathcal{O}(e^{-.q_1})}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\in \mathcal{O}(e^{-.q_2})}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\in \mathcal{O}(e^{-.q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i], \ C_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i x_i^{\mathsf{T}}]$$

Assumption (Growth rate)

As $p
ightarrow \infty$,

- 1. $p/n \rightarrow c \in (0, \infty)$.
- 2. The number of classes k is bounded.
- 3. For any $\ell \in [k]$, $\|\mu_{\ell}\| = \mathcal{O}(\sqrt{p})$.

Consider data distributed in k classes C_1, C_2, \ldots, C_k as

$$X = [\underbrace{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}}_{\in \mathcal{O}(e^{-\cdot, q_1})}, \underbrace{\mathbf{x}_{n_1+1}, \dots, \mathbf{x}_{n_2}}_{\in \mathcal{O}(e^{-\cdot, q_2})}, \dots, \underbrace{\mathbf{x}_{n-n_k+1}, \dots, \mathbf{x}_n}_{\in \mathcal{O}(e^{-\cdot, q_k})}] \in \mathbb{R}^{p \times n}$$

Denote

$$\mu_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i], \ C_{\ell} = \mathbb{E}_{x_i \in \mathcal{C}_{\ell}}[x_i x_i^{\mathsf{T}}]$$

Assumption (Growth rate)

As $p \to \infty$,

- 1. $p/n \rightarrow c \in (0, \infty)$.
- 2. The number of classes k is bounded.
- 3. For any $\ell \in [k]$, $\|\mu_{\ell}\| = \mathcal{O}(\sqrt{p})$.

Notation $Q(z) = (X^{\mathsf{T}}X/p + zI_n)^{-1}.$

Behavior of Gram Matrices for Concentrated Vectors

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \quad \text{where} \ \ \tilde{Q}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p\,z}J\Omega(z)J^{\mathsf{T}}$$

Behavior of Gram Matrices for Concentrated Vectors

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \quad \text{where} \ \ \tilde{Q}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p\,z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = \operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$$
 and $\Omega(z) = \operatorname{diag}\{\mu_{\ell}^{\mathsf{T}}\tilde{R}(z)\mu_{\ell}\}_{\ell=1}^{k}$

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \quad \text{where} \quad \tilde{Q}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p\,z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = \operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$$
 and $\Omega(z) = \operatorname{diag}\{\mu_{\ell}^{\mathsf{T}}\tilde{R}(z)\mu_{\ell}\}_{\ell=1}^{k}$

$$\tilde{R}(z) = \left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1 + \delta_{\ell}(z)} + zI_{p}\right)^{-1}$$

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \quad \text{where} \quad \tilde{Q}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p\,z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = \operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$$
 and $\Omega(z) = \operatorname{diag}\left\{\mu_{\ell}^{\mathsf{T}}\tilde{R}(z)\mu_{\ell}\right\}_{\ell=1}^{k}$

$$\tilde{R}(z) = \left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1 + \delta_{\ell}(z)} + zI_{p}\right)^{-1}$$

with $\delta(z) = [\delta_1(z), \ldots, \delta_k(z)]$ is the unique fixed point of the system of equations

$$\delta_{\ell}(z) = \frac{1}{p} \operatorname{tr} \left(C_{\ell} \left(\frac{1}{k} \sum_{j=1}^{k} \frac{C_j}{1 + \delta_j(z)} + zI_p \right)^{-1} \right) \text{ for each } \ell \in [k].$$

Behavior of Gram Matrices for Concentrated Vectors

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \quad \text{where} \quad \tilde{R}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p\,z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = \operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$$
 and $\Omega(z) = \operatorname{diag}\left\{\mu_{\ell}^{\mathsf{T}}\tilde{R}(z)\mu_{\ell}\right\}_{\ell=1}^{k}$

$$\tilde{R}(z) = \left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1 + \delta_{\ell}(z)} + zI_{p}\right)^{-1}$$

with $\delta(z) = [\delta_1(z), \dots, \delta_k(z)]$ is the unique fixed point of the system of equations

$$\delta_{\ell}(z) = tr\left(\frac{C_{\ell}}{k}\left(\frac{1}{k}\sum_{j=1}^{k}\frac{C_{j}}{1+\delta_{j}(z)} + zI_{p}\right)^{-1}\right) \text{ for each } \ell \in [k]$$

Behavior of Gram Matrices for Concentrated Vectors

Theorem

Under the assumptions above, we have $Q(z) \in \mathcal{O}(e^{-(\sqrt{p} \cdot)^q})$ in $(\mathbb{R}^{n \times n}, \| \cdot \|)$. Furthermore,

$$\left\|\mathbb{E}[Q(z)] - \tilde{Q}(z)\right\| = \mathcal{O}\left(\sqrt{\frac{\log p}{p}}\right) \quad \text{where} \quad \tilde{R}(z) = \frac{1}{z}\Lambda(z) + \frac{1}{p\,z}J\Omega(z)J^{\mathsf{T}}$$

with
$$\Lambda(z) = \operatorname{diag}\left\{\frac{1_{n_{\ell}}}{1+\delta_{\ell}(z)}\right\}_{\ell=1}^{k}$$
 and $\Omega(z) = \operatorname{diag}\left\{\mu_{\ell}^{\mathsf{T}}\tilde{R}(z)\mu_{\ell}\right\}_{\ell=1}^{k}$

$$\tilde{R}(z) = \left(\frac{1}{k} \sum_{\ell=1}^{k} \frac{C_{\ell}}{1 + \delta_{\ell}(z)} + zI_{p}\right)^{-1}$$

with $\delta(z) = [\delta_1(z), \dots, \delta_k(z)]$ is the unique fixed point of the system of equations

$$\delta_{\ell}(z) = tr\left(\frac{C_{\ell}}{k}\left(\frac{1}{k}\sum_{j=1}^{k}\frac{C_{j}}{1+\delta_{j}(z)} + zI_{p}\right)^{-1}\right) \text{ for each } \ell \in [k].$$

Key Observation: Only first and second order statistics matter!

CNN representations correspond to the one before last layer.

147 / 151

Outline

Basics of Random Matrix Theory **(Romain COUILLET)** Motivation: Large Sample Covariance Matrices The Stieltjes Transform Method Spiked Models Other Common Random Matrix Models Applications

Large dimensional inference and kernels (Malik TIOMOKO) Motivation: EEG-based clustering Covariance Distance Inference Revisiting Motivation Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK) Support Vector Machines Semi-Supervised Learning From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

Asymptotic "concentration effect" for large n, p

Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \to \infty$.

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \rightarrow \infty$.
- Access to limiting performances and not only bounds!

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \to \infty$.
- ► Access to limiting performances and not only bounds! ⇒ hyperparameter optimization, algorithm improvement.

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \to \infty$.
- ► Access to limiting performances and not only bounds! ⇒ hyperparameter optimization, algorithm improvement.

Complete intuitive change

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \to \infty$.
- ► Access to limiting performances and not only bounds! ⇒ hyperparameter optimization, algorithm improvement.
- Complete intuitive change \Rightarrow opens way to renewed methods.

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \to \infty$.
- ► Access to limiting performances and not only bounds! ⇒ hyperparameter optimization, algorithm improvement.
- Complete intuitive change \Rightarrow opens way to renewed methods.
- Strong coincidence with real datasets

- Asymptotic "concentration effect" for large n, p ⇒ simplification in analyses and models.
- Non-trivial **phase transition** phenomena (ability to detect, estimate) when $p, n \to \infty$.
- ► Access to limiting performances and not only bounds! ⇒ hyperparameter optimization, algorithm improvement.
- Complete intuitive change \Rightarrow opens way to renewed methods.
- Strong coincidence with real datasets \Rightarrow easy link between theory and practice.

Neural nets: loss landscape, gradient descent dynamics and

Neural nets: loss landscape, gradient descent dynamics and deep learning!

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of *implicit solution*)

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of *implicit solution*)
- More difficult: problem raised from non-convex optimization problems

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of *implicit solution*)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)

- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of *implicit solution*)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)
- Robust statistics in machine learning
- Neural nets: loss landscape, gradient descent dynamics and deep learning!
- Generalized linear models
- More general problems from convex optimization (often of *implicit solution*)
- More difficult: problem raised from non-convex optimization problems
- Transfer learning, active learning, generative networks (GAN)
- Robust statistics in machine learning

▶ ...

Thank you.