Random Matrix Advances in Large Dimensional Statistics,
Machine Learning and Neural Nets
(EUSIPCO’2019, A Coruna, Spain)

Romain COUILLET, Malik TIOMOKO, Mohamed SEDDIK

CentraleSupélec, L2S, University of ParisSaclay, France
GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble—Alpes, France.

September 2nd, 2019

2o
: F
oy

CentraleSupélec

1/151



Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
Covariance Distance Inference
Revisiting Motivation
Kernel Asymptotics

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
Semi-Supervised Learning
From Gaussian Mixtures to Real Data

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)

2/151



Outline

Basics of Random Matrix Theory (Romain COUILLET)

3/151



Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices

4/151



Context

Baseline scenario: z1,...,z, € RP (or CP) i.i.d. with E[z1] =0, E[z1z]] = Cp:

5/151



Context

Baseline scenario: z1,...,z, € RP (or CP) i.i.d. with E[z1] =0, E[z1z]] = Cp:
> If 1 ~ N (0,Cp), ML estimator for Cj, is the sample covariance matrix (SCM)

1 n
A T
Cp =— E Tix; .
n
i=1

5/151



Context

Baseline scenario: z1,...,z, € RP (or CP) i.i.d. with E[z1] =0, E[z1z]] = Cp:
> If 1 ~ N (0,Cp), ML estimator for Cj, is the sample covariance matrix (SCM)

1 n
A § : T
Cp =— Tix; .
n
i=1

P> If n — oo, then, strong law of large numbers
A a.s.
Cp — Cp.
or equivalently, in spectral norm

165 — | =5 0.

5/151



Context

Baseline scenario: z1,...,z, € RP (or CP) i.i.d. with E[z1] =0, E[z1z]] = Cp:
> If 1 ~ N (0,Cp), ML estimator for Cj, is the sample covariance matrix (SCM)

1 n
A T
Cp =— E Tix; .
n
i=1

P> If n — oo, then, strong law of large numbers
A a.s.
Cp — Cp.
or equivalently, in spectral norm

165 — | =5 0.

Random Matrix Regime

» No longer valid if p,n — oo with p/n — ¢ € (0, 00),

|Co = Cp]| # 0.

5/151



Context

Baseline scenario: z1,...,z, € RP (or CP) i.i.d. with E[z1] =0, E[z1z]] = Cp:
> If 1 ~ N (0,Cp), ML estimator for Cj, is the sample covariance matrix (SCM)

1 n
A T
Cp =— E Tix; .
n
i=1

P> If n — oo, then, strong law of large numbers
A a.s.
Cp — Cp.
or equivalently, in spectral norm

165 — | =5 0.

Random Matrix Regime

» No longer valid if p,n — oo with p/n — ¢ € (0, 00),

|Co = Cp]| # 0.
» For practical p,n with p >~ n, leads to dramatically wrong conclusions

5/151



Context

Baseline scenario: z1,...,z, € RP (or CP) i.i.d. with E[z1] =0, E[z1z]] = Cp:
> If 1 ~ N (0,Cp), ML estimator for Cj, is the sample covariance matrix (SCM)

1 n
A T
Cp =— E Tix; .
n
i=1

P> If n — oo, then, strong law of large numbers
A a.s.
Cp — Cp.
or equivalently, in spectral norm

165 — | =5 0.

Random Matrix Regime

» No longer valid if p,n — oo with p/n — ¢ € (0, 00),

|Co = Cp]| # 0.

» For practical p,n with p >~ n, leads to dramatically wrong conclusions
» Even for n = 100 X p.
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The Large Dimensional Fallacies

Setting: z; € R? i.id., z1 ~ CN(0, Ip)
» assume p = p(n) such that p/n —c¢ > 1
» then, joint point-wise convergence

. 1 a.s,
Cp—1 =X X7 -6 250
» however, eigenvalue mismatch
0= Al(ép) == /\pfn(ép) < Ap7n+1(ép) <... < )‘p(ép)
1= )\1(117) == )‘an(lp) = )‘pfn+l(ép) == )‘p(lp)

= no convergence in spectral norm.
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The Maréenko—Pastur law

Definition (Empirical Spectral Distribution)
Empirical spectral distribution (e.s.d.) p, of Hermitian matrix A, € RP*?P is

p
1
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Definition (Empirical Spectral Distribution)

Empirical spectral distribution (e.s.d.) p, of Hermitian matrix A, € RP*?P is
1
oo = kaimp)-
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Empirical spectral distribution (e.s.d.) p, of Hermitian matrix A, € RP*?P is
1
oo = kaimp)-
i=1

Theorem (Maréenko—Pastur Law [Mar€enko,Pastur’67])

Xp € RPX™ with i.i.d. zero mean, unit variance entries.
As p,n — oo with p/n — ¢ € (0,00), e.s.d. up of %XPX;,'— satisfies

Hp = (o)

in distribution (i.e., ff(t)up(dt) Rl ff(t),u(c) (dt) for all bounded continuous f),
where

> 1c({0}) = max{0,1—c"'}
> on (0,00), ey has continuous density f. supported on [(1 — /)2, (1 + 1/c)?]

fol@) = o/l — (1= VO (1+ v — 2.
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The Stieltjes transform

Definition (Stieltjes Transform)
For p real probability measure of support supp(u), Stieltjes transform m,, defined, for
z € C\ supp(p), as

miu(z) = / —— ()

Property (Inverse Stieltjes Transform)
For a < b continuity points of p,

b
w([a, b]) :hml/ Smp(x + 1€)]dx

el0 ™
Besides, if u has a density f at z,

(@) = lim ~Sfmu(o -+ ).
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The Stieltjes transform

Property (Relation to e.s.d.)
If p e.s.d. of Hermitian A € RP*P, (i.e., p = % Zle dx,4))

my(z) = %tr (A—zI,)7t
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Property (Relation to e.s.d.)
If p e.s.d. of Hermitian A € RP*P, (i.e., p = % Zle dx,(4))

my(z) = %tr (A—zI,)7t

Proof:

o fuld) I~ 11
mu(z)f/t_z fp;—&m)_z = St (diag{Xi(A)} = 21y)

1
= Ztr (A—zI,)" L.
p
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The Stieltjes transform

Property (Relation to e.s.d.)
If p e.s.d. of Hermitian A € RP*P, (i.e., p = % Zle dx,4))

my(z) = %tr (A—zI,)7t

Proof:

p
i (2) = / W 23 s = (e — )
i=1

1
=tr (A—zlp)" 1.
p

Fundamental object: the resolvent of A

Qa(z) = (A—2zI,)" 1.
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The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X € CP*", and

> pesd. of XXT

> jiesd of XTX
Then

mu(2) = Smp(z) = 20
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The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X € CP*"™, and
> pesd. of XXT
> jiesd of XTX
Then
p—nl
P z

mu(z) = “mp(z) —
p

Proof:

n

P
1 1 1 1
mu(2) = 5; NXXT) — 2 EZ N(XTX) — 2

i=1

+ 1(pfn)
p

0—
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A, B € RP*P invertible,

Al - B l=A"YB-A)B™ L

Proof: Simply left-multiply by A and right-multiply by B on both sides.
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Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A, B € RP*P invertible,

Al - B l=A"YB-A)B™ L

Proof: Simply left-multiply by A and right-multiply by B on both sides.

Corollary
Fort € C, z € RP, A € RP*P, with A and A + txzz" invertible,

A" lg

Attea) o= ————"—.
(A+tzz)" e 1+taTA- 1z

Proof Intuition: Left-multiply by (A +tcc') on both sides.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
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z € C\ supp(p),
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‘ P ( ») P ? p dist(z, supp())

In particular, as p — oo, if limsup,, || B|| < oo,

1 - 1
7trB(A+t:r:rT7zIp) to —trB(A—zI) ' —o0.
p p

Proof Intuition: Based on Weyl's interlacing identity (eigenvalues of A and A + tea’
are interlaced).
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)

For
> x € RP with i.i.d. entries with zero mean, unit variance, finite 2k order moment,
> A € RP*P deterministic (or independent of z),

then
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E .
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)

For
> x € RP with i.i.d. entries with zero mean, unit variance, finite 2k order moment,
> A € RP*P deterministic (or independent of z),

then

r fAl»

E .
P2

<K

1 1
‘7ITASC — —trA
p p

In particular, if limsup,, || A[| < co, and x has entries with finite eighth-order moment,

1 1
ZaTAz— ~trA S0
p p

(by Markov inequality and Borel Cantelli lemma).
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Proof of the Maréenko—Pastur law

Theorem (Marcenko—Pastur Law [Mar&enko,Pastur’'67])
Xp € RPX™ with i.i.d. zero mean, unit variance entries.
As p,n — oo with p/n — ¢ € (0,00), e.s.d. pup of %XpX;,r satisfies

a.s.
Hp — H(c)
weakly, where

> 1o ({0}) = max{0,1 - =1}
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Theorem (Marcenko—Pastur Law [Marcenko,Pastur’'67])
Xp € RPX™ with i.i.d. zero mean, unit variance entries.
As p,n — oo with p/n — ¢ € (0,00), e.s.d. pp of%XpX; satisfies

a.s.
Hp — H(c)
weakly, where
> ji(e)({0}) = max{0,1 — ¢~}
> on (0,00), p(c) has continuous density f. supported on [(1 —+/c)?, (1 + +/c)?]

fol@) = o=/l = (1= VO + Vo — ).
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Proof of the Maréenko—Pastur law

Stieltjes transform approach.
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my, (2) = ;tr (;XPX; —zlp) = BZ |:( XT,XT zlp) :|
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Proof of the Maréenko—Pastur law

Stieltjes transform approach.

Proof
> With pp esd. of LX, X7,

1 1 -t -1
my, (2) = ;tr (;XPX; —zlp) = BZ |:( XT,XT zlp) :|

> Write

i1

xp= [V | emorn
p Yp71

so that, for §[z] > 0,

-1
1 YTy -z LyTy,
—X,XT — 21 = ot .
(n pAp — % p) (Tllyp—ly LY, 1Y) =2l
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Proof of the Maréenko—Pastur law

Proof (continued)

» From block matrix inverse formula

A B\' (A—BD-1C)1 —A-1B(D - CA-'B)~!
C D “\-(A-BD"1lC)"lcAa? (D—-CcA=1B)~!
we have

(lx X1 -zl )71 -
—Ap —#lp = :
n P 11 —Z—Z%yT(%YpTﬂYp*l —zln) "y
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Proof of the Maréenko—Pastur law

Proof (continued)

» From block matrix inverse formula

A B! (A-BD-1C)1 —AZIB(D - CA~IB)!
¢ p) ~\-(A-BD-lc)"tca? (D-cAB)™
we have
1 -1 1
ZX. XT — 2T ) = ’
[(n P : :|11 —Z—Z%yT(%YpTﬂYp*l_ZI7")7ly

» By Trace Lemma, as p,n — oo

1 -1 1 a.s.
ZXpX) -zl ) - 2% 0.
{(n e P }11 —z—z%tr(%YpTilYp,l —zl,)~1
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Proof of the Maréenko—Pastur law

Proof (continued)

» By Rank-1 Perturbation Lemma (X;Xp = YJ_IYp_l +yy'), as p,n — oo

1 -1 1 a.s,
-X XT—zI) - 2%0.
[(n P P ]11 —z—2itr (LXTX, — 21,) !

20/151



Proof of the Maréenko—Pastur law

Proof (continued)

» By Rank-1 Perturbation Lemma (X;Xp = YJ_IYp,1 +yy'), as p,n — oo

1 -1 1 a.s,
=X XszI) - —*0.
|:<n P P ]11 —z—2itr (LXTX, — 21,) !

> Since Ltr (LXTX), — 21,)7 = Ler (L X, X — 21,)71 - =21

1 -t 1 as,
XX — zlp) - 230,
{(n P u 1- 2z zdltr(Ix,XT — 21,) !
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Proof of the Maréenko—Pastur law

Proof (continued)

» By Rank-1 Perturbation Lemma (X;Xp = YJ_IYpfl +yy'), as p,n — oo

1 -1 1 a.s,
~X XszI) - 2%0.
|:<n P P ]11 —z—2itr (LXTX, — 21,) !

> Since Ltr (LXTX), — 21,)7 = Ler (L X, X — 21,)71 - =21

n z
1 -1 1 a.s.
ZXp X — 2l ) - 230,
{(n P P }11 1-2 —z—zler(Ix, X — 21,)~!
> Repeating for entries (2,2),..., (p,p), and averaging, we get (for S[z] > 0)
]. a.s.
my, (2) — > — 0.

1-2—2—22m,,(2)
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Proof of the Maréenko—Pastur law

Proof (continued)

> Then my,(2) 2% m(z) solution to

m(z) = !

T 1l—c—2z—czm(2)
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Proof of the Maréenko—Pastur law

Proof (continued)

> Then my,(2) 2% m(z) solution to

=) '
m(z)= ———
1—c—z—czm(z)

i.e., (with branch of / f(z) such that m(z) — 0 as |z| — c0)

e 1 EmaEver) (- a-ver)

m(z) =
2cz 2c 2cz
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Proof of the Maréenko—Pastur law

Proof (continued)
> Then my,(2) 2% m(z) solution to

1

m(z) = ——m8
) 1—c—z—czm(z)

i.e., (with branch of / f(z) such that m(z) — 0 as |z| — c0)

e 1 EmaEver) (- a-ver)

m(z) =

2cz 2c 2cz

» Finally, by inverse Stieltjes Transform, for z > 0,

V(@ +vaR =) (e - (- vop2)

2mwex

Hael(1-ve)2,(14ve)2]}

1
lim —$ =
glf(} - S[m(z + 1€)]
And for z = 0,
lim:eS[m(ee)] = (1 - Cil) Tes1y-

£l0
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai’95])
LetY, = Cp%Xp € RPX™ with
> (), € CP*P nonnegative definite with e.s.d. v, — v weakly,
> X, € CP*™ has i.i.d. entries of zero mean and unit variance.
As p,n — oo, p/n — c € (0,00), fip e.s.d. of%YJYp € R X" satisfies
fip ==

weakly, with m(z), $[z] > 0, unique solution with I[my(z)] > 0 of

-1
t
mp(z) = <_Z+C/1+tmg(z)y(dt)> .
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai’95])
LetY, = Cp%Xp € RPX™ with
> (), € CP*P nonnegative definite with e.s.d. v, — v weakly,
> X, € CP*™ has i.i.d. entries of zero mean and unit variance.
As p,n — oo, p/n — c € (0,00), fip e.s.d. of%YJYp € R X" satisfies
fip ==

weakly, with m(z), $[z] > 0, unique solution with I[my(z)] > 0 of

—1
t
mﬁ(z) = <_Z + C/ 1+t’rnﬂ(z)y(dt)> .

Moreover, i is continuous on RT and real analytic wherever positive.

1 1
i . 1 T_ 1\ " 2. 2TO2
Immediate corollary: For y; e.s.d. of ZY,Y, = > i—1 Cp ziz; OF

a.s.
Hp — [
weakly, with i = cu + (1 — ¢)do.
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Sample Covariance Matrices

(i) (i)

Figure: Histogram of the eigenvalues of %YPYJ, n = 3000, p = 300, with C}, diagonal with
evenly weighted masses in (i) 1, 3, 7, (ii) 1, 3, 4.
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Further Models and Deterministic Equivalents

Sometimes, 11, does not converge!
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Further Models and Deterministic Equivalents

Sometimes, 1, does not converge!
» if v, does not converge
> if p/n does not converge

> if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence i, of deterministic measures, with
— a.s.
bp — fip — 0
or equivalently, deterministic sequence of m, with
_ mp a.s. O.

mup
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Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)

1 1
Let By = Cg XpTp X CF , with e.s.d. pp, X, € RPX™ with iii.d. entries of zero mean,
variance 1/n, Cp Hermitian nonnegative definite, Ty, diagonal nonnegative,
tim sup,, max((|Cy |, | Ty ) < oo. Denote ¢ = p/n.
Then, as p,n — oo with bounded ratio ¢, for z € C\R™,

a.s. ]- — -
My, (2) —mp(z) — 0, myp(z) = Pl (—zIp +&(2)Cp) "
with &(z) unique solution in {z € C*,ép(z) € Ct} or {z € R™,ép(2) € Rt} of
1
ep(2) = ;t"cp (—2Ip +&p(2)Cp) ™}

1
ep(2) = —trTy (In + cep(2)Tp) 1.
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Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:
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Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

> Information-plus-noise: Y, = A, + X, A, deterministic

» Variance profile: Y, = P, ® X, (entry-wise product)

1
H . — S —(O2
» Per-column covariance: Y, = [y1,...,Yn], ¥i = iz

> etc.
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Outline

Basics of Random Matrix Theory (Romain COUILLET)

Spiked Models
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No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
1
Let Y, = C2 X, € RPX", with

> Cp, € RPXP nonnegative definite with e.s.d. v, — v weakly,
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Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
Let Y, = CF X, € RPX™, with

> C)p € RPXP nonnegative definite with e.s.d. v, — v weakly,

> X, € RPX™ has i.i.d. entries of zero mean and unit variance,

> EHXPEL]'} < oo,

> max; dist(A\;(Cp),supp(v)) — 0.

Let fi be the limiting e.s.d. of %YPTYP as before. Let [a,b] C RT \ supp(?). Then,

{,\i (%YPTYP) };l Nla,b] =0

for all large n, almost surely.

In practice: This means that eigenvalues of %YPTYP cannot be bound at macroscopic
distance from the bulk, for p, n large.
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Spiked Models

Breaking the rules. If we break

> Rule 1: Infinitely many eigenvalues may wander away from supp(u).

T T T T
0.8 — 0.8 —
0.6 — — 0.6 — —
0.4 — 0.4 — —
0.2 — — 0.2 — —
0 Il 0 KX
0 1 2 3 0 1 2 3
4 47 _
E[Xij] < o0 E[Xij] =00
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Spiked Models

If we break:

> Rule 2: C}, may create isolated eigenvalues in %Yp

YT, called spikes.

P

T T T T T
X {3
| | X X
3 4 5
Figure: Eigenvalues of %YpYJ, C, =diag(1,...,1,2,3,4,5), p =500, n
~——
p—4a

= 2000.
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Spiked Models: The phase transition phenomenon

1 I
‘Xp/n =1/4 (p = 500)
0.8 - |
0.6 |- —
0.4 |- .
0.2 |- —
0 X | |
0 2 4 6 8

Figure: Eigenvalues of 1Y, Y], Cpp = diag(1,...,1,2,3,4,5).
N——

p—4
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Spiked Models: The phase transition

phenomenon

I T I
xp/n=1/2(p = 500)
0.8
0.6
0.4
0.2 |
0 | x |
0 2 4 6
Figure: Eigenvalues of TILYPYJ, Cp = diag(1,...,1,2,3,4,5).
——
p—a
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Spiked Models: The phase transition phenomenon

X

xp/n =1 (p = 500)

L x

Figure:

2 4

6 8

Eigenvalues of 1Y, Y, Cp = diag(l,...,1,2,3,4,5).
——

p—4
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Spiked Models: The phase transition phenomenon

1 T T
xp/n =2 (p = 500)

0.8 |~ |
0.6 — —
0.4 — |
0.2 | .

o I

0 2 4 6 8
Figure: Eigenvalues of TILYPYJ, Cp = diag(1,...,1,2,3,4,5).
——

p—4
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
1
Let Y, = CF X, with
» X, with i.i.d. zero mean, unit variance, E[\Xp\?j] < o0.

> Cp,=1,+P, P= UQUT, where, for K fixed,

Q = diag (w1, .. .,wx) € REXEwith wy > ... > wg > 0.

32/151



Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
1
Let Y, = CF X, with
» X, with i.i.d. zero mean, unit variance, E[\Xp\?j] < o0.

> Cp,=1,+P, P= UQUT, where, for K fixed,
Q = diag (w1, .. .,wx) € REXEwith wy > ... > wg > 0.

Then, as p,n — oo, p/n — ¢ € (0,00), denoting \; = /\i(%YprT),
> if wm > \/E,

14+ wm

m

> (14 /c)?

)\mml—i-wm-i—c

32/151



Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
1
Let Y, = CF X, with
» X, with i.i.d. zero mean, unit variance, E[\Xp\?j] < o0.

> Cp,=1,+P, P= UQUT, where, for K fixed,
Q = diag (w1, .. .,wx) € REXEwith wy > ... > wg > 0.

Then, as p,n — oo, p/n — ¢ € (0,00), denoting \; = /\i(%YprT),
> if wm > \/E,

14+ wm

m

> (14 /c)?

)\mml—i-wm-i—c

> if wy € (0,4/¢],

Am =5 (1++/e)?
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Spiked Models

0.8

0.6

0.4

Figure:

X

{Nitie,

x|

14wy +ec

Eigenvalues of %YFYJ, Cp =diag(1,...,1,2,3), p =500, n = 1500.
~——

p—2

w
w2

14w

2 .
sl wy et
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Spiked Models

Proof

> Two ingredients: Algebraic calculus + trace lemma
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> Find eigenvalues away from eigenvalues of %X,,X;:
1
0 = det (prYJ - /\Ip) . Y, =CZX,
n
1
= det(Cp) det (7prg - ,\cp—1>
n

1
= det <7Xng — Mp + M — cp—l))
n

1 1 -1
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n n
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Spiked Models

Proof (2)
> Sylverster's identity (det(/ + AB) = det(I + BA)),

1 1 -1
0 = det (prX; - Mp) det <1K +AIg +Q H T (4{,,)(; - Mp) U)
n n
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Spiked Models

Proof (2)
> Sylverster's identity (det(/ + AB) = det(I + BA)),

1 1 -1
0 = det (prX; - Mp) det (IK +AIg +Q H T (7XPX; - ,\Ip) U)
n n

> No eigenvalue outside the support [Bai,Sil’98]: det(%XpX;— — Mp) has no zero
beyond (1 + +/c)? for all large n a.s.
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Spiked Models

Proof (2)
> Sylverster's identity (det(/ + AB) = det(I + BA)),

1 1 -1
0 = det (prX; - Mp) det (IK +AIg +Q H T (7XPX; - ,\Ip> U)
n n

> No eigenvalue outside the support [Bai,Sil’98]: det(%XpX;— — Mp) has no zero
beyond (1 + +/c)? for all large n a.s.

> Extension of Trace Lemma: for each z € C \ supp(u),
-1 a.s
gl ( XpX, — zlp) U 2% my,(2)Ik.

(Xp being “almost-unitarily invariant”, U made of “i.i.d.-like” random vectors)

» As a result, for all large n a.s.,

1
0 = det <1K + (I + Q_l)_lUT(prX; - Azp)*lU)

ﬁ( —_ ):f_](H

k=1

()
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Spiked Models

Proof (3)
> Limiting solutions: zeros of
1
A (N) = - em
Wm,
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Spiked Models

Proof (3)
> Limiting solutions: zeros of
1
A (N) = - em
Wm,

» Marcenko—Pastur law properties
(mi(2) = (1 c— 2 — czmyu(2)) )
> A= dmyu () = f 25 p(dt) maps
(1 + /)%, ) onto (-2 07)

P Solution only when w,, > /c:

1+ wm

m

A=14+wm+c

existence of a solution

7
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let Y, = CF X, with
> X, with i.i.d. zero mean, unit variance, finite fourth order moment entries

K
> C’p:Ip—l—P,P:Zi:lwiuiu;r, w1 > ...>wpy > 0.
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1
Let Y, = CF X, with
> X, with i.i.d. zero mean, unit variance, finite fourth order moment entries

K
> C’p:Ip—l—P,P:Zi:lwiuiu;r, w1 > ...>wpy > 0.

Then, as p,n — 0o, p/n — ¢ € (0,00), for a,b € RP deterministic and 1, eigenvector

1 T
of)\i(;Ypr ),
1—cw 2
Ty T i T, T a.s,
a'd;0;b— ——a uu; b- 1wi>ﬁ — 0
1+ cw;
In particular,
o 1—cw ?
N a.s.
] il .

1 +cw;l
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Spiked Models

Theorem (Eigenvectors [Paul’07])
1
Let Y, = CF X, with
> X, with i.i.d. zero mean, unit variance, finite fourth order moment entries

K
> C’p:Ip—l—P,P:Zi:lwiuiu;r, w1 > ... >wp > 0.

Then, as p,n — 0o, p/n — ¢ € (0,00), for a,b € RP deterministic and 1, eigenvector

(1 T
of)\,(;Ypr ),
-2
1—cw; a.s.
ala;alb— %aTuiuIb- ly,>ye —0
1+ cw;
In particular,
-2
o 1 — cw;
R a.s.
o] wi|* == ——5

-1 .
1+cw;l wi>ve

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

1 1 -1
at;0)b=— @ a' <7YprT - zlp) bdz
2m c n

for Cy, contour circling around A; only. 37/151



Spiked Models

0.8 -

Tup|?
-

a
C—

0.4

0 | |

0 1 2

Population spike w1

1
Figure: Simulated versus limiting |41 u1|? for Y, = C2 X, Cp = I, + wiuiu], p/n

varying wi .

=1/3,
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Spiked Models
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Spiked Models

ﬂ-lrul 12

Figure: Simulated versus limiting |111u1\2 for Y, = C,

varying wi .

i i
el B
- — . p=100
- - - p=200
. p = 400
| | T
1 2 3 4

Population spike w1

IV

Xp, Cp =1, +w1u1uI, p/n =1/3,
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Spiked Models

ﬁIul \2

|
2 3 4

Population spike w1

1
Figure: Simulated versus limiting |@]u1|? for Y, = CZ Xp, Cp = I + wiuiu], p/n = 1/3,
varying wi .
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Tracy—Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
1
Let Y, = CF X, with
> X, with i.i.d. real or complex Gaussian zero mean, unit variance entries,

> Cp=Ip+ P, P=31 wumul, wi>...>wg >0 (K >0).
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1
Let Y, = CF X, with
> X, with i.i.d. real or complex Gaussian zero mean, unit variance entries,

> Cp=Ip+ P, P=31 wumul, wi>...>wg >0 (K >0).
Then, as p,n — oo, p/n — c < 1,
» Ifwy < +/c (or K=0),

o3 A1 — (14 /)2
(1+/e)ics

N T, (real or complex Tracy—Widom law)

> Ifw > /e,

<(1+u11)2 _ (1+w1)2>ép§ |:)\1 - (1+W1+01:M)} iw\/’(o,l).

2
c wy 1
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Tracy—-Widom Theorem

0.5

— — — Centered-scaled \1

—4 -2 0 2

Figure: Distribution of p%c_%(l + \/E)_% [Al(%XpX;) —(1+ \/E)z] versus real
Tracy-Widom (T'), p = 500, n = 1500.
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Other Spiked Models

Similar results for multiple matrix models:

> Y, = 2 XXT + P, P deterministic and low rank
>V, =ixTI+P)X

>V, =i Xx+P)T(X+P)

> Y, =1TXT(I+P)XT

> etc.
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Outline

Basics of Random Matrix Theory (Romain COUILLET)

Other Common Random Matrix Models
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The Semi-circle law

Theorem

Let X,, € R"*™ Hermitian with e.s.d. uy such that ﬁ[xn]oj are i.i.d. with zero
mean and unit variance. Then, as n — 0o,

a.s.
Pn —> [

with p(dt) = %\ /(4 —t2)*+dt. In particular, m,, satisfies

1

ma(e) = Sy
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The Semi-circle law

I I
| | — — — Empirical eigenvalue distribution
0.4 : : Semi-circle Law H
I I T T T
| | | | |
I I I I I
I I I I I
I I I I
| I | |
0.3 |- | | I I N
I ) ' I
I I
I I
2 \ |
2 I I
% | |
o 0.2 |- \ | R
| |
I I
I I
| |
| |
I I
0.1 ! I ]
| |
| 1
| {
| 1
| |
| 1

Eigenvalues

Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for n = 500
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The Circular law

Theorem
Let X,, € C™*™ with e.s.d. ju, be such that

1 B .. . .
W[X"]” are i.i.d. entries with zero mean
and unit variance. Then, as n — 0o,

a.s.
Hn —> [

with p a complex-supported measure with p(dz) = ﬁé‘ z|<1dz
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The Circular law

Empirical eigenvalues

+

Circular Law

(11ed AseuiSewr) sonjeausSig

)

Eigenvalues (real part

Figure: Eigenvalues of X,, with i.i.d. standard Gaussian entries, for n = 500.
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Outline

Basics of Random Matrix Theory (Romain COUILLET)

Applications
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Large range of applications:

> Wireless communications: capacity of large communication channels H € CP*™,
optimal precoding in mu-MIMO, power allocation in large networks, sensing in
cognitive radios, etc.

> Array processing: improved MUSIC methods for large arrays (p ~ n), optimal
beamforming (MVDR), detection filters (ANMF), etc.

» Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios
and short time windows.

» Brain signal processing: EEG covariance estimation on short windows.

‘ Any application where p ~ n “rather large”

(convergence speed in up to O(n) and not O(y/n) as usuall)

BUT mostly linear settings...
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... to machine learning!

Specificities in statistical and machine learning:
> Matrix of non-linear entries: kernel matrices K = {r(ws,;)}}';_;, activation

functions in neural nets ;1 = o(Wx;), non-linear features, etc.
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> Matrix of non-linear entries: kernel matrices K = {r(ws,;)}}';_;, activation
=
functions in neural nets ;1 = o(Wx;), non-linear features, etc.

> Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin
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. to machine learning!

Specificities in statistical and machine learning:

> Matrix of non-linear entries: kernel matrices K = {r(ws,;)}}';_;, activation
=
functions in neural nets ;1 = o(Wx;), non-linear features, etc.

> Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin
constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for
large n, p, what happens to machine learning methods?

> we will see that small-dimensional intuitions dramatically fail
» some classical and widely-used algorithms become ineffective

» BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and change paradigm.
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Outline

Large dimensional inference and kernels (Malik TIOMOKO)
Motivation: EEG-based clustering
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Motivation example: EEG-based clustering

» Hard classification on raw data Xj:
Need Features
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Motivation example: EEG-based clustering

» Hard classification on raw data Xj:
Need Features

» Relevant Feature: Covariance C;

» Distance between features: D(C;, Cj)

D(C;,Cy)

®® ¢— C; =E[X;X]]

—

53 /151



Outline

Large dimensional inference and kernels (Malik TIOMOKO)

Covariance Distance Inference

54 /151



Context

Observations:
(1)

2

(2

> two data vector classes z; * € C1 and z,”” € C2
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Observations:
(1)
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> X, = [:pga), .. .,xi{fj], xga) € RP with E[xga)] =0, E[xga)xga)-r] = C4.

(2

> two data vector classes z; * € C1 and z,”” € C2

Objective:
» From the data m(a), estimate some distance function

i

D= D(Cl,CQ).
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> X, = [:pga), .. .,xi{fj], xga) € RP with E[xga)] =0, E[xga)xga)-r] = C4.

(2

> two data vector classes z; * € C1 and z,”” € C2

Objective:

» From the data mga), estimate some distance function

D= D(Cl, Cz).
» Classical approach:
Na

R . v 1 = (a) (a 1
D=D(Cy,Cs), withCy = — E 22T — — x, xT.
Na
=1
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Context

Observations:
(1)

2

» two data vector classes z; ' € C1 and xl@) € Ca

> X, = [m§a), .. .,xslaa)], xga) € RP with E[xga)] =0, E[xga)xga)-r] = C4.

Objective:

» From the data mga), estimate some distance function

D = D(C1,C3).

» Classical approach:

Na

R . v 1 = (a) (a 1
D=D(Cy,Cs), withCy = — E 22T — — x, xT.
Na
=1

— Often justified by Law of Large Numbers: D 2% D asn— co.
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In practice though...

Example:
» The Fisher distance

1 2

_1 _1
D(Cy,Cs) = . log?(C, 2C2C, )

F
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In practice though...

Example:
» The Fisher distance

P
1 1 —1? 1 _
D(C1,Ca) = log?(C, 2C2C, ) ‘ = § log? (Ai(c1 102)) = /1og2(t)yp(dt)
F
=1
. _ 1 P
with v, = 521 5)\71(6‘;102)'
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In practice though...

Example:
» The Fisher distance

p
L Y SV N L 2 -1 _ 2 d
D(C1,C2) = — |[107(C1 * €20y ¥) —;Zlog (M(CT'0)) = [ log?(t)vp(dt)
F
=1
. 1P
with v, = 521 5)\71(();102)‘

_1 1 .
> for ny = 1024, ngy = 2048, different p (here [C| > C2C, 2];; = .31¢-4):
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In practice though...

Example:
» The Fisher distance

1

_1 _1
D(Cy,Cs) = . log?(C, 2C2C, )

» .
‘i = ;izzllogQ (xi(crten)) :/logQ(t)vp(dt)

1 p

with v, = 521 5)\1(0;102).

1 1 .
> for ny = 1024, ngy = 2048, different p (here [C| > C2C, 2];; = .31¢-4):

Fisher distance  Classical estimator

p
2 0.0980 0.1002
4 0.1456 0.1520
8 0.1694 0.1820
16 0.1812 0.2081
32 0.1872 0.2363
64 0.1901 0.2892
128 0.1916 0.3955
256 0.1924 0.6338
512 0.1927 1.2715

(error < 5%) (error > 50%) (error > 100%) (error > 500%)

56 /151



In practice though...

Example:
» The Fisher distance

1

_1 _1
D(Cy,Cs) = . log?(C, 2C2C, )

» .
‘i = ;izzllogQ (xi(crten)) :/logQ(t)vp(dt)

1 p

with v, = 521 5)\1(0;102).

1 1 .
> for ny = 1024, ngy = 2048, different p (here [C| > C2C, 2];; = .31¢-4):

p | Fisher distance  Classical estimator =~ RMT estimator

2 0.0980 0.1002 0.0973

4 0.1456 0.1520 0.1461

8 0.1694 0.1820 0.1703
16 0.1812 0.2081 0.1845
32 0.1872 0.2363 0.1886
64 0.1901 0.2892 0.1920
128 0.1916 0.3955 0.1934
256 0.1924 0.6338 0.1942
512 0.1927 1.2715 0.1953

(error < 5%) (error > 50%) (error > 100%) (error > 500%)
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Explanation for failure
1.2
0o Eigenvalues of Cl_ng
s i
0.8 |~ —
Fol
2 0.6 |- -
QJ
a
0.4 |~ —
0.2 |- —
0 \ \ \
0 2 4 6 8 10

Eigenvalues of C)
= 2048, varying p, C1 = Cs.

Figure: Population and Sample Eigenvalues for n; = 1024, nso
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Explanation for failure

0o Eigenvalues of C’l_léz (p = 64)

D 0 Eigenvalues of CIICQ

Density

10

T
6

4

Eigenvalues of C)

2048, varying p, C1 = Ca.

Figure: Population and Sample Eigenvalues for n; = 1024, ns
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Explanation for failure

1.2 | | |
0o Eigenvalues of C‘l_lé’z (p = 128)
0o Eigenvalues of 01_102
z
{4
a N
o
a
4 6 8 10

Eigenvalues of C’p
Figure: Population and Sample Eigenvalues for ny = 1024, ny = 2048, varying p, C1 = Ca.
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Explanation for failure

1.2
0o Eigenvalues of C‘l_lé’z (p = 256)
L I:l u} Eigenvalues of 01_102

0.8 —
2
2 0.6 B
O
a

0.4

I T T
0 2 4 6 8 10

Eigenvalues of C’p
Figure: Population and Sample Eigenvalues for ny = 1024, ny = 2048, varying p, C1 = Ca.
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Explanation for failure
|

1.2
0o Eigenvalues of C‘l_lé’z (p = 512)

0o Eigenvalues of 01_102

Density

4 6

Eigenvalues of C’p

Figure: Population and Sample Eigenvalues for ny = 1024, ny = 2048, varying p, C1 = Ca.
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Setup

Assumptions

1
> [Spatial independence] z§a> =C2 :iga), :iga) € RP with i.i.d. zero mean, unit
variance, finite 4 + € order moment.
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variance, finite 4 + £ order moment.

> [RMT regime] As n, — oo,

Lo ca — cg” € (0,1).
Na

> [Studied distances] for f a complex-analytic extensible function,

p
y 1
D(C1,C2) = /f(t)Vp(dt)’ Vp = ;Zakq(cflcz)'
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Setup

Assumptions

1
> [Spatial independence] @ = CZ2 iga), :iga) € RP with i.i.d. zero mean, unit

variance, finite 4 + £ order moment.
> [RMT regime] As n, — oo,

LN cg’ €(0,1).
Na

> [Studied distances] for f a complex-analytic extensible function,

P
; 1
(C1,C2) = /f(t)Vp(dt), vp = ;Z‘SAAC;uQ).
- =1

Examples
> Fisher geodesic distance: f(t) = log?(t)
» Bhattacharyya distance: f(t) = fi log(t) + %log(l +t) — % log(2)
» Kullback-Leibler divergence for Gaussian: f( )= lt -1 5 log(t) — %

> Rényi divergence for Gaussian: f(t) = =) 1) log(a+ (1 — a)t) + %1 g (t)
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RMT-improved estimator

Notations:
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RMT-improved estimator

Notations:
> Population eigenvalue distribution: v, = % 5’71 6>\_(C71C,))
- i\~ 2

> Sample eigenvalue distribution: p, = % le 5)\,((;1 “1¢y)
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RMT-improved estimator
Notations:

> Population eigenvalue distribution: v, =

1P
P
> Sample eigenvalue distribution: p, =

i=1 ‘%(cr‘@)
_1\Pp

— 1 P
p Lui=1 5)\,;((51*1(32) =5p Z¢:1 W
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RMT-improved estimator

Notations:
> Population eigenvalue distribution: v, = % 5’:1 6>\_(071G‘))
> S - - . - . _ 1 4 1 ‘-_ 1 D
ample eigenvalue distribution: 1, = 52 im1 (5){((;1 ey =5 Zi:l Ox;

> Recall Stieltjes transform myg(z), z € C\ Supp(h), of measure 6:

mo(2) = / Ao
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> S - - . - . _ 1 4 1 ‘-_ 1 D
ample eigenvalue distribution: 1, = 52 im1 (5){((;1 ey =5 Zi:l Ox;

> Recall Stieltjes transform myg(z), z € C\ Supp(h), of measure 6:

mo(2) = / Ao

1\"P 1
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RMT-improved estimator

Notations:
. . P . 1 P
> Population eigenvalue distribution: v, = p ie1 6>\i(CflC'2)
> Sample eigenvalue distribution: p, = % le (5){((;171(,2) = % le O,
> Recall Stieltjes transform my(z), z € C\ Supp(f), of measure 0:

1
mg(2) = / EdG()\)
e.g., my, (2) = % ?:1 —)\7}72.

Theorem (Estimation via contour integral)
For z € C\ Supp(up), let

pp(z) =2+ clz2mup (2)

Yp(2) =1 —ca — cazmy, (2).
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RMT-improved estimator

Notations:
. . P . 1 P
> Population eigenvalue distribution: v, = p ie1 6&(0;1(’2)
> Sample eigenvalue distribution: p, = % le (5){((1;17102) = % le I,
> Recall Stieltjes transform my(z), z € C\ Supp(f), of measure 0:

mo(2) = / Ao

1\P 1

eg., my,(z) = 5D im1 3

Theorem (Estimation via contour integral)
For z € C\ Supp(up), let
op(2) = 2+ c12%my, (2)

Yp(2) =1 —ca — cazmy, (2).

Then, for any (positively oriented) contour I' C {z € C,R[z] > 0} surrounding
Supp(pp)-

e L (ee@) (£02) ) e(a) s,
/ Javy 2me .ﬁf (d’p(z)) (99;7(2) ¢p<z)> €2 e
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Idea of proof

From [Bai-Silverstein’95]?, limiting spectra of C' and C related through Stieljes
transform.

1s1L95.
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/f(t)up(dw:/[;zf s } () = 5+ ff( U
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Idea of proof

From [Bai-Silverstein’95]?, limiting spectra of C' and C related through Stieljes
transform.
Besides, by Cauchy's integral,

/f(t)up(dw:/[;zf s } () = 5+ ff( U

l/p (dt):|

=muy,, (Z)

[ r®p(dr) )¢ S h(®pp(dt)

f (mu, (2 dze f G(me,(2))dz 9 f F(my, (z))dz

11 N
1016, 2 ¢,

1s1L95.
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Evaluation of the complex integrals

Object of interest: Evaluate in closed-form

R <¢p(z>> <%(Z) ~ w;(z)) Un(2)
2m [ ¥p(2) wp(2)  ¥p(2) C2
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Evaluation of the complex integrals

Object of interest: Evaluate in closed-form
1 s ep(2) ©p(2) _ Pp(2) \ ¥p(2) dz.
2m L, ¥p(2) ep(2)  ¥p(2) C2

Reminder: functions of interest
> Fisher geodesic distance: f(t) = log?(t)
Bhattacharyya distance: f(t) = —% log(t) + % log(1+1t) — % log(2)

>
» Kullback-Leibler divergence for Gaussian: f(t) = %t — %1og(t) - %
>

Rényi divergence for Gaussian: f(t) = 2((;7711) log(a + (1 — a)t) + %log(t)
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Evaluation of the complex integrals

Object of interest: Evaluate in closed-form
1 s ep(2) ©p(2) _ Pp(2) \ ¥p(2) dz.
2m L, ¥p(2) ep(2)  ¥p(2) C2

Reminder: functions of interest
> Fisher geodesic distance: f(t) = log?(t)
Bhattacharyya distance: f(t) = —% log(t) + % log(1+1t) — % log(2)

>
» Kullback-Leibler divergence for Gaussian: f(t) = %t — %1og(t) - %
>

Rényi divergence for Gaussian: f(t) = 2((;7711) log(a + (1 — a)t) + %log(t)

Cases of interest:
> Entire functions (e.g., f(t) = t): residue calculus

> Functions with branch cuts: f(t) = log(t), f(t) = log(1 + st), f(t) = log?(t), etc.
— Much more technical!
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Sketch of Proof

The case f(t) = log"(t)
» Much less trivial due to branch cuts of log(z)!!

log(z) = log(|z|) + 1arg(z), arg(z) € (—m, 7).
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Sketch of Proof

The case f(t) = log"(t)
» Much less trivial due to branch cuts of log(z)!!

log(z) = log(|z|) + 1arg(z), arg(z) € (—m, 7).

> Singularities arise when log(y(2)/¢p(2)) discontinuous.

» The situation in image...

p>00 >0 p<0
>0 <0 >0

>0
>0

] S
G A

with
» (; zeros of 1,
> n; zeros of @p,.
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Sketch of proof

The case f(t) = log"(t) (continued)
> Integration method: avoid branch cuts:
Ay

branch cut
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Sketch of proof

The case f(t) = log"(t) (continued)

> Integration method: avoid branch cuts:

Ay

branch cut

.\iugu]m'h_\') pole  singularity

A Ao ;s

S
v

Gi+1 Ait1

» Detailed method:

> careful control of integrals on circles I/, IC, IF (Jordan’s identity does not apply!)
> linear integrals on segments, up to integrability... easy for log(t), difficult for log?(¢)!
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Application to specific functions

Corollary (Case f(t) =1)

Under the same assumptions,

/tup(dt) -(1- cl)/tpp(dt) 2% 0.
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Application to specific functions

Corollary (Case f(t) =1)

Under the same assumptions,
/tup(dt) -(1- cl)/tup(dt) 2% 0.

(e, 2trC7 102 > (1 — E) 2O 1 Cy)
— Just a scaling factor!

Corollary (Case f(t) = log(t))

Under the same assumptions,

/ log(t)vp(dt) — [ / Log(t)ap (dt) — —log(l—e) +

1—co

log(1 — ¢2)| 255 0.

(i.e., %logdet(Cflcg) ~ %logdet(éfléz) — n}l;p log(1 — %) + ni;p log(1 — %))
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Application to specific functions

Corollary (Case f(t) =1)

Under the same assumptions,

/tup(dt) -(1- cl)/tup(dt) 2% 0.

(e, 2trC7 102 > (1 — E) 2O 1 Cy)

— Just a scaling factor!

Corollary (Case f(t) = log(t))

Under the same assumptions,

1—co

/ log(t)vp(dt) — [ / Log(t)ap (dt) — —log(l—e) +

n n1 no no

(i.e., %logdet(Cflcg) ~ %logdet(éfléz) — nle log(1 — -2) 4+ 22=P1og(1 — -£))

— Just a bias term!

log(1 — ¢2)| 255 0.
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Application to specific functions

Corollary (Case f(t) = log(1 + st))

Denoting ko < 0 unique negative solution to 1 + s

pplz)
Gp(@) = O

/log(l—i-st)dup(t)— [Cl +ec2 —cicp (( c1+ec2 —cico )

cico 1—c1)(c2 — sciko)

a.s. 0.

—i—i log (—sko(1 —c1)) +/log (1 — i) dpp (t)
Cc2 RO
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Application to specific functions

Corollary (Case f(t) = log(1 + st))

Denoting ko < 0 unique negative solution to 1 + s

pplz)
Gp(@) = O

/log(l—i-st)dup(t)— [Cl +ec2 —cicp (( c1+ec2 —cico )

cico 1—c1)(c2 — sciko)

a.s. 0.

—i—i log (—sko(1 —c1)) +/log (1 — i) dpp (t)
Cc2 RO

— Highly non-trivial!
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Application to specific functions
Corollary (Case f(t) = log*(t))

( (z)) ( wp(2) w;@) Up(2) .
2m (2) () ¥p(2) ) e

P

Z{log (1 = ex)mi) —log? (1 — en)Ai) }

_¢ctc—cac

ci1C2

3 (-8 - (1-3) o 1-2) 2 -8 )

P
! :202 [log2(1 —cg) —log(1—c1) + Z {l°g2 (n:) — log® (Cl)}‘|

I CORN(ES) B
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Application to specific functions

Corollary (Case f(t) = log*(t))

( “’) ( (=) Wz)) G
2 () (2)  ¥p(2) c2
P
- C1+ZC;C1C2 Z{log ((1 = c1)ms) —log? (1 — c1)A )}
2 Lig (1) “Lip (1= ") pmip (1= %) —mip (1- &
o O R G R GO RACE)|

1

P
_ :202 [log2(1 —c2) —log?(1 —e1) + Z {10g? (1:) — log? (Q)}]

I CORN(ES) B

— Involves dilogarithm functions!
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Spectral clustering with feature C;

Setting:

> “m” observations, X1,..., X;m with X; = [a:gi), ,xﬁfj}

> Two classes: C; = C) for i <m/2, C; = CP for i >m/2.

Objective:
> Classify observations X; based on C(1) and C'(2).

Method:

> Spectral clustering with kernel
Kij = D(Ci,Cj)

estimated by D(Cﬁ;,(}j) versus RMT estimator.
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Simulation:

random n;

& o0 ° go0 gﬂ

2% & F e e 000
RSt 5o

i

W eigv 1

:o“s €.°

Figure: Eigenvectors 1 and 2 of K for traditional (red circles) versus RMT estimator (blue crosses).

Classical

» Wide spread of eigenvectors
» Small inter space

» — Poor clustering

RMT estimator
> Well centered eigenvector
> Large inter space

» — Good clustering
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Simulation:

Figure: Eigenvectors 1 and 2 of K for traditional (red circles) versus RMT estimator (blue crosses).

Classical

outlier ny = ... = nyy—1, Ny = n1/2

eigv 2

far outlier

eigv 1

RMT estimator
» No outlier effect

> Isolated outlier

» Adversarial effect of outlier

> Large inter space

(“draws” eigenvector to itself)

> Effect increased by more outliers
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Application to covariance matrix estimation

Observations:
> X =[z1,...,2n], z; € RP with E[z;] = 0, E[z;2]] = C.
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Objective:

» From the data z;, estimate C.
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Application to covariance matrix estimation

Observations:

> X =[z1,...,%xs], ; € RP with E[z;] =0, E[z;z

Objective:

» From the data z;, estimate C.

State of the Art:
» Sample Covariance Matrix (SCM):

C=

S
3

T=c.
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Application to covariance matrix estimation

Observations:
> X =[z1,...,2n], z; € RP with E[z;] = 0, E[z;2]] = C.

Objective:

» From the data z;, estimate C.

State of the Art:
» Sample Covariance Matrix (SCM):

. 1

E zzz;r =-—XXT.
n

i=1

— Often justified by Law of Large Numbers: n — oco.

C=

S
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Application to covariance matrix estimation

Observations:
> X =[z1,...,2n], z; € RP with E[z;] = 0, E[z;2]] = C.

Objective:

» From the data z;, estimate C.

State of the Art:
» Sample Covariance Matrix (SCM):

. 1

E zzz;r =-—XXT.
n

i=1

— Often justified by Law of Large Numbers: n — oco.
» Numerical inversion of asymptotic spectrum (QuEST).

C=

S

1. Bai-Silverstein equation: Estimate A(C’) from A(C) in “large p,n" regime.
2. Need for non trivial inversion of the equation.
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Application to covariance matrix estimation (continued)
» Elementary idea
C = argmin,;, o 6(M, C)
where (M, C) can be the Fisher, Bhattacharyya, KL, Rényi divergence.
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Application to covariance matrix estimation (continued)

» Elementary idea
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» Divergence §(M,C) = ff(t)dup(t) inaccessible, v, = %Zle Sx,(M—10)-
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Application to covariance matrix estimation (continued)

» Elementary idea
C = argmin,;, o 6(M, C)
where (M, C) can be the Fisher, Bhattacharyya, KL, Rényi divergence.
» Divergence §(M,C) = ff(t)dup(t) inaccessible, v, = %Zle Sx,(M—10)-

> Random Matrix improved estimate | §(M, X) | of 6(M,C) using

Hp = % Zle 6Ai(M*10)'
[ F@vp(dt) 3¢ S r(Onp(d)

!

3§ H(my, (2))dz (—)
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Application to covariance matrix estimation (continued)

» Elementary idea
C = argmin,;, o 6(M, C)

where (M, C) can be the Fisher, Bhattacharyya, KL, Rényi divergence.
» Divergence §(M,C) = ff(t)dup(t) inaccessible, v, = %Zle Sx,(M—10)-

> Random Matrix improved estimate | §(M, X) | of 6(M,C) using

Hp = % Zle 6Ai(M*10)'
[ F@vp(dt) 3¢ S r(Onp(d)

!

3§ H(my, (2))dz (—)

> §(M, X) < 0 with non zero probability.
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Application to covariance matrix estimation (continued)

» Elementary idea
C = argmin,;, o 6(M, C)
where (M, C) can be the Fisher, Bhattacharyya, KL, Rényi divergence.
» Divergence §(M,C) = ff(t)dup(t) inaccessible, v, = %Zle Sx,(M—10)-

> Random Matrix improved estimate | §(M, X) | of 6(M,C) using

Hp = % Zle 6Ai(M*10)'
[ F@vp(dt) 3¢ S r(Onp(d)

!

3§ H(my, (2))dz (—)

> §(M, X) < 0 with non zero probability.
> RMT estimation

¢ = argmingg, o h(M), k(M) = §(M, X)°
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Application to covariance matrix estimation (continued)

» Gradient descent over the Positive Definite manifold.

Algorithm 1 RMT estimation algorithm.
Require My € C;7 .

Repeat M <« M3 exp (—tM—%VhX(M)M—%) M3
Until Convergence.
Return C' = M.
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Application to covariance matrix estimation (continued)

» 2 Data classes xgl),..l,w( ) N(u1,Cq) and x§2),‘..,z£?) ~ N(uz2,C?2).

» Classify point x using Linear Discriminant Analysis based on the sign of
(SLDA (/1/1 _Mz) cvrflw_,’_

» Estimate C = Cr+

—n2__ (.

ni +nz ni +n2
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Application to covariance matrix estimation (continued)

» 2 Data classes xgl),..l,w( ) N(u1,Cq) and x§2),‘..,z§) ~ N(uz2,C?2).

» Classify point x using Linear Discriminant Analysis based on the sign of

. 1 . 1 .
LDA —1 AT =1 A AT S4—1
SEPA = (n — pi2)TC M+ SR 2 = ST
> i =
Estimate C' = T +n2 Ci+ n1+n2 N2,
1 B s 4
0.95 - 1 0.95 |- -
g 0.9 B 0.9 b
< 0.85] i 0.85 |- B
—— SCM
0sl 4 081 —A— QuEST1 ||
—+— QuEST2
| . ) . . 0.75 — Proposed ||
2 3 4 5 6

B‘/E A‘/E B)D A}D B‘/C A‘/C
(Healthy /Epileptic)

Figure: Mean accuracy obtained over 10 realizations of LDA classification. (Left) Cy and C3
Toeplitz-0.2/Toeplitz-0.4, and (Right) real EEG data.
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Outline

Large dimensional inference and kernels (Malik TIOMOKO)

Revisiting Motivation
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Reconsider clustering

» Hard classification on raw data z;:
Need Features
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> RelevantFeature—Covariance-G;

—Learn features from data
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Reconsider clustering

» Hard classification on raw data z;:

Need Features

> RelevantFeature—Covariance-G;
—Learn features from data

> D(C;,C;5) < () To(x))

]
: | ] C; = X,
[ ]
L il o(wi)
w(z5)
e® 2. (.= i
ge® o
-
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Reconsider clustering

» Hard classification on raw data z;:

Need Features

> RelevantFeature—Covariance-G;
—Learn features from data

> D(C4,Cy) = (i) To(x))

> Kernel trick
o) To(xs) = f(lle — 2412) or
VICTAED)

]
. | ] C; = X,
[ ]
L il o(wi)
w(z5)
e® 2. (.= i
ge® o
-
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Reconsider clustering

» Hard classification on raw data z;:
Need Features

> RelevantFeature—Covariance-G;
—Learn features from data

> D(C4,Cy) = (i) To(x))

> Kernel trick
o) To(xs) = f(lle — 2412) or

fzitay)
» Asymptotic performance of kernel iy ]
methods? ] . ] C; =EX7X,
|
n A )
e(x;)
[ X ] — (O = 7X;
[ L
L &
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Outline

Large dimensional inference and kernels (Malik TIOMOKO)

Kernel Asymptotics
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Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,z, € RP

» Objective: “cluster” data in k similarity classes Cy,...,Cyg.
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» Kernel spectral clustering based on kernel matrix

K = {n(zi, 2},

74 /151



Kernel Spectral Clustering

Problem Statement
» Dataset z1,...,z, € RP

» Objective: “cluster” data in k similarity classes Cy,...,Cyg.

» Kernel spectral clustering based on kernel matrix

K = {n(zi, 2},

> Usually, (z,y) = f(z"y) or r(z,y) = f(|lz —yl?)
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Kernel spectral clustering

Intuition (from small dimensions)

» K essentially low rank with class structure in eigenvectors.
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Kernel spectral clustering

Intuition (from small dimensions)

le

Co

: Cs

)
i)

- > >

Kz, v;) E

» K essentially low rank with class structure in eigenvectors.
1 1 1 1
> Ng-Weiss—Jordan key remark: D" 2 KD~ 2(D2j,) ~ D2 j, (jo canonical

vector of Cq)
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Kernel Spectral Clustering

—0.06 [ I I ]
o7 N\/\/\/\/WWMNMW
—0.08 |- | | —
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Kernel Spectral Clustering

—0.06
—0.07

—0.08
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Kernel Spectral Clustering

—0.06
—0.07

—0.08

0.1 F T T —

—0.1 |
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Kernel Spectral Clustering

—0.06
—0.07

—0.08

0.1 F T T —

—0.1 |

0.2
0.1
0
—0.1

0.2
0.1
0
—0.1
—0.2

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data, RBF kernel
(£(2) = exp(—t*/2)).
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Kernel Spectral Clustering

—0.06
—0.07

—0.08

0.1 F T T —

—0.1 |

0.2
0.1
0
—0.1

0.2
0.1
0
—0.1
—0.2

1 1
Figure: Leading four eigenvectors of D~ 2 KD~ 2 for MNIST data, RBF kernel
(£(2) = exp(—t*/2)).

1
> Important Remark: eigenvectors informative BUT far from D2 j,!
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Model and Assumptions

Gaussian mixture model:

> wlv---vxnepr
» k classes Cq,...,Cg,
> x1,...,2ny €C1,...,Tp—ny+1,---,2Zn € Cy,

>z~ N(/J‘Fh‘ :Cg;).
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Model and Assumptions

Gaussian mixture model:

> z1,...,xn € RP,
» k classes Cq,...,Cg,
> x1,...,2ny €C1,...,Tp—ny+1,---,2Zn € Cy,

> x; ~ N(pg,,Cy,).

Assumption (Growth Rate)
Asn — oo,

1. Data scaling: £ — ¢o € (0,00), 22 — ¢4 € (0, 1),
. . k
2. Mean scaling: with u° £ Za:l T8 g and pg 2 p1q — p°, then ||| = O(1)

3. Covariance scaling: with C° £ Zk Za 0y and C2 £ (0, — C°, then

a=1 n

[Call =0(1), trCg =0(V/p), trCiCy =O0(p)
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Model and Assumptions

Gaussian mixture model:

>-T17---7xnepr
» k classes Cq,...,Cg,
> Tl,...,Tng Ecl,...,xn_nk+1,...,xnEck,

> x; ~ N(pg,,Cy,).

Assumption (Growth Rate)
Asn — oo,

1. Data scaling: £ — ¢o € (0,00), 22 — ¢4 € (0, 1),

2. Mean scaling: with u° £ 2571 Rayig and pg £ po — p°, then |[ug]| = O(1)

3. Covariance scaling: with C° £ 25:1 %Ca and C £ (0, — C°, then
[Call=0O(1), trCq =0(/p), trCCy =O0(p)
For 2 classes, this is

lpr = p2ll = 0(1), tr(Cr—C2) =0(vp), |Cill=0(1), tr([C1~Ca]?)=O0(p).
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Model and Assumptions

Gaussian mixture model:

>-T17---7xnepr
» k classes Cq,...,Cg,
> xl,...,xnleCl,...,xn_nk_,_l,...,xneCk,

> x; ~ N(pg,,Cy,).

Assumption (Growth Rate)
Asn — oo,

1. Data scaling: £ — ¢o € (0,00), 22 — ¢4 € (0, 1),

2. Mean scaling: with u° £ 2571 T8 g and pg 2 p1q — p°, then ||| = O(1)

3. Covariance scaling: with C° £ Zk Za 0y and C2 £ (0, — C°, then

- a=1l n
[Call=0O(1), trCq =0(/p), trCCy =O0(p)
For 2 classes, this is

lpr = p2ll = 0(1), tr(Cr—C2) =0(vp), |Cill=0(1), tr([C1~Ca]?)=O0(p).

Remark: [Neyman—Pearson optimality]
> z ~ N(£p, Ip) (known p) decidable iif ||u]| > O(1).
> 2~ N(0,(1£¢e)],) (known ¢) decidable iif [|e]| > O(p~2).
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

o= o))

for some sufficiently smooth nonnegative f (f(%a:;ra:j) simpler).
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Model and Assumptions

Kernel Matrix:

» Kernel matrix of interest:

e (e

for some sufficiently smooth nonnegative f (f(%x;ra:j) simpler).

» We study the normalized Laplacian:

dd’
L=nD"% K- Dz
i,

with d = K1,,, D = diag(d).
(more stable both theoretically and in practice)
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Random Matrix Equivalent

> Key Remark: Under growth rate assumptions,

1 2
, llzi —ajl|" =7

a.s.
max { } — 0.
1<i#j<n

where 7 = %trC".
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Random Matrix Equivalent

> Key Remark: Under growth rate assumptions,

L 2
, llzi —ajl|" =7

}—>0

max {
1<i#j<n

where 7 = %trC"’.
= Suggests that (up to diagonal) K ~ f(7)1,1]!
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Random Matrix Equivalent

> Key Remark: Under growth rate assumptions,

L 2
, llzi —ajl|" =7

}—>0

max {
1<i#j<n

where 7 = %trC’O.

= Suggests that (up to diagonal) K ~ f(7)1,1]!

» In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor
expansion of K:

K = f(m)1n1) + ViK1 + K
—— ~—~—

~—
Oy (n) low rank, Oy (v/m)  informative terms, Oy (1)
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Random Matrix Equivalent

> Key Remark: Under growth rate assumptions,

L 2
, llzi —ajl|" =7

}—>0

max {
1<i#j<n

where 7 = %trC"’.

= Suggests that (up to diagonal) K ~ f(7)1,1]!

» In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor
expansion of K:

K = f(m)1n1) + ViK1 + K
—— ~—~—

~—~
Oy (n) low rank, Oy (v/m)  informative terms, Oy (1)

Clearly not the (small dimension) expected behavior.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
Asn,p — oo, HL — ﬁ” 250, where

_1 dd" _1 1
L=nD"2 (K— dTln) D™ 2, avec Kij =f (;”1‘1 —Ij||2)

!
1
PO pwTwe L ipsm 4

f(m)p p

et W = [wi,...,wp] € RPX" (z; = po +w;), P =1, — %lnll,

L=-2
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
Asn,p — oo, HL — ﬁ” 250, where

_1 dd" _1 1
L=nD"2 (K— dTln) D™ 2, avec Kij =f (;”1‘1 —$j||2)

P01
L=

et W = [wi,...,wp] € RPX" (z; = po +w;), P =1, — %lnll,

~PWTWP + LBt +x

J = [jlv"'vjk]v ]l = (O"~071na707~~~70)
P G I (f"m _ 5f'<7>2> Y GO

f(7) fr) Af(r)? f(r)

Recall M = 13, ..., 1), t = [J5trCf, ..., J5trCy) ,T:{%trC}jC{;}k

ab=1"
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
Asn,p — oo, HL — ﬁ” 250, where

1 dd’ 1 1
L=nD"2 K- D72, avec K;; = 7x-—z-2)
n ( dTln) Vi ij f(p” o — 4|

P01
L=

et W = [wi,...,wp] € RPX" (z; = po +w;), P =1, — %lnll,

~PWTWP + LByt +x

J = [jlv"~7jk:]7 ]l - (O'~~0>1na70,~~-,0)
P G I (f"m _ 5f’(T)2> R O P

f(7) f(r)  4f(r)? f(r)
Recall M =[5, i), t = [LotrCY, .., LercpT, 7 = {Lwcocp )

Fundamental conclusions:
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
Asn,p — oo, HL — ﬁ” 250, where

1 dd’ 1 1
L=nD"2 K- D72, avec K;; = 7z-—z-2)
n ( dTln) Vi ij f(p” o — 4|

01
L=

et W = [wi,...,wp] € RPX" (z; = po +w;), P =1, — %lnll,

~PWTWP + LByt +x

J=[j1,- - dk)s dg =(0...0,1n,,0,...,0)
P G I <f”(7) _ 5f’(T)2> R O P

f(7) f(r)  4f(r)? f(r)
Recall M =[5, i), t = [LotrCY, .., LercpT, 7 = {Lwcocp )

Fundamental conclusions:

> asymptotic kernel impact only through f/(7) and f”/(7), that’s all!
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
Asn,p — oo, HL — ﬁ” 250, where

_1 dd’ _1 1
L=nD"2 (K— dTln) D™ 2, avec Kij =f (;”Z‘Z —$j||2)
=D pyTyp ! JBJT +x

f(T)

et W = [wi,...,wp] € RPX" (z; = po +w;), P =1, — %lnll,

J=[j1,- - dk)s dg =(0...0,1n,,0,...,0)

PO s (£ PO L P
SR TeT R < ) 4f(7)2>tt e Y

_ 1 _J1 k
Recall M = 13, ..., 1), t = [J5trCf, ..., J5trCy) ,Tf{gtngCg}a,bzl.

Fundamental conclusions:
> asymptotic kernel impact only through f/(7) and f”/(7), that’s all!
» spectral clustering reads MM, tt7 and T, that’s all!
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Isolated eigenvalues: Gaussian inputs

[ Eigenvalues of L [ Eigenvalues of L

Figure: Eigenvalues of L and L, k=3, p=2048, n =512, ¢c1 =co =1/4, ¢c3 =1/2,
[alj = 4845, Ca = (1 +2(a — 1)/y/P)Ip, f(®) = exp(—=/2).
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Theoretical Findings versus MNIST

0.2 T T T
0.15 .
0.1 |
5.1072 B
o anl » ne | . | | .
0 10 20 30 40

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L (white),
n = 192.

50

MNIST data, p = 784,
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Theoretical Findings versus MNIST

0.2 T T T
I Eigenvalues of L
[ Eigenvalues of L as if Gaussian model
0.15 |
0.1 |
5.1072 I
0 MMses 0o o ae | o0 4 \ \ m

0 10 20 30 40 50

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L (white), MNIST data, p = 784,
n = 192.
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Theoretical Findings versus MNIST

1 1
Figure: Leading four eigenvectors of D™ 2 KD~ 2 for MNIST data (red) and theoretical findings
(blue).
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Theoretical Findings versus MNIST

1
Figure: Leading four eigenvectors of D™ 2 KD
(blue).

ﬂA-__KA'\Mﬂf\ A A_
______ AR ERLS B LT
| |

1
2 for MNIST data (red) and theoretical findings
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Theoretical Findings versus MNIST

—-0.1

Eigenvector 2/Eigenvector 1

—.08

—.07

Eigenvector 3/Eigenvector 2

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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Theoretical Findings versus MNIST

Eigenvector 2/Eigenvector 1 Eigenvector 3/Eigenvector 2

Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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The surprising f'(7) = 0 case

0.5 T T T
i

0.4

0.3

0.2

Classification error

0.1

Figure: Polynomial kernel with f(7) =4, f/(7) = 2, z; € N'(0,Cy), with C1 = I,
[Caliyy = 4TIl e = %
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The surprising f'(7) = 0 case

0.5

0.4

0.3

0.2

Classification error

0.1

Figure: Polynomial kernel with f(7) =4, f/(7) = 2, z; € N'(0,Cy,), with C1 = I,
[Caliyy = 4TIl e = %

-o- p=1024
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The surprising f'(7) = 0 case

0.5

0.4

0.3

0.2

Classification error

0.1

—2 0 2
I'(r)

Figure: Polynomial kernel with f(7) =4, f/(7) = 2, z; € N'(0,Cy,), with C1 = I,
[Caliyy = 4TIl e = %
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The surprising f'(7) = 0 case

0.5

0.4

0.3

0.2

Classification error

0.1

—2 0 2
I'(r)

Figure: Polynomial kernel with f(7) =4, f/(7) = 2, z; € N'(0,Cy,), with C1 = I,
[Caliyy = 4TIl e = %

> Trivial classification when ¢t =0, M =0 and ||T'|| = O(1).
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Spectral Clustering: The case f'(7) =0

Position of the problem

Problem: Cluster large data z1,...,z, € RP based on “spanned subspaces”.
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Position of the problem

Problem: Cluster large data z1,...,2n € RP based on “spanned subspaces”.
Method:
» Still assume z1,...,x, belong to k classes Cy, ..., Ck.

» Zero-mean Gaussian model for the data: for x; € Cy,
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Spectral Clustering: The case f'(7) =0

Position of the problem

Problem: Cluster large data z1,...,2n € RP based on “spanned subspaces”.
Method:
» Still assume z1,...,x, belong to k classes Cy, ..., Ck.

» Zero-mean Gaussian model for the data: for x; € Cy,

1,17
1) D1,

» Performance of L = nD*% <K — ) D*%, with

K={f(lz-z%)},_, ... ==

in the regime n,p — oo.
(alternatively, we can ask %trCi =1foralll1<i<k)

x

lll
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Spectral Clustering: The case f/'(7) =0

Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,2z, € RP i.i.d. from k-class Gaussian mixture,
with z; € C < x; ~ N(0,C}) (sorted by class for simplicity).
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Spectral Clustering: The case f/'(7) =0

Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,2z, € RP i.i.d. from k-class Gaussian mixture,
with z; € Cp, < z; ~ N(0,C},) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n — oo, for each a € {1,...,k},
1. 2 —co € (0,00)
2. Za — cq €(0,00)
o o] H o o] (o] k
3. LrCa =1 and tr C3Cy = O(p), with CF = Ca — C°, C° =" ,Ch.
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Spectral Clustering: The case f/'(7) =0

Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,2z, € RP i.i.d. from k-class Gaussian mixture,
with z; € Cp, < z; ~ N(0,C},) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n — oo, for each a € {1,...,k},
1. 2 —co € (0,00)
2. Za — cq €(0,00)

oo : o o o k
3. LrCa =1 and tr C3Cy = O(p), with CF = Ca — C°, C° =" ,Ch.

Theorem (Corollary of Previous Section)
Let f smooth with f'(2) # 0. Then, under Assumptions 2a,

Nl

L=nD"

1n1£ -1 : _ = = 121" = _
(- gt ) 24w = {1 1= 551P) Y, o=/l

exhibits phase transition phenomenon
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Spectral Clustering: The case f/'(7) =0

Model and Reminders

Assumption 1 [Classes]. Vectors z1,...,2z, € RP i.i.d. from k-class Gaussian mixture,
with z; € Cp, < z; ~ N(0,C},) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n — oo, for each a € {1,...,k},
1. 2 —co € (0,00)
2. Za — cq €(0,00)
o o] H o o] (o] k
3. LrCa =1 and tr C3Cy = O(p), with CF = Ca — C°, C° =" ,Ch.

Theorem (Corollary of Previous Section)
Let f smooth with f'(2) # 0. Then, under Assumptions 2a,

1n1£ -1 : _ = = 121" = _
(- gt ) 24w = {1 1= 551P) Y, o=/l

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically
contain structural information about Cy,...,Cy if and only if

Nl

L=nD"

1 k
T {7trC§C§}
p a,b=1

)

has sufficiently large eigenvalues (here M =0, t =0).
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Spectral Clustering: The case f/'(7) =0

The case f/(2) = 0

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},
L. 2 = co € (0,00)

2. 2 cq € (0,00)

[e¥ale] H (e} o (o] k
3. 1trCa = 1 and +r€262—"04p}, with CF = Ca — C°, C° =3 " | ,Ch.
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Spectral Clustering: The case f/'(7) =0

The case f/(2) = 0
Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...,k},
L. 2 = co € (0,00)
2. e — cq € (0,00)
3. LtrCy =1 and trC3Cp = O(/p), with Cg = Co — C°, C° = S, aC.
(in this regime, previous kernels clearly fail)
Remark: [Neyman—Pearson optimality]
> if C; = Ip + E with ||E|| — 0, detectability iif 1tr(C1 — C5)? > O(p~72).
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Spectral Clustering: The case f/'(7) =0

The case f/(2) = 0

Assumption 2b [Growth Rates]. As n — oo, for each a € {1,...

L. 2 = co € (0,00)

2. e — cq € (0,00)

3. %trCa =1and trC2CY = O(y/p), with C§ = Cq —
(in this regime, previous kernels clearly fail)

Remark: [Neyman—Pearson optimality]

> if C; = I + E with || B|| - 0, detectability iif 1tr(C1 — C5)? > O(p~72).

Theorem (Random Equivalent for f/(2) = 0)
Let f be smooth with f/(2) =0 and

. ff() [ (0)_f(2)P}, P:In—;1n1~

2f"(2)

Then, under Assumptions 2b,

f(2)

1 0 YO 1na1£b g
L =PdP + %tr(cacb)i +O||.H(1)

p a,b=1

where ®;; = 0;;./D [(xz—x])Q — E[(z;rxj)z]] .

7]{:},

° = Zf:l cpCh.
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Spectral Clustering: The case f'(7) =0

The case f/(2) =0

3

2l i

1 i
A1(L)

o | J

—2 —1.5 —1 —0.5 0

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, ¢1 = c2 = 1/4, ¢c3 = 1/2,
5
Ci o< Ip + (p/8) AW, W], W; € RPX(P/®) of iid. N'(0,1) entries, f(t) = exp(—(t — 2)?).

= No longer a Marcenko—Pastur like bulk, but rather a semi-circle bulk!
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Spectral Clustering: The case f'(7) =0

The case f/(2) = 0

f(2)=0
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Spectral Clustering: The case f'(7) =0

The case f/(2) = 0

Roadmap. We now need to:

» study the spectrum of &
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Spectral Clustering: The case f/'(7) =0

The case f/(2) = 0

Roadmap. We now need to:
» study the spectrum of &
> study the isolated eigenvalues of £ (and the phase transition)

> retrieve information from the eigenvectors.
Theorem (Semi-circle law for @)
Let pn = % Z;;l 6>\i(5). Then, under Assumption 2b,

a.s.
Mn —> [

with p the semi-circle distribution

1 1
p(dt) = ———/(deow? —2)tdt, w= lim V2-tr(C°)*.

2mweow p—r00 p
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Spectral Clustering: The case f'(7) =0

The case f/(2) =0

3 I I

[ Eigenvalues of L
Semi-circle law
2 ]
1 ]
A1(L)
0 | M
-2 —1.5 —1 —-0.5 0

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, ¢1 = c2 = 1/4, ¢c3 = 1/2,
Cioc Iy + (p/s)—%WiWiT, W; € RPX(P/3) of iid. N'(0,1) entries, f(t) = exp(—(t — 2)?).
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Spectral Clustering: The case f'(7) =0

The case f/(2) = 0

Denote now

p—ro0

T = lim {Vc\}‘”’trcgcg}
p

a,b=1
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Spectral Clustering: The case f'(7) =0

The case f/(2) = 0

Denote now

k

p—ro0

T = lim {W\;f"trcgcg}
p

a,b=1

Theorem (Isolated Eigenvalues)
Let v1 > ... > vy eigenvalues of T. Then, if \/co|v;| > w, L has an isolated
eigenvalue \; satisfying

w2

a.s. _
Ai — pi = covi + —.
vi
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Spectral Clustering: The case f'(7) =

=0
The case f/(2) = 0

Theorem (lsolated Eigenvectors)

For each isolated eigenpair (\;,w;) of L corresponding to (v;,v;) of T, write

k
2 : Ja
(L + U;L’LU;I

05, )T (W) Tja = 0, supp(
Then, under Assumptions 1-2b,

with jo = [0}, 17

niyrccoodngo -

wf) = supp(ja),

1 w?

b @ T

afoy 25 < -—— [viv; lab
co v;

. 2
(00)2 25 Ca &
¢ co V;.Z

wi| = 1.

and the fluctuations of u;,uj, i # j, are asymptotically uncorrelated

94 /151



Spectral Clustering: The case f'(7) =0

The case f/(2) =0

Eigenvector 1

Eigenvector 2

| | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
a a
ai £of.
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Spectral Clustering: The case f'(7) =0

The case f/(2) =0

Eigenvector 1

Eigenvector 2

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
a a
ai £of.
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Spectral Clustering: The case f'(7) =0

The case f/(2) =0

1072

Eigenvector 2

—4 -2 0 2 4

-2
Eigenvector 1 -10

Figure: Leading two eigenvectors of £ (or equivalently of L) versus deterministic approximations of
a a
af £of.
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Spectral Clustering: The case f'(7) =0

Application: Clustering data vectors with close covariances

Setting.
» p dimensional vector observations.
> m data sources.

97 /151



Spectral Clustering: The case f'(7) =0

Application: Clustering data vectors with close covariances

Setting.
» p dimensional vector observations.
» m data sources.
> Elz;] =0, E[ILZ:L;I—] = C;.
(1) (ns)

. e, x; o) for source i.

» n; independent observations x
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Spectral Clustering: The case f'(7) =0

Application: Clustering data vectors with close covariances

Setting.
» p dimensional vector observations.
» m data sources.
> Elz;] =0, Elz;2]] = C;.
@ )

» n; independent observations =, /..., x; for source i.

Objective. Cluster sources based on covariance C;.
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» m data sources.
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@ )

» n; independent observations =, /..., x; for source 1.
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Applications examples. Massive MIMO scheduling / EEG classification / etc.
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Spectral Clustering: The case f/'(7) =0

Application: Clustering data vectors with close covariances

Setting.
» p dimensional vector observations.
» m data sources.
> Elz;] =0, Elz;2]] = C;.
SO R (2

> n; independent observations z; , T, for source 1.

Objective. Cluster sources based on covariance C;.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.
1. Build kernel matrix K, then £, based on mn; vectors w(ll), S ,m,(g") (as if mn;
values to cluster).
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» p dimensional vector observations.
» m data sources.
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> n; independent observations z; , T, for source 1.

Objective. Cluster sources based on covariance C;.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.
1. Build kernel matrix K, then £, based on mn; vectors w(ll), S ,:E,(,Z”) (as if mn;
values to cluster).

2. Extract dominant isolated eigenvectors w1, ..., Uk
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Spectral Clustering: The case f/'(7) =0

Application: Clustering data vectors with close covariances

Setting.
» p dimensional vector observations.
» m data sources.
> Elz;] =0, Elz;2]] = C;.
SO R (2

> n; independent observations z; , T, for source 1.

Objective. Cluster sources based on covariance C;.
Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.
(1)

1. Build kernel matrix K, then £, based on mn; vectors x]
values to cluster).

,...,m,(,?") (as if mn;

2. Extract dominant isolated eigenvectors w1, ..., Uk
3. For each i, create u; = %(I,,,, ® lzi)ql,,,;, i.e., average eigenvectors along time.
i
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Spectral Clustering: The case f/'(7) =0

Application: Clustering data vectors with close covariances

Setting.

» p dimensional vector observations.

> m data sources.
> Elz;] =0, Elz;2]] = C;.

» n; independent observations x

(1) o)

i , T, for source 1.

Objective. Cluster sources based on covariance C;.

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.
1. Build kernel matrix K, then £, based on mn; vectors w(ll), S ,:E,(,Z”) (as if mn;
values to cluster).
2. Extract dominant isolated eigenvectors w1, ..., Uk
3. For each i, create u; = %(I,,,, ® lzi)ql,,,;, i.e., average eigenvectors along time.
4. Perform k-class clustering on vectors @1, ..., Uk
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Spectral Clustering: The case f'(7) =0

Application Example: Clustering data vectors with close covariances

1072
T T
l— / ‘\ / ‘\
5 IIQJ‘ ll "
! \@
g N7 7
8
0
> 0 |
S
)
i #\
\
| | |
-5 0 5
-2
Eigenvector 1 Eigenvector 1 -10

Figure: Clustering data vectors with close covariances application: Leading two eigenvectors
before (left figure) and after (right figure) n;-averaging. Setting: p = 400, m = 40, n; = 10,
k=3, c1 =c3=1/4, co = 1/2.Kernel function f(t) = exp(—(t — 2)?).
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Spectral Clustering: The case f'(7) =0

Application Example: Clustering data vectors with close covariances

>
k=
£
5 0.8
Q2
o
°
[=8
B0
c
‘=
Q
&
&
=
]
o
19
g 0.6
o
v
0.4

Figure: Overlap for different m, using the k-means or EM starting from actual centroid solutions

(oracle) or randomly.

* ul

Random guess

L

k-means (oracle)
— — — - k-means
—&— EM (oracle)

- - EM

| L

i

2

4

6 8

10
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Spectral Clustering: The case f/'(7) =0

Application Example: Clustering data vectors with close covariances

Optimal kernel (k-means)
— — — - Optimal kernel (EM)
—@— Gaussian kernel (k-means)
— -@— - Gaussian kernel (EM)

0.6
Random guess

Correct clustering probability

0.4

Figure: Overlap for optimal kernel f(t) (here f(t) = exp(—(t — 2)?)) and Gaussian kernel
f(t) = exp(—t?), for different m, using the k-means or EM.
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Kernel Spectral Clustering: The case f'(1) = %

Optimal growth rates and optimal kernels

Conclusion of previous analyses:
> kernel f(%H:EZ — x,;||?) with f/(7) # O:

1
> optimal in [lug|| = O(1), 3trCF = O(p™ 2)
> suboptimal in £tr CCp = O(1)
— Model type: Mar&enko—Pastur + spikes.
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Optimal growth rates and optimal kernels

Conclusion of previous analyses:
> kernel f(%H:EZ —z;||?) with f/(7) # 0:
> optimal in [|u2]| = O(1), 1trCS = O(p™ ?)
> suboptimal in £tr CCp = O(1)
— Model type: Mar&enko—Pastur + spikes.

» kernel f(%”ml —z;||?) with f/(7) = 0:

» suboptimal in ||;5 || > O(1) (kills the means)
P better in discriminating covariance (stress on ¢t and 77)

— Model type: smaller order semi-circle law + spikes.
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Kernel Spectral Clustering: The case f'(1) = W,

Optimal growth rates and optimal kernels

Conclusion of previous analyses:
> kernel f(%H:EZ —z;||?) with f/(7) # 0:
1
> optimal in [lug|| = O(1), 3trCF = O(p™ 2)
> suboptimal in £tr CCp = O(1)
— Model type: Mar&enko—Pastur + spikes.

» kernel f(%”ml —z;||?) with f/(7) = 0:

» suboptimal in ||;5 || > O(1) (kills the means)
P better in discriminating covariance (stress on ¢t and 77)

— Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:

> evenly weighing Maréenko—Pastur and semi-circle laws
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Kernel Spectral Clustering: The case f'(1) = W,

Optimal growth rates and optimal kernels

Conclusion of previous analyses:
> kernel f(%H:EZ —z;||?) with f/(7) # 0:
1
> optimal in [lug|| = O(1), 3trCF = O(p™ 2)
> suboptimal in £tr CCp = O(1)
— Model type: Mar&enko—Pastur + spikes.

» kernel f(%”ml —z;||?) with f/(7) = 0:

» suboptimal in ||;5 || > O(1) (kills the means)
P better in discriminating covariance (stress on ¢t and 77)

— Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:
> evenly weighing Maréenko—Pastur and semi-circle laws
» the “a-3B" kernel:

1) =

Il
=

« 1.,
ﬁ’ 5f ( )
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Kernel Spectral Clustering: The case f'(1) = 7

New assumption setting

> We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)
Asn — oo,

1. Data scaling: £ — ¢ € (0,00), 22 — ¢cq € (0,1),
k

a=1

2. Mean scaling: with ;i° £ 5" ey, and pd £ g — p°, then [|pS|| = O(1)

3. Covariance scaling: with C° £ Zk ZaCy and C° 2 C, — C°, then

a=1 n

[Call = O(1), trCg =0(Vp), trCiC) =O0(/p).
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Kernel Spectral Clustering: The case f'(1) = 7

New assumption setting

> We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)
Asn — oo,

1. Data scaling: £ — ¢ € (0,00), 22 — ¢cq € (0,1),
k

a=1

2. Mean scaling: with ;i° £ 5" ey, and pd £ g — p°, then [|pS|| = O(1)

3. Covariance scaling: with C° £ Zk ZaCy and C° 2 C, — C°, then

a=1 n

[Call = O(1), trCg =0(Vp), trCiC) =O0(/p).

Kernel:

» For technical simplicity, we consider

K =PKP=P {f (;(IO)T(xg)) };1 Pl P

I, — =1,1].
n

i.e., 7 replaced by 0.
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Kernel Spectral Clustering: The case f'(1) = %
Main Results

Theorem

Asn — oo,

VB (PEP+ (£0)+71'(0)) P) — K| 20

with, for o = \/pf'(0) = O(1) and B = 5 f"(0) = O(1),

aPWTWP + BPOP + UAU"

aMT™M + BT aly
aly, 0

o
=«

tr(C.C k
N A e
a,b=1

K
A=

p2
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Kernel Spectral Clustering: The case f'(1) = %

Main Results

Theorem
Asn — oo,

|vP (PKP+ (£(0)+7£(0)) P) = K| 0
with, for o = \/pf'(0) = O(1) and B = 5 f"(0) = O(1),

K=aPW WP+ 8PP+ UAUT
A

_[aMT™M + 8T ol
- aly, 0

U= L,PWTM
VP
[ _ o\T, 0\2 n tr(caCb) T ’
7 = {((wz) W]) 51#]}@]'71 { p? lnalnb}a,bzl
Role of «, f:

» Weighs Maréenko—Pastur versus semi-circle parts.
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Kernel Spectral Clustering: The case f'(1) = %
Limiting eigenvalue distribution
Theorem (Eigenvalues Bulk)
As p — oo,
1 n
£ _ 8y o 25y
Yn = Z i (K)
i=1
with v having Stieltjes transform m(z) solution of
1 1 9p2
=2+ %pee (Ik + MC") — ime(z)
m(2) p €o co

where w = limp 00 %tr(CO)Q.
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Kernel Spectral Clustering: The case f'(1) = 7

Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, p = 2048, n = 4096, k = 2,

2
ny =na, p; = 38;, f(z) = 38 (ac + \/LE%) . (Top left): o = 8,8 =1, (Top right):
o =4, 3 = 3, (Bottom left): o = 3, 3 = 4, (Bottom right): o = 1,3 = 8.
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Kernel Spectral Clustering: The case f'(1) = %
Asymptotic performances: MNIST
> MNIST is “means-dominant” but not that much!
DATASETS ‘ s — p3l>  Z=TrR(C1 — Co)? H L1r(C1 - Cy)?
MNIST (pIGITS 1,7) 613 1990 71.1
MNIST (DIGITS 3, 6) 441 1119 39.9
MNIST (pIGITS 3, 8) 212 652 23.5
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Kernel Spectral Clustering: The case f'(1) = W,

(6]

Asymptotic performances: MNIST

» MNIST is “means-dominant” but not that much!

%TR (Cl — 02)2

DATASETS ‘ s — p3l>  Z=TrR(C1 — Co)? H
MNIST (pIGITS 1,7) 613 1990 71.1
MNIST (DIGITS 3, 6) 441 1119 39.9
MNIST (pIGITS 3, 8) 212 652 23.5
1
E 0.8
o
>
o
—— Digits 1,7
0.6 [-{ —— Digits 3,6 N
—— Digits 3,8
T I I I
—15 —10 -5 0 5 10 15

=

Figure: Spectral clustering of the MNIST database for varying %
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Kernel Spectral Clustering: The case f'(1) = %
Asymptotic performances: EEG data
» EEG data are “variance-dominant”
DATASETS ‘ g — pslI>  Z5TR(CL — Co)? R(C; — Ca)?

EEG (sETs A, E) | 2.4 10.9
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Kernel Spectral Clustering: The case f'(7)

Asymptotic performances: EEG data

> EEG data are “variance-dominant”
DATASETS ‘ g — pslI>  Z5TR(CL — Co)? H L1r(C1 - Cy)?
EEG (sETs A, E) | 2.4 10.9 Il 1.1
1
g 0.8 |- =
o
>
o
0.6 |- .
| | | | | |
—60 —40 —20 0 20 40
a
B

Figure: Spectral clustering of the EEG database for varying %
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Outline

Application to machine learning (Mohamed SEDDIK)
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Outline

Application to machine learning (Mohamed SEDDIK)
Support Vector Machines
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LS-SVM Problem Statement

Optimization problem: find separating
hyperplane (linear separability case)

n
argmin  J(w,e) = |w|? + J E 2
w n

i=1
such that y; = wTx; +b+e;

fori=1,...,n

(©)
x

mmm wTz+b=0

Class 1
Class 2
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LS-SVM Problem Statement

10

O Class 1
X Class 2
mmm wTz+b=0

Optimization problem: find separating
hyperplane (linear separability case)

n
argmin  J(w,e) = |w|? + J E 2
w n

i=1

such that y; = wTx; +b+e;

fori=1,...,n

Advantage of LS-SVM

Explicit form, as opposed to SVM = easier to analyze.
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LS-SVM Problem Statement

When no linear separability:
= Kernel method
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LS-SVM Problem Statement

When no linear separability:
= Kernel method

10 \ :
O Class 1
sl X Class 2 ]
=== wTp(z)+b=0
To solve the optimization problem: 6 @] .
L o E
e
n o (0] et
. B 2, 7 9 = 4 @ e il
argmin  J(w,e) = [lw|]® + e 5 e
w n 4 00 ©® . x
i=1 ol ”Ix X b4 i
G X
such that y; = wTo(z;) +b+e; 7 X XX x
. /' >$°§< §’$<x
fori=1,...,n of L x
e x X
9 0” | | | x |
) 0 2 4 6 8

e(@i)1
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LS-SVM Training and Inference

> Training: Solution given by w = Z?:l aio(x;), where

n
a :S(In— quf)y:S(y—bln)

b = IILS?J
1781,

-1
with S = (K + %In) resolvent of kernel matrix:

K = {p(@i)To(z)}] -
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LS-SVM Training and Inference

> Training: Solution given by w = Z?:l aio(x;), where

n
a :s(m- quj)y:S(y—bln)

b = ]“VTLSy
1781,

-1
with S = (K + %In) resolvent of kernel matrix:

Ti — Ty 2 "
K ={p(x:)To(x;)}] ;21 Nl {f <”pJ”>}
ij=1

kernel trick

for some translation invariant kernel function f : Ry — Ry, y = [y1,...,yn]T and
a=lag,...,an]T.
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LS-SVM Training and Inference

> Training: Solution given by w = Z?:l aio(x;), where

1,178
o :S<I”_1Tsin>y:5(y_b1")
_ 15y
b 1l s,

-1
with S = (K + %In) resolvent of kernel matrix:

T — T4 2 "
K ={p(x:)To(x;)}] ;21 Nl {f <”pJ”>}

kernel trick 4,j=1

for some translation invariant kernel function f : Ry — Ry, y = [y1,...,yn]T and
a=lag,...,an]T.

» Inference: Decision for new x

g(x) = aTk(x) + b where k(z) = {f (||x] — x| /p)} =1 €R”
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LS-SVM Training and Inference

> Training: Solution given by w = Z?:l aio(x;), where

1,178
@ :S(In— lf,-ls’in)y:S(y—bln)
17,8y
1l s,

-1
with S = (K + %In) resolvent of kernel matrix:

T — T4 2 "
K ={p(x:)To(x;)}] ;21 Nl {f <|pJ”>}

kernel trick 4,j=1

for some translation invariant kernel function f : Ry — Ry, y = [y1,...,yn]T and
a=lag,...,an]T.

» Inference: Decision for new x
g(z) = aTk(x) + b where k(z) = {f (||x] — x| /p)} - €R"

> In practice, sign(g(x)) to predict the class.
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RMT Analysis: Growth Rate Assumptions

> Large dimension: n,p — co and £ — ¢g
n
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RMT Analysis: Growth Rate Assumptions

> Large dimension: n,p — oo and £ — ¢y
> Gaussian mixture model: for a € {1,2}:
Tj ~ N(H‘Ilv Ca)
> Non-trivial regime: to ensure P(z; — Cp, | ; € Ca) # 0 nor 1
> lpe — pil = O(1)
P> ||Cull = O(1) and tr (C2 — C1) = O(1/n)
> Notations:

> C°=c¢1C1+c2Cr,c1 =L andea =22 =1-¢

» Key Notation: 7 = %tr c°

113/ 151



RMT Analysis: Kernel Linearization

Reminder: kernel matrix

2
Ty — T4
K@_’jf(u i = >
p

For z; € Cq and z; € Cy: %sz —z;||? = 7+ O(n=1/2), thus for K; ;

Kij=f(r+0m ') = (@) + @Ol A+ @I+

or in matrix form

K=fD1l+f/OL. 1+ (D). ]+...
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Ty — T4
K@_’jf(u i = >
p

For z; € Cq and z; € Cy: %sz —z;||? = 7+ O(n=1/2), thus for K; ;

Reminder: kernel matrix
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Consequence
Asymptotic statistics of K, thus of

g(x) = aTk(z) + b
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RMT Analysis: Kernel Linearization

2
Ty — T4
K@_’jf(u i = )
p

For z; € Cq and z; € Cy: %sz —z;||? = 7+ O(n=1/2), thus for K; ;

Reminder: kernel matrix

Kij=f(r+0m™ ")) = f(0)+ /Ol ]+ /(DL 1+
or in matrix form
K= f(M1, 1 + /(D). ]+ ' (O[] +- .-

Consequence
Asymptotic statistics of K, thus of

g(z) =aTk(z) +b

o =5 (1 -3 )y =5 -t no\
A non ,SE(K—{-fIn)

p = LnSV 0
1751,
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Asymptotic Behavior of the Decision Function

Theorem ([Liao,C’'19])

Under previous assumptions, for x € Cq, a € {1,2}

n(g(xz) — Gaq) —d> 0

where Gq ~ N (Eq, Varg)
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Asymptotic Behavior of the Decision Function

Theorem ([Liao,C’'19])

Under previous assumptions, for © € Cq, a € {1,2}
d
n(g(xz) —Ga) =0
where Gq ~ N(Eq, Varg) with

027017202-0102753, a=1
Eq = ?
czfclJr;ch cc1c2v®d , a=2

8
Varg = 2;726?03 OF + Vs + V)
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Asymptotic Behavior of the Decision Function

Theorem ([Liao,C’'19])

Under previous assumptions, for © € Cq, a € {1,2}

where Gq ~ N (Eq, Varg) with

Ea:{

Var, =

and

D = =2f(7)|lp2 — | +

po _ U0’

vy

Vi

p2

2 (f’(‘r))2 (n2 — 1) Ca (2 — p1)
2(f'(1))?

8
Y cice
p2

n(g(xz) — Gaq) —d> 0

2.2 .2

1)

p

(tr (CQ — Cl))2 trcg

trC1Cq

trCsCy,
+

n

(

Cc1

c2

(tr (CQ —

)

2
c2—c1— e -c1eev®

(Vi + V35 +Vy)

C1))? +

a=1

) 701+%201 cc1c2v®d , a=2

2/"(7)

p

tr ((CQ — 01)2)
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Simulations on Gaussian data

0.49 0.5

Figure: Gaussian approximation of g(x),

n =256,p=>512,¢c1 =1/4,c0 =3/4, v =1,
Gaussian kernel with 02 = 1, z ~ N (e, Ca)
with pig = [0q—1;3;0p—q], C1 = I and
{Co}iy = 4911 4 %)
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Figure: Gaussian approximation of g(x),

n =256,p=>512,¢c1 =1/4,c0 =3/4, v =1,
Gaussian kernel with 02 = 1, z ~ N (e, Ca)
with pig = [0q—1;3;0p—q], C1 = I and

{C2}4,5

ali=ila 4 ).

: : : :
0.25 | —B Real error for n = 256 F

0.2

o
=
I

e
=

Classification error

0.05

Figure: Performance of LS-SVM, ¢o = 2,

c1 =cp =1/2, v =1, Gaussian kernel
f(t) = exp(— 2;2 ). & ~ N(pa,Ca), with
ta = [0a-1;2;0p—q], C1 = I, and

{Ca}iy = A1+ 2.
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Simulations on MNIST data

W (x)xcc, histogram

B g(x)xec, histogram
Gaussian approximation G'1

=== Gaussian approximation Gz

Il

Ll A
—0.04 —0.02 0 0.02 0.04 —0.15 =01 _5.1072 0 51072 0.1 0.15

(a) with 0dB noise (b) without noise

Figure: Gaussian approximation of g(x), n = 256,p = 784, ¢1 = ¢z = 1/2, v = 1, Gaussian
kernel with o = 1, MNIST data (numbers 1 and 7) without and with 0dB noise.
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Outline

Application to machine learning (Mohamed SEDDIK)

Semi-Supervised Learning
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SSL Problem Statement

Context: Similar to clustering:

» Classify z1,...,zn € RP in k classes, with n; labelled and n,, unlabelled data.
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SSL Problem Statement

Context: Similar to clustering:
» Classify z1,...,zn € RP in k classes, with n; labelled and n,, unlabelled data.

> Problem statement: give scores Fj, (d; = [K1n]s)

F = argminpcpnxk Z Z K (Fiad?—l _ Fjad?—l)z
a=1 i,j

such that F;, = 6{xi€Ca}7 for all labelled x;.

» Solution: for F(®) ¢ Rruxk p) ¢ RriXF scores of unlabelled/labelled data,

-1
u) __ a—1 1
P = (In — D5 Kw,w Dy ) D 5 KwyDGy PO

where we naturally decompose

0 DWW
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The finite-dimensional intuition: What we expect

F 4

0 A/\M M /\f\/\ LI
/ Al VVVV
:abelled= unlabelled =I=abelled= vunla%elled =I=abelled= unlabelled :

Cy Ca Cs

Figure: Typical expected performance output

—
—

Y
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Figure: Typical expected performance output
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The finite-dimensional intuition: What we expect

F., F., F.s

Y

/\ nﬂ N M ;
L =K‘IW/“ "
Cq Co Cs

Figure: Typical expected performance output
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The reality: What we see!

Setting. p = 400, n = 1000, z; ~ N (£u, Ip). Kernel K;; = exp(—%p”ri —z;|1?).
Display. Scores F;j (left) and F;, — %(Fil + F;2) (right).

3
! OScore Fyp (Cr) 410 OScore F (C1)

09t x Score Fy (C2) o x Score F (C2)

07 F

06

05 [

04 [

03

02 F

01F

0 200 400 600 800 1000

T

Labeled  Unlabeled — Labeled Unlabeled Unlabeled Unlabeled
datain C; datain C; datain Cy  datain Cy data in C; data in Cy
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The reality: What we see!

Setting. p = 400, n = 1000, z; ~ N (£u, Ip). Kernel K;; = exp(—%p”ri —z;|1?).
Display. Scores F;j (left) and F;, — %(Fil + F;2) (right).

1 fr— = |oScore Fy (€y)
09 - x Score Fy (C2)
08
01
06
o0s
04t
03
02
o1}

0 200 w0 e 800 1000

?T—1 it it T !

Labeled  Unlabeled — Labeled Unlabeled

data in C;

data in C; data in C;  data in Cy

= Score are almost all identical... and do

OScore Fj (C1)
x Score Fp, (C2)

Unlabeled Unlabeled
data in C; data in Cy

not follow the labelled data!
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MNIST Data Example

T T
(% o) [F(“>].,1 (Zeros)
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[e)
o o
I I I
0 50 100 150
Index

Figure: Vectors [F(*")]. ,, a = 1,2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,

p = 784, n;/n = 1/16, Gaussian kernel.



MNIST Data Example
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Figure: Vectors [F(*")]. ,, a = 1,2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

O[F(u,)]~,1 (Zeros)
2 x [F(u)]-,2 (Ones)
D[F(u)]~,3 (Twos)

1.2 -

s

)

0 50 100 150

Index

Figure: Vectors [F(")]. ,, a = 1,2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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Theoretical Findings

Method: Assume n;/n — ¢; € (0,1)

> We aim at characterizing

-1
(u) _ o -« a—1 -« a—1 (1)
Y= (I"u D(u)K(”ﬂL)D(u) ) D(U)K(MDD(U F
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Theoretical Findings

Method: Assume n;/n — ¢; € (0,1)

> We aim at characterizing

-1
(u) — _ —a a—1 (1)
Y = (Inu D( )K(u u)D(u) ) D(u)K(uJ)D(l) F

» Taylor expansion of K as n,p — oo,

1
K(u,u) = f(1)1n, 1,Tlu + O”.”(n_ 2)

and similarly for K, 1), D).
> So that

-1 Lo, 17 L\
-1 My S 1y, 1
(I"u Dy K D) ) = (I - + Oy (n” 2)>

easily Taylor expanded.
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Main Results

Results: Assuming n;/n — ¢; € (0,1), by previous Taylor expansion,
» In the first order,

(u) Ni,a taln, :| 1
F)=C —_— o
G ol Bl
o(1) WT/ Informative terms
o~ 2)
where v = O(1) random vector (entry-wise) and t, = ﬁtr ce.
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Main Results

Results: Assuming n;/n — ¢; € (0,1), by previous Taylor expansion,
» In the first order,

(u) Nni,a talnu :| —1
P, =0C— —_— o
G ol Bl
o(1) R’T/ Informative terms
o~ 2)
where v = O(1) random vector (entry-wise) and t, = ﬁtr ce.

» Consequences:
P Random non-informative bias v

> Strong Impact of n; o

’ F_(_’(:,) to be scaled by n; 4

> Additional per-class bias at,1n,,
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Main Results

As a consequence of the remarks above, we take

and define
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Main Results

As a consequence of the remarks above, we take

8
a= -
VP
and define
f(u) (u)
Fi,a N a ia
Theorem

For z; € Cy, unlabelled,

;. =Gy — 0, Gy ~ N(mp, Zp)

where my, € R, ©, € R*** given by

AWy W 2@ f) n f(7)
(mo)a = =gy Mav Ty fale & =5y Tt = piyptate 0 iy e B
2w CE (p?2 o) af@? (o oip
(Zv)aras = » (f(T)2 71 ) taitas; + F(r)2 [M'CyM]aqay + Mo, ——Tha,

with t,T, M as before, Xo=Xa — ZZ 1 fud X3 and By, bias independent of a.

ny
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a # b,

P(F; 0> Fy | 2 €Cp) — Q ( (mp)p — (Mb)a ) o
[1, 1] [1, - 17
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Main Results

Corollary (Asymptotic Classification Error)
For k = 2 classes and a # b,

(mp)p — (Mp)a
1, —1)%p[1, —1]7

P(Fia>Fy |2, €C)—Q

Some consequences:
» non obvious choices of appropriate kernels
> non obvious choice of optimal 3 (induces a possibly beneficial bias)

> importance of n; versus n..

— 0.
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MNIST Data Example

Simulations

Probability of correct classification

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, n;/n = 1/16, Gaussian kernel.
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MNIST Data Example

Probability of correct classification

Simulations

Theory as if Gaussian

Figure: Performance as a function of «, for 3-class MNIST data (zeros, ones, twos),

p = 784, n;/n = 1/16, Gaussian kernel.

n = 192,
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MNIST Data Example

1

0.6 — |

Probability of correct classification

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1568, p = 784,
ny/n = 1/16, Gaussian kernel.
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MNIST Data Example

0.8 —

Probability of correct classification

Simulations

Theory as if Gaussian [

Figure: Performance as a function of «, for 2-class MNIST data (zeros, ones), n = 1568, p = 784,

ny/n = 1/16, Gaussian kernel.

—0.5

0.5
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Is semi-supervised learning really semi-supervised?

Reminder: .
For z; € Cp unlabelled, ;. — Gy — 0, Gy ~ N(Trl,b, 3p) with
2f'(1) () - 2f7(7) = f(r)? n f'(1)
Mpla = — Mgy + taty + Top — taty +8— ta + By
e = =75 TG B T R T e T e A
wCE (1@ o) 4y (1)’ 543p

Eaa: b - taitas + MTCMaa“l‘al Tu
( b) 102 » (f(T)2 f(T) 1laz f(T)2 [ b } 1a2 oy bay
with ¢, T, M as before, Xo = Xq — I;:l ";’L’ld X3 and By bias independent of a.
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Is semi-supervised learning really semi-supervised?

Reminder:
For x; € Cp unlabelled, £ . — Gy — 0, Gy, ~ N (mp, 3p) with
2f(1) () - 2f"(1) + I (7)? n f'(1)
a=— Ma a Ta a a
(m)a = ==y Mav + Tertebs + =g Tan = Tz taty + B0 T e £ By
2w C? (p(0? 0\ 4f'(7)? 5e2p
by ajay — b - ajlag MTC M ajaz L al
(=) ’ (f(T)2 T ) feter T gz (M G Mlares + 0T
k ny.d

with ¢, T, M as before, Xo = Xq — X3 and By bias independent of a.

d=1 n;

The problem with unlabelled data:

» Result does not depend on n,,!
— increasing n, asymptotically non beneficial.
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Is semi-supervised learning really semi-supervised?

Reminder:
For x; € Cp unlabelled, £ . — Gy — 0, Gy, ~ N (mp, 3p) with
2f(1) () - 2f"(1) + I (7)? n f'(1)
a=— Ma a Ta a a
(m)a = ==y Mav + Tertebs + =g Tan = Tz taty + B0 T e £ By
2w C? (p(0? 0\ 4f'(7)? 5e2p
by ajay — b - ajlag MTC M ajaz L al
(=) ’ (f(T)2 T ) feter T gz (M G Mlares + 0T
k ny.d

with ¢, T, M as before, Xo = Xq — X3 and By bias independent of a.

d=1 n;

The problem with unlabelled data:

» Result does not depend on n,,!
— increasing n, asymptotically non beneficial.

> Even best Laplacian regularizer brings SSL to be merely supervised learning.
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Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional “mismatch”
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Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional “mismatch”
» A priori, the algorithm should not work
» Indeed “in general” it does not!

> But, luckily, after some (not clearly motivated) renormalization, it works again...

» BUT it does not use efficiently unlabelled data!

Chapelle, Schélkopf, Zien, “Semi-Supervised Learning”, Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding
the unlabeled data and employing a supervised method, rather than taking a
semi-supervised route. Thus we worry about the embarrassing situation where the
addition of unlabeled data degrades the performance of a classifier.
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Exploiting RMT to resurrect SSL

Consequences of the finite-dimensional “mismatch”
» A priori, the algorithm should not work
» Indeed “in general” it does not!

> But, luckily, after some (not clearly motivated) renormalization, it works again...

» BUT it does not use efficiently unlabelled data!

Chapelle, Schélkopf, Zien, “Semi-Supervised Learning”, Chapter 4, 2009.

Our concern is this: it is frequently the case that we would be better off just discarding
the unlabeled data and employing a supervised method, rather than taking a
semi-supervised route. Thus we worry about the embarrassing situation where the
addition of unlabeled data degrades the performance of a classifier.

What RMT can do about it
» Asymptotic performance analysis: clear understanding of what we see!

» Update the algorithm and provably improve unlabelled data use.
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Resurrecting SSL by centering (SSL Improved)

Reminder:

) _ _ ) !
F = argmin pcgnxk Z ZKij(Fmdia t— Fjad; N2 with Fi(a) =0(s;cCa}
a=1 i

1
& P = (Inu D( K(uu)D(u) ) D( K(u l)D JED.
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Reminder:

F = argmin pcgnxk Z ZKij(Fmdf‘fl - Fjad?71)2 with Fi(,i) =0(s;cCa}
a=1 i

-1
u) __ —1 l
o F = (Inu D 5K () Dy ) D5 KD, FO,

Domination of score flattening:
> Consequence of 1 Sllxi —x]? = 7 DS K, u)D(u) ~11,,1% and
clustering mformatlon vanishes (not so obvnous but can be shown).
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Resurrecting SSL by centering (SSL Improved)

Reminder:

F = argmin pcgnxk Z ZKij(Fmdf‘fl - Fjad?71)2 with Fi(,i) =0(s;cCa}
a=1 i

-1
u =10
&P = (Inu DS K Dl ) D S KwunDGy ' FO.

Domination of score flattening:
> Consequence of 1 Sllxi — x| — 7 DS K, u)D(u) ~11,,1% and
clustering mformatlon vanishes (not so obvnous but can be shown).

Solution:

» Forgetting finite-dimensional intuition: “recenter” K to kill flattening, i.e., use

Lo
PKP| P=1I,——1x1,.
n

131/ 151



Asymptotic Performance Analysis

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL)

For x; € Cp, unlabelled, score vector ﬁ‘if € R* with K satisfies:

E;. =Gy —0, Gy ~ N (17, 5)

with 1y, € R*, £ € RF*F still function of (1), f'(7), (1), w1, ..., px, C1,. ..
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Asymptotic Performance Analysis

Theorem ([Mai,C'19] Asymptotic Performance of Improved SSL)
For x; € Cp, unlabelled, score vector ﬁ‘if € R* with K satisfies:

E;. =Gy —0, Gy ~ N (17, 5)
with 1y, € R*, £ € R¥*F still function of f(7), f'(7), f(7), w1, ..

Most importantly: Tp, £p now dependent of n, (number of unlabelled data).

Performances: 0.82 o--=" [ et |
AT
% 0.8 s e
— 2t ."‘ A
=) ‘----‘-—-J ------------ 7 o -
2
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= 0.78 X
Bs
%
= 0.76
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-
S 0~
g 0.74 4 Standard Laplacian approach
O e Random matrix-improved
0.72 % Spectral clustering (n; = 0)
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Performance as a function of n,, n; for N'(+, I,,)

20 40 60 80 100
cu/cy (blue), ¢;/cy (black)

Figure: Correct classification rate, at optimal «, as a function of (i) n,, for fixed p/n; = 5 (blue)
and (i) n; for fixed p/n, = 5 (black); c1 = c2 = %; different values for ||;1||. Comparison to
optimal Neyman—Pearson performance for known p (in red).
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Experimental evidence: MNIST

| 2

Digits (0,8) (2,7) (6,9)

n, = 100
Centered kernel (RMT) 89.5+3.6 89.5+3.4 85.31t5.9
Iterated centered kernel (RMT) 89.5+3.6 89.5+3.4 85.3+5.9
Laplacian 755456  74.2+58  70.0£5.5
Iterated Laplacian 87.2+4.7 86.0+5.2 81.41+6.8
Manifold 88.0+4.7 88.4+3.9 82.8%6.5

N4 = 1000
Centered kernel (RMT) 92.240.9 92.5+0.8 92.6+1.6
Iterated centered kernel (RMT)  92.3+0.9 92.5+ 0.8 92.9+1.4
Laplacian 65.6+4.1 74.4+4.0 69.5+3.7
Iterated Laplacian 92.2+0.9 92.4+0.9 92.0+1.6
Manifold 91.1+1.7 91.4+£19  91.4£2.0

Table: Comparison of classification accuracy (%) on MNIST datasets with n; = 10. Computed over

1000 random iterations for n,, = 100 and 100 for n,, = 1000.
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Experimental evidence: Traffic signs (HOG features)

OSA

Class ID 27) (9,10) (11,18)

ny = 100
Centered kernel (RMT) 79.0£10.4  77.549.2 78.5£7.1
Iterated centered kernel (RMT)  85.3+5.9  89.2t5.6  90.1+6.7
Laplacian 73.8+9.8 77.3+9.5 78.6+7.2
Iterated Laplacian 83.7+7.2 88.01+6.8 87.1+8.8
Manifold 77.6+£8.9 81.4+10.4 82.3+10.8

ny = 1000
Centered kernel (RMT) 83.6+2.4 84.61+2.4 88.7+9.4
Iterated centered kernel (RMT)  84.8+3.8 88.0+5.5 96.4+3.0
Laplacian 72.7+4.2 88.9+5.7 95.8+3.2
Iterated Laplacian 83.0+5.5 88.24+6.0 92.7+6.1
Manifold 77.7+5.8 85.0+9.0 90.6+8.1

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with n; = 10.

Computed over 1000 random iterations for n,, = 100 and 100 for n,, = 1000.
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Outline

Application to machine learning (Mohamed SEDDIK)

From Gaussian Mixtures to Real Data
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Notion of Concentrated Vectors

» Observation: RMT seems to predict ML performances for real data even with
Gaussian assumptions!

2Reminder: F : E — F'is [| F 75 p-Lipschitz if V(z, y) € E?2: |F(z) = FW)lr < [[Fllip lz —vllE-
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» Gaussian vectors fall within a larger, more useful, class of random vectors!
Definition
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concentrated if for any 1-Lipschitz function? F : R? — R, there exists C,c > 0 s.t.

P {|F(z) — EF(z)| > t} < Cect? denoted,

(P1) X ~ N(0,Ip) is 2-exponentially concentrated.
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Notion of Concentrated Vectors

» Observation: RMT seems to predict ML performances for real data even with
Gaussian assumptions!

> But Real data are unlikely close to Gaussian.
» Gaussian vectors fall within a larger, more useful, class of random vectors!
Definition

Given a normed space (E, || - ||g) and ¢ € R, a random vector z € E is g-exponentially
concentrated if for any 1-Lipschitz function? F : R? — R, there exists C,c > 0 s.t.

P {|F(z) — EF(z)| > t} < Cect? denoted,

(P1) X ~ N(0,Ip) is 2-exponentially concentrated.
(P2) If X € O(e=") and G is ||G||1sp-Lipschitz, then

G(X)eo (e%/l\guupﬂ) )

“Concentrated vectors are stable through Lipschitz maps.”

’Reminder: F : E — Fis [| F 74 p-Lipschitz if V(z,y) € E?: |F(z) — Fy)|lp < [[Fllip lz —vllE-
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GAN data: An Example of Concentrated Vectors

Training set I/ Discriminator
_Real

Rand
nggeom S g "~ | Fake

— =

Generator Fake image
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GAN data: An Example of Concentrated Vectors

Training set I/ Dnscrimlnator
/ _Real
Random / ’ :
noise ol _Fake
— El| %
Generator Fake nage

mgin mgx Eprp(a)log D(2)] + E.p(2)[log(l — D(G(2)))]

We generate data as

Generated image = G(Gaussian)
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GAN data: An Example of Concentrated Vectors

Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].
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GAN data: An Example of Concentrated Vectors

Figure: Images generated by the BigGAN model [Brock et al, ICLR'19].

GAN Data = Fj o Fp 0 - - - o Fy(Gaussian)

where the F;'s are either Fully Connected Layers, Convolutional Layers, Pooling Layers
and Activation Functions, Residual Connections or Batch Normalizations.

= The F;'s are Lipschitz operations. ‘
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GAN data: An Example of Concentrated Vectors

» Fully Connected Layers and Convolutional Layers are affine operations:
Fi(z) = Wiz + b,

Wiullp
llullp

and || F;|liip = supyo , for any p-norm.
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GAN data: An Example of Concentrated Vectors

» Fully Connected Layers and Convolutional Layers are affine operations:
Fi(x) = Wiz + by,

Wi ul|
and || F;|liip = supyo Hul”pp, for any p-norm.

» Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect
to any p-norm (e.g., ReLU and Max-pooling).
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GAN data: An Example of Concentrated Vectors

» Fully Connected Layers and Convolutional Layers are affine operations:
Fi(x) = Wiz + by,

Wiullp
llullp

and || F;|liip = supyo , for any p-norm.

» Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect
to any p-norm (e.g., ReLU and Max-pooling).

» Residual Connections: F;(z) = x + ]-'i(l) 0.0 ]—'Z.(Z) (x)
where the .7-'1.(3)'5 are Lipschitz operations, thus F; is a Lipschitz operation with
. . e j
Lipschitz constant bounded by 1 + szl ||~F7;(J)Hlip-
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Mixture of Concentrated Vectors

Consider data distributed in k classes C1,Ca,...,Cy as

xn
X =[T1,.. ., @nyy Tnygls-- 1 ngy oo oy Tnomptl,---,n] €RP
———

co(e—1) co(e—12) cO(e—")
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Mixture of Concentrated Vectors

Consider data distributed in k classes C1,Ca,...,Cy as

Xn
X = [11117_,,_11,'7,,1, Tni41y--rTngy <y 517n7nk+lv-~'-,-/1/'n] €RP
———

co(e—1) co(e—12) cO(e—")
Denote

pe =Eq,ec,[mi], Co=Eqec,ziz]]

Assumption (Growth rate)
As p — o0,
1. p/n — c € (0,00).

2. The number of classes k is bounded.
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Mixture of Concentrated Vectors

Consider data distributed in k classes C1,Ca,...,Cy as
X =[21, s Tnys Tnqgdly oo Trgs ooy Tnenptls. .-, Tn) € RPX?
€0(e="1) €0(e—2) co(e— )
Denote

pe =Eq,ec,[mi], Co=Eqec,ziz]]

Assumption (Growth rate)

As p — o0,
1. p/n — c € (0,00).
2. The number of classes k is bounded.
3. Forany € € [K], luell = O(\/p).

Notation
Q(2) = (XTX/p+zIn)~t.
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Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) € O(e~(vVP)?) in (R™>™ || - ||).
Furthermore,

|E@Q=)] - Q)| = © (, /k’]fp> where Q(z) = %A(z) + plzm(z)ﬁ
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k
with A(z) = diag lne and Q(z) = diag{u] R(z)pe}t_
150, (2) ¢ =1
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k
with A(z) = diag lne and Q(z) = diag{p] R(z)pe}%_
150, (2) ¢ =1

=1

A 1
- (1 Cy
s <’“Z 15 00(2) “Ip)
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Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) € O(e~(vVP)?) in (R™>™ || - ||).
Furthermore,

||IE[Q(Z)] - Q(Z)H =0 (1 / lo§p> where Q(z) = %A(z) + pLZJQ(z)JT

k

) 1n ) _
with A(z) = dlag{Tf(z) }g and Q(z) = diag{py R(2)pe}y_,
=1

—1

k
- 1 Cy
== — = 4zl
R(z) kézlw(z)ﬂvp
=1

with §(z) = [61(2), ..., 0k(2)] is the unique fixed point of the system of equations
& -1
1 1 C;
Se(z2)=—tr | Co | = Y —FL—+zI for each £ € [k].
@ = |G| 2 T T or each £  [H

Jj=1
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Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) € O(e~ (VP! in (R™*™ || - |]).
Furthermore,
= logp ~ 1 1
|EQ(2)] - Q(2)|| = O | /== | where R(2) = —A(2) + — JQ(2)JT
P z pz
1 k -
with A(z) = diag{ 1+£Z(z) } and Q(z) = diag{WTR(z)W}’Z:1
: =1
k -1
~ 1 Cy
R - _— 1,
@ =52 o 0
=1
with §(z) = [61(2), ..., 0k(2)] is the unique fixed point of the system of equations
i —1
1 C;
Se(z)=tr | Cy EZT;(Z)—FZIP for each ¢ € [Kk].
j=1
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Behavior of Gram Matrices for Concentrated Vectors

Theorem
Under the assumptions above, we have Q(z) € O(e~(vVP)?) in (R™>™ |- ||)

Furthermore,

[EQ()] - Q)| =0 (¢Mm>meR@:iMd+;ﬂmaﬁ

k
with A(z) = diag{l_:%f(z) }671 and Q(2) = diag{p,TR(z)pe}b_,

k -1
~ 1 Cy
==y — 421
R(z) k;:1+&&)+zp
=1

(2)] is the unique fixed point of the system of equations

i -1
1 Cj
Se(z)=tr | Cy EZW+ZIP for each ¢ € [k].
j=1

’ Key Observation: Only first and second order statistics matter! ‘
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Application to CNN Representations of GAN Images

pooled
feature maps pooled  featuremaps  featyre maps
feature maps

Outputs

Input Convolutional Pooling 1 Convolutional  pogling 2
layer 1 Byer2

» CNN representations correspond to the one before last layer.
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Application to CNN Representations of GAN Images

Generator

Discriminator

Real / Fake

Lipschitz operation

Representation Network

% Concentrated Vectors

e
Lipschitz operation
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Application to CNN representations of GAN Images

GAN Images

Real Images
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Application to CNN representations of GAN Images

vggl6 (p = 4096) d 201 (p = 1920)
o o o
w "W R W0
8w b b
I g g
[ z z
o H 2
c < g &
- .
Eigenvalues (A" Eigenvalues (A" Eigenvalues (!
2 ’
vggl6 (p = 4096) d 201 (p = 1920)
g 3 NG
n = & &
Q9 z z
o g 2
@ °. ar Sy
.
Eigenvalues (A" Eigenvalues (A" Eigenvalues (!
— 8
©
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Application to CNN representations of GAN Images

resnet50 (p = 2048 vegel6 (p = 4096) d 201 (p = 1920)
2
£ -
E "Eigenvalues (A1) " Eigenvalues (1) v
$
g g
resnet50 (p = 2048 vggl6 (p = 4096) 201 (p = 1920)
2 2 z
—_ Eigenvalues (") Eigenvalues (\'1) " Eigenvalues (A1)
[}
Q
[-'4

Eigenvector 3
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Application to CNN representations of GAN Images

GAN Images

Real Images

Density (log scale)

B GAN images
5 Gaussian mixture

o
Eigenvalues (\")

Density (log scale)

vggl6 (p = 4096)

d 201 (p = 1920)

B GAN images

5 Gaussian mixture

B GAN images
55 Gaussian mixture

Density (log scale)

i 2
i

Eigenvalues (\")

Eigenvector 3

Density (log scale)

i NS i ;
lea) lo®opign) igu)!
Tigervecior 2 Tigervecior T Tigerwecior T Tigorvecior T Tigervecior T Tigervecior T
vggl6 (p = 4096) d 201 (p = 1920)
B Real images B Real images B Real images
W59 Gaussian mixture = [ Gaussian mixture - W99 Gaussian mixture
" W ® 1
o ] B
£ 2z
g H
an' Q,

Eigen

values (

iy

hoon T s
Eigenvalues (")

Eigenvalues (\')

Eigenvector 3

Eigenvector 3

o®

Eigenvector 3

Eigenvector 3

Eigenvector 3

Eigenvector 3

Eigenvector 2

Eigenvecior 2

Eigenvecior 2

Figenvecior 2

Eigenvecior 2 Figenvecior 2
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Outline

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
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Take-away messages

» Asymptotic “concentration effect” for large n,p
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» Complete intuitive change = opens way to renewed methods.

> Strong coincidence with real datasets = easy link between theory and practice.
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The End

Thank you.
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