Proximal Gradient Algorithms: Applications in Signal Processing

Niccoló Antonello, Lorenzo Stella, Panos Patrinos, Toon van Waterschoot

niccolo.antonello@idiap.ch, stellalo@amazon.com,

panos.patrinos@esat.kuleuven.be, toon.vanwaterschoot@esat.kuleuven.be

EUSIPCO 2019

IDIAP, Amazon Research, KU Leuven ESAT-STADIUS

Proximal Gradient Algorithms: Applications in Signal Processing Part I: Introduction

Toon van Waterschoot

toon.vanwaterschoot@esat.kuleuven.be

EUSIPCO 2019

KU Leuven, ESAT-STADIUS

Optimization in Signal Processing

Inference problems such as ...

- Signal estimation,
- Parameter estimation,
- Signal detection,
- Data classification
- ... naturally lead to optimization problems

$$x_{\star} = \underset{x}{\operatorname{argmin}} \underbrace{\operatorname{loss}(x) + \operatorname{prior}(x)}_{\operatorname{cost}(x)}$$

Variables x could be signal samples, model parameters, algorithm tuning parameters, etc.

Modeling and Inverse Problems

Many inference problems lead to optimization problems in which signal models need to be inverted, i.e. **inverse problems**:

Given set of observations y, infer unknown signal or model parameters x

- Inverse problems are often ill-conditioned or underdetermined
- · Large-scale problems may suffer more easily from ill-conditioning
- Including prior in cost function then becomes crucial (e.g. regularization)

Modeling and Inverse Problems

Choice of suitable cost function often depends on adoption of application-specific **signal model**, e.g.

- Dictionary model, e.g. sum of sinusoids y = Dx with DFT matrix D
- Filter model, e.g. linear FIR filter y = Hx with convolution matrix H
- Black-box model, e.g. neural network y = f(x) with feature transformation function f

In this tutorial, we will often represent signal models as operators, i.e.

y = Ax with A = linear operator y = A(x) with A = nonlinear operator

Motivating Examples

Example 1: Line spectral estimation

• DFT dictionary model with selection matrix S and inverse DFT matrix F_i

$$y = SF_i x$$

- Underdetermined inverse problem: $\dim(y) \ll \dim(x)$
- Spectral sparsity prior for line spectrum

Motivating Examples

Example 2: Video background removal

• Static background + dynamic foreground decomposition model

$$Y = L + S$$

- Underdetermined inverse problem: $\dim(Y) = \frac{1}{2} (\dim(L) + \dim(S))$
- Rank-1 prior for static BG + sparse prior for FG changes (robust PCA)

 $x_{\star} = \underset{x}{\operatorname{argmin}} \underbrace{\mathsf{BG} + \mathsf{FG} \text{ model output } \operatorname{error}(x)}_{\operatorname{loss}(x)} + \underbrace{\mathsf{BG} \text{ rank} + \mathsf{FG} \text{ sparsity}(x)}_{\operatorname{prior}(x)}$

Motivating Examples

Example 3: Audio de-clipping

• DCT dictionary model with inverse DCT matrix F_{i,c}

$$y = F_{i,c}x$$

- Underdetermined inverse problem: missing data (clipped samples) in y
- Spectral sparsity for audio signal + amplitude prior for clipped samples

Challenges in Optimization

Linear vs. nonlinear optimization

- Linear: closed-form solution
- Nonlinear: iterative numerical optimization algorithms

Convex vs. nonconvex optimization

- Convex: unique optimal point (global minimum)
- Nonconvex: multiple optimal points (local minima)

Smooth vs. non-smooth optimization

- Smooth: Newton-type methods using first- and second-order derivatives
- Non-smooth: first-order methods using (sub)gradients

Challenges in Optimization

Trends and observations:

- Loss is often linear/convex/smooth but prior is often not
- Even if non-convex problems are hard to solve globally, iterating from good initialization may yield local minimum close enough to global minimum
- Non-smooth problems are typically tackled with first-order methods, showing slower convergence than Newton-type methods

Key message of this tutorial:

Also for **non-smooth** optimization problems, Newton-type methods showing fast convergence can be derived

- This greatly broadens variety of loss functions and priors that can be used
- Theory, software implementation, and signal processing examples will be presented in next 2.5h

Tutorial Outline

- 1. Introduction
- 2. Proximal Gradient (PG) algorithms
 - Proximal mappings and proximal gradient method
 - Dual and accelerated proximal gradient methods
 - Newton-type proximal gradient algorithms
- 3. Software Toolbox
 - Short introduction to Julia language
 - Structured Optimization package ecosystem
- 4. Demos and Examples
 - Line spectral estimation
 - Video background removal
 - Audio de-clipping
- 5. Conclusion

Proximal Gradient Algorithms: Applications in Signal Processing Part II

Lorenzo Stella

stellalo@amazon.com

EUSIPCO 2019

AWS AI Labs (Amazon Research)

About me

- Applied Scientist at AWS AI Labs (Amazon Research)
- Deep learning, probabilistic time series models
- Time series forecasting, classification, anomaly detection...
- We're hiring!

Gluon Time Series: github.com/awslabs/gluon-ts

- Previously: Ph.D. at IMT Lucca and KU Leuven with Panos Patrinos
- The work presented here was done prior to joining Amazon

Outline

1. Preliminary concepts, composite optimization, proximal mappings

- 2. Proximal gradient method
- 3. Duality
- 4. Accelerated proximal gradient
- 5. Newton-type proximal gradient methods
- 6. Concluding remarks

Blanket assumptions

In this presentation:

- Underlying space is the Euclidean space ${\rm I\!R}^n$ equipped with
 - Inner product $\langle \cdot, \cdot \rangle$, e.g. dot product)
 - Induced norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$
- Linear mappings will be identified by their matrices and adjoints will be denoted by transpose $^{\top}$
- Most algorithms will be matrix-free: can view matrices and their transposes are linear mappings and their adjoints
- All results carry over to general Euclidean spaces, most of them even to Hilbert spaces

The space \mathbb{R}^n

• *n*-dimensional column vectors with real components endowed with

$$\begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{bmatrix} + \begin{bmatrix} y_1\\ y_2\\ \vdots\\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1\\ x_2 + y_2\\ \vdots\\ x_n + y_n \end{bmatrix}, \qquad \alpha \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1\\ \alpha x_2\\ \vdots\\ \alpha x_n \end{bmatrix}$$

• Standard inner product:
$$\langle x, y \rangle = x^{\top}y = \sum_{i=1}^{n} x_i y$$

• Standard inner product:
$$\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{n} x_i y_i$$

• Induced norm: $||x|| = ||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}$

dot product **Euclidean norm**

Alternative inner product and induced norm ($Q \succ 0$ is $n \times n$)

$$\langle x, y \rangle = \langle x, y \rangle_Q = x^\top Q y$$

 $\|x\| = \|x\|_Q = \sqrt{x^\top Q x}$

The space $\mathbb{R}^{m \times n}$

• *m* × *n* real **matrices**

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}$$

• Standard inner product

$$\langle X, Y \rangle = \operatorname{trace}(X^{\top}Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij}$$

• Induced norm

$$\|X\| = \|X\|_F = \sqrt{\langle X, X \rangle} = \sqrt{\sum_{i=1}^n \sum_{j=1}^m X_{ij}^2}$$

Frobenius norm

Extended-real-valued functions

 Extended real line $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\} = (-\infty, \infty]$ $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ Extended-real-valued functions Effective domain dom $f = \{x \in \mathbb{R}^n \mid f(x) < \infty\}$ • f is called **proper** if $f(x) < \infty$ for some x (**dom** *f* is nonempty) Offer a unified view of optimization problems **Main example**: indicator of set $C \subseteq \mathbb{R}^n$

$$\delta_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise} \end{cases}$$

Epigraph

Epigraph: epi $f = \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \le \alpha\}$

- f is closed iff epi f is a closed set.
- f is **convex** iff **epi** f is a convex set.

Subdifferential

Subdifferential of a proper, convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$:

$$\partial f(x) = \{ v | f(y) \ge f(x) + \langle v, y - x \rangle \ \forall y \in \mathbb{R}^n \}$$

- $\partial f(x)$ is a convex set
- $\partial f(x) = \{v\}$ iff f is differentiable at x with $\nabla f(x) = v$
- \bar{x} minimizes f iff $0 \in \partial f(\bar{x})$
- Definition above can be extended to **nonconvex** f

Composite optimization problems

minimize
$$\varphi(x) = f(x) + g(x)$$

Assumptions

• $f : \mathbb{R}^n \to \mathbb{R}$ differentiable with *L*-Lipschitz gradient (*L*-smooth)

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\| \qquad \forall x, y \in \mathbb{R}^n$$

- $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ proper, closed
- Set of optimal solutions **argmin** f + g is nonempty

Proximal mapping (or operator)

Assume $g: {\rm I\!R}^n o {\rm \overline{I\!R}}$ closed, proper

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

If g is convex:

- for all $x \in \mathbb{R}^n$, function $z \mapsto g(z) + \frac{1}{2\gamma} ||z x||^2$ is strongly convex
- $\mathbf{prox}_{\gamma g}(x)$ is unique for all $x \in \mathbb{R}^n$, i.e., $\mathbf{prox}_{\gamma g} : \mathbb{R}^n \to \mathbb{R}^n$

Examples

- f(x) = 0: $prox_{\gamma f}(x) = x$
- $f(x) = \delta_C(x)$: $\operatorname{prox}_{\gamma f}(x) = \prod_C(x)$

Proximal mapping: generalization of Euclidean projection

Proximal mapping (or operator)

Assume $g: {\rm I\!R}^n o {\rm \overline{I\!R}}$ closed, proper

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

If g is convex:

- for all $x \in \mathbb{R}^n$, function $z \mapsto g(z) + \frac{1}{2\gamma} ||z x||^2$ is strongly convex
- $\mathbf{prox}_{\gamma g}(x)$ is unique for all $x \in \mathbb{R}^n$, i.e., $\mathbf{prox}_{\gamma g} : \mathbb{R}^n \to \mathbb{R}^n$

Examples

- f(x) = 0: $prox_{\gamma f}(x) = x$
- $f(x) = \delta_C(x)$: $\operatorname{prox}_{\gamma f}(x) = \prod_C(x)$

Proximal mapping: generalization of Euclidean projection

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

• If g is convex, from the optimality conditions:

$$p \in \underset{z}{\operatorname{argmin}} g(z) + \frac{1}{2\gamma} ||z - x||^2 \iff -\gamma^{-1}(p - x) \in \partial g(p)$$
$$\iff x \in p + \gamma \partial g(p)$$

In other words

$$p \in x - \gamma \partial g(p)$$

- Equivalent to implicit subgradient step
- Analogous to implicit Euler method for ODEs
- From (\blacklozenge), any fixed-point $\bar{x} = \mathbf{prox}_{\gamma q}(\bar{x})$ satisfies $0 \in \partial g(\bar{x})$

Fixed-points of $prox_{\gamma q} \equiv minimizers$ of g

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

• For convex g, mapping $\mathbf{prox}_{\gamma g} : \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive (FNE)

 $\|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y)\|^2 \leq \langle \operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^n$

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

• For convex g, mapping $\operatorname{prox}_{\gamma g} : \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive (FNE) $\|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y)\|^2 \le \langle \operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^n$

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

- For convex g, mapping $\operatorname{prox}_{\gamma g} : \mathbb{R}^n \to \mathbb{R}^n$ is firmly nonexpansive (FNE) $\|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y)\|^2 \le \langle \operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y), x - y \rangle \quad \forall x, y \in \mathbb{R}^n$
- FNE implies $\mathbf{prox}_{\gamma g}$ nonexpansive (Cauchy-Schwarz)

$$\| \operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y) \| \le \|x - y\| \quad \forall x, y \in \mathbb{R}^{r}$$

Examples of proximal mappings

• Convex quadratic function

$$g(x) = \frac{1}{2} \langle x, Qx \rangle + \langle q, x \rangle$$
 prox _{γg} $(x) = (I + \gamma Q)^{-1} (x - \gamma q)$

• Euclidean norm

$$g(x) = \|x\| \qquad \qquad \mathsf{prox}_{\gamma g}(x) = \begin{cases} (1 - \gamma/\|x\|)x, & \|x\| > \gamma, \\ 0, & \text{otherwise} \end{cases}$$

• L₁-norm

$$g(x) = \|x\|_1 = \sum_i |x_i| \qquad [\mathbf{prox}_{\gamma g}(x)]_i = \begin{cases} x_i + \gamma & x_i < -\gamma \\ 0 & |x_i| \le \gamma \\ x_i - \gamma & x_i > \gamma \end{cases}$$

• Nuclear norm

$$g(X) = \sum \operatorname{diag} \Sigma \qquad \operatorname{prox}_{\gamma g}(X) = U \hat{\Sigma} V^{\mathcal{T}}$$

where $X = U \Sigma V^{\mathcal{T}}$ where $\operatorname{diag} \hat{\Sigma} = \operatorname{prox}_{\gamma \parallel \cdot \parallel_1}(\operatorname{diag} \Sigma)$

Proximal calculus rules

• Separable sum: $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$

$$\mathbf{prox}_{\gamma f}(x_1, x_2) = (\mathbf{prox}_{\gamma f_1}(x_1), \mathbf{prox}_{\gamma f_2}(x_2))$$

• Scaling and translation: $f(x) = \phi(\alpha x + \beta), \ \alpha \neq 0$

$$\operatorname{prox}_{\gamma f}(x) = \frac{1}{\alpha}(\operatorname{prox}_{\alpha^2\lambda\phi}(\alpha x + \beta) - \beta)$$

• **Postcomposition**: $f(x) = \alpha \phi(x) + \beta$, $\alpha > 0$

$$\mathbf{prox}_{\gamma f}(x) = \mathbf{prox}_{\alpha \gamma \phi}(x)$$

• Orthogonal composition: $f(x) = \phi(Qx)$, $Q^{\top}Q = QQ^{\top} = I$

$$\operatorname{prox}_{\gamma f}(x) = Q^{\top} \operatorname{prox}_{\gamma \phi}(Qx)$$

(e.g.: Q = DCT, DFT)

$$\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z \in \mathbb{R}^n} \left\{ g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}, \qquad \gamma > 0$$

- If g is convex $\mathbf{prox}_{\gamma g}$ is single-valued
- If g is nonconvex $\mathbf{prox}_{\gamma g}$ is set-valued in general
 - Can be empty, can be multi-valued
 - If g is **lower bounded** then **prox**_{γq}(x) nonempty for all x
 - Algorithms will work by taking any $p \in \mathbf{prox}_{\gamma q}(x)$

Outline

1. Preliminary concepts, composite optimization, proximal mappings

2. Proximal gradient method

- 3. Duality
- 4. Accelerated proximal gradient
- 5. Newton-type proximal gradient methods
- 6. Concluding remarks

Composite optimality conditions

minimize $\varphi(x) = f(x) + g(x)$

• If x_{\star} is a local minimum of φ then

$$-\nabla f(x_{\star}) \in \partial g(x_{\star}) \tag{1}$$

• Moreover, we have shown already that for any $x \in {\rm I\!R}^n$

$$p \in \mathbf{prox}_{\gamma g}(x) \iff x \in p + \gamma \partial g(p)$$
 (2)

• We can reformulate (1) as follows, using (2)

$$-\nabla f(x_{\star}) \in \partial g(x_{\star}) \iff x_{\star} - \gamma \nabla f(x_{\star}) \in x_{\star} + \gamma \partial g(x_{\star})$$
$$\iff x_{\star} = \mathbf{prox}_{\gamma g}(x_{\star} - \gamma \nabla f(x_{\star}))$$

• We have shown that x_{*} satisfies (1) iff it is a fixed point of mapping

$$T(x) = \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x))$$

Proximal gradient method

To minimize f + g iterate

$$x^{k+1} = \mathbf{prox}_{\gamma g}(x^k - \gamma \nabla f(x^k))$$

• Reduces to gradient method if g = 0

$$x^{k+1} = x^k - \gamma \nabla f(x^k)$$

• Reduces to gradient projection when $g = \delta_C$

$$x^{k+1} = \prod_C (x^k - \gamma \nabla f(x^k))$$

• Reduces to proximal point method when f = 0

$$x^{k+1} = \mathbf{prox}_{\gamma g}(x^k)$$

Interpretations

$$x^{k+1} = \mathbf{prox}_{\gamma g}(x^k - \gamma \nabla f(x^k))$$

• Proximal gradient step can be expressed as linearized (in f) sub-problem

$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u; x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

• Since ∇f is Lipschitz, for $\gamma \leq 1/L$:

$$f(u) \le \ell_f(u; x^k) + \frac{1}{2\gamma} ||u - x^k||^2$$
 for all $u \in \mathbb{R}^n$

- Thus $\ell_f(u; x^k) + g(u) + \frac{1}{2\gamma} ||u x^k||^2$ majorizes $\varphi(u)$
- Proximal gradient as a majorization minimization algorithm

Interpretations

$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u;x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

i

Interpretations

$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u;x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

19/43
$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u;x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u;x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

19/43

$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u;x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

19/43

$$x^{k+1} = \underset{u}{\operatorname{argmin}} \{\underbrace{f(x^k) + \langle \nabla f(x^k), u - x^k \rangle}_{\ell_f(u;x^k)} + g(u) + \frac{1}{2\gamma} \|u - x^k\|^2 \}$$

19/43

Convergence rate (convex case)

Theorem (Convergence rate – convex case)

The iterates of proximal gradient method with $\gamma \in (0, 1/L]$ satisfy

$$\varphi(x^k) - \varphi(x_\star) \le \frac{\|x_0 - x_\star\|^2}{2\gamma k}$$

• **Conclusion**: to reach $\varphi(x^k) - \varphi(x_\star) \le \epsilon$, proximal gradient needs

$$k = \left\lceil \frac{\|x_0 - x_\star\|^2}{2\gamma\epsilon} \right\rceil \quad \text{iterations}$$

Convergence rate (strongly convex case)

$$\|x^{k+1} - x_{\star}\|^{2} \le (1 - \gamma \mu) \|x^{k} - x_{\star}\|^{2} \tag{(4)}$$

• if f strongly convex $(\mu > 0)$, then linear convergence

$$\|x^k - x_\star\|^2 \le c^k \|x^0 - x_\star\|^2 \qquad c = 1 - \gamma \mu$$

• for
$$\gamma = rac{1}{L}$$
 contraction factor is $c = 1 - rac{\mu}{L}$

- for small $\frac{\mu}{I}$ convergence is slow
- $\mu = 0$: (\blacklozenge) shows that distance from solution set is nonincreasing

$$\|x^{k+1} - x_{\star}\| \le \|x^k - x_{\star}\|$$

- sequences with this property are called Fejér monotone
- Fejér monotonicity: convergence of the sequence of iterates to some x_{*}

Convergence (nonconvex case)

• If f is nonconvex and $\gamma \leq 1/L$

$$\lim_{k \to \infty} \|R(x^k)\| = 0 \qquad R(x) = x - \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x))$$

- $R: \mathbb{R}^n \to \mathbb{R}^n$ is sufficiently regular, e.g. it's Lipschitz if g is convex
- This implies that every cluster point \bar{x} of $(x^k)_{k \in \mathbb{N}}$ satisfies

$$R(\bar{x}) = 0 \iff -\nabla f(\bar{x}) \in \partial g(\bar{x})$$

• Convergence of the sequence using Kurdyka-Lojasiewicz assumption

Proximal gradient with line search

- In practice Lipschitz constant L is not known, how to select γ ?
- Can do backtracking: start with γ_0 large and at every iteration run

Algorithm 1: Line search to determine γ

```
Input: x^k, \gamma_{k-1} and \beta \in (0, 1)

\gamma \leftarrow \gamma_{k-1}

while f(z) > f(x^k) + \langle \nabla f(x^k), z - x^k \rangle + \frac{1}{2\gamma} ||z - x^k||^2 do

|z \leftarrow \operatorname{prox}_{\gamma g}(x^k - \gamma \nabla f(x^k))

\gamma \leftarrow \beta \gamma

end
```

- Requires one evaluation of $\mathbf{prox}_{\gamma g}$ and f per line search iteration
- Only a finite number of backtrackings will be necessary
- Preserves convergence properties of the algorithms

Outline

1. Preliminary concepts, composite optimization, proximal mappings

2. Proximal gradient method

3. Duality

- 4. Accelerated proximal gradient
- 5. Newton-type proximal gradient methods
- 6. Concluding remarks

minimize f(x) + g(Ax)

- f and g are proper, closed, convex
- A matrix (e.g. data) or linear operator (e.g. finite differencing)

Note: computing $\operatorname{prox}_{\gamma(q \circ A)}$ is much more complex than $\operatorname{prox}_{\gamma q}$

minimize f(x) + g(Ax)

• f and g are proper, closed, convex

• A matrix (e.g. data) or linear operator (e.g. finite differencing) Note: computing $\mathbf{prox}_{\gamma(q \circ A)}$ is much more complex than $\mathbf{prox}_{\gamma q}$

Example: simple bound constraints become polyhedral constraints

$$g = \delta_{\{z:z \le b\}} \implies \operatorname{prox}_{\gamma g} = \prod_{\{z:z \le b\}} = \min(\cdot, b)$$
$$(g \circ A) = \delta_{\{x:Ax \le b\}} \implies \operatorname{prox}_{\gamma(g \circ A)} = \prod_{\{x:Ax \le b\}} = ?$$

minimize f(x) + g(Ax)

• f and g are proper, closed, convex

• A matrix (e.g. data) or linear operator (e.g. finite differencing) Note: computing $\mathbf{prox}_{\gamma(q \circ A)}$ is much more complex than $\mathbf{prox}_{\gamma q}$

Reformulate problem in separable form and solve the dual:

 $\begin{array}{l} \underset{x,z}{\text{minimize }} f(x) + g(z) \\ \text{subject to } Ax = z \end{array}$

• Functions f^* and g^* are the **Fenchel conjugates** of f and g $f^*(u) = \sup_{x} \{ \langle u, x \rangle - f(x) \} \qquad (similarly for g)$

• If f is μ -strongly convex then f^* has μ^{-1} -Lipschitz gradient

 $\nabla f^*(u) = \operatorname*{argmax}_{\mathsf{x}}\{\langle u, x \rangle - f(x)\}$

• Moreau identity: $y = \operatorname{prox}_{\gamma g}(y) + \gamma \operatorname{prox}_{\gamma^{-1}g^*}(\gamma^{-1}y)$

We can apply (accelerated) proximal gradient method to the dual

• Functions f^* and g^* are the Fenchel conjugates of f and g $f^*(\mu) = \sup\{\langle \mu, x \rangle - f(x)\}$ (similarly for g)

$$f^{*}(u) = \sup_{x} \{ \langle u, x \rangle - f(x) \}$$
 (similarly for g)

• If f is μ -strongly convex then f^* has μ^{-1} -Lipschitz gradient

$$\nabla f^*(u) = \operatorname*{argmax}_{\mathsf{x}} \{ \langle u, \mathsf{x} \rangle - f(\mathsf{x}) \}$$

• Moreau identity: $y = \operatorname{prox}_{\gamma g}(y) + \gamma \operatorname{prox}_{\gamma^{-1}g^*}(\gamma^{-1}y)$

We can apply (accelerated) proximal gradient method to the dual

Outline

1. Preliminary concepts, composite optimization, proximal mappings

- 2. Proximal gradient method
- 3. Duality

4. Accelerated proximal gradient

- 5. Newton-type proximal gradient methods
- 6. Concluding remarks

Accelerated proximal gradient (APG)

minimize f(x) + g(x)

- When f and g are convex, convergence rate of proximal gradient is ${\cal O}(1/k)$
- Proximal gradient reduces to gradient method whenever $g \equiv 0$
- Gradient method not optimal for smooth convex problems
- Optimal convergence rate is $O(1/k^2)$
- Nesterov (1983) suggested simple modification that attains optimal rate
- Beck & Teboulle (2009) extended the method to composite problems

Accelerated proximal gradient (APG)

Start with $x^{-1} = x^0$, repeat

$$\beta_{k} = \begin{cases} 0 & \text{if } k = 0, \\ \frac{k-1}{k+2} & \text{if } k = 1, 2, \dots \end{cases}$$
$$y^{k} = x^{k} + \beta_{k} (x^{k} - x^{k-1})$$
$$x^{k+1} = \mathbf{prox}_{\gamma g} (y^{k} - \gamma \nabla f(y^{k}))$$

extrapolation step proximal gradient step

Theorem (Convergence rate of APG – convex case) The iterates of APC with $\alpha \in (0, 1/1)$ satisfy

$$\varphi(x^{k+1}) - \varphi_* \le \frac{2L}{(k+2)^2} \|x^0 - x_*\|^2$$

- APG faster than PG in theory (and practice!)
- Convergent extensions to nonconvex problems exist

Accelerated proximal gradient (APG)

Start with $x^{-1} = x^0$, repeat

$$\beta_{k} = \begin{cases} 0 & \text{if } k = 0, \\ \frac{k-1}{k+2} & \text{if } k = 1, 2, \dots \end{cases}$$
$$y^{k} = x^{k} + \beta_{k} (x^{k} - x^{k-1})$$
$$x^{k+1} = \mathbf{prox}_{\gamma g} (y^{k} - \gamma \nabla f(y^{k}))$$

extrapolation step proximal gradient step

Theorem (Convergence rate of APG – convex case)

The iterates of APG with $\gamma \in (0, 1/L]$ satisfy

$$\varphi(x^{k+1}) - \varphi_{\star} \le \frac{2L}{(k+2)^2} \|x^0 - x_{\star}\|^2$$

- APG faster than PG in theory (and practice!)
- Convergent extensions to nonconvex problems exist

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

- Original signal \hat{x} is sparse with 100 nonzeros
- Output $y = A\hat{x} + \mathcal{N}(0, \sigma)$ (SNR = 10)

•
$$f(x) = \frac{1}{2} \|y - Ax\|^2$$
, $g(x) = \lambda \|x\|_1$

• Lipschitz constant of ∇f is $||A^{\top}A||$

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

$$\lambda = 0.05\lambda_{\max}$$
$$nnz(x_{\star}) = 90$$

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

$$\lambda = 0.02\lambda_{\max}$$
$$nnz(x_{\star}) = 187$$

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

$$\lambda = 0.01 \lambda_{\max}$$
$$nnz(x_{\star}) = 404$$

Outline

1. Preliminary concepts, composite optimization, proximal mappings

- 2. Proximal gradient method
- 3. Duality
- 4. Accelerated proximal gradient
- 5. Newton-type proximal gradient methods
- 6. Concluding remarks

Newton-type methods (smooth case)

1. Solve **minimize** f(x) using

$$x^{k+1} = \operatorname*{argmin}_{x} f(x^{k}) + \langle \nabla f(x^{k}), x - x^{k} \rangle + \frac{1}{2} \|x - x^{k}\|_{H_{k}}^{2} \qquad H_{k} \succ 0$$

2. Solve $\nabla f(x) = 0$

$$x^{k+1} = x^k - H_k^{-1} \nabla f(x^k)$$
 H_k nonsingular

- Equivalent approaches
- Choose $H_k \approx \nabla^2 f(x^k) \equiv J \nabla f(x^k)$
- Gradient method corresponds to $H_k = I$
- Damp iterations using line search to guarantee convergence

Can we extend this to composite problems f + g?

Newton-type methods (smooth case)

1. Solve **minimize** f(x) using

$$x^{k+1} = \operatorname*{argmin}_{x} f(x^{k}) + \langle \nabla f(x^{k}), x - x^{k} \rangle + \frac{1}{2} \|x - x^{k}\|_{H_{k}}^{2} \qquad H_{k} \succ 0$$

2. Solve $\nabla f(x) = 0$

$$x^{k+1} = x^k - H_k^{-1} \nabla f(x^k)$$
 H_k nonsingular

- Equivalent approaches
- Choose $H_k \approx \nabla^2 f(x^k) \equiv J \nabla f(x^k)$
- Gradient method corresponds to $H_k = I$
- Damp iterations using line search to guarantee convergence

Can we extend this to composite problems f + g?

Variable metric proximal gradient

minimize f(x) + g(x)

$$d^{k} = \underset{d}{\operatorname{argmin}} f(x^{k}) + \langle \nabla f(x^{k}), d \rangle + \frac{1}{2} ||d||_{H_{k}}^{2} + g(x^{k} + d) \qquad H_{k} \succ 0$$
$$x^{k+1} = x^{k} + \tau_{k} d^{k} \qquad \qquad \tau_{k} > 0$$

where $H_k \approx \nabla^2 f(x^k)$. Define the scaled proximal mapping

$$\operatorname{prox}_{g}^{H}(x) = \operatorname*{argmin}_{z} \left\{ g(z) + \frac{1}{2} \| z - x \|_{H}^{2} \right\}, \quad H \succ 0$$

Then the above is equivalent to

$$d^{k} = \mathbf{prox}_{g}^{H_{k}}(x^{k} - H_{k}^{-1}\nabla f(x^{k})) - x^{k}$$
$$x^{k+1} = x^{k} + \tau_{k}d^{k} \qquad \qquad \tau_{k} > 0$$

Variable metric proximal gradient

- Becker, Fadili, 2012: f, g both convex, uses a modified SR1 method to approximate $H_k \approx \nabla^2 f$
- Lee et al., 2014: f, g both convex, show superlinear convergence when H_k is computed using quasi-Newton formulas, and solving subproblem inexactly
- Chouzenoux et al., 2014: *f* can be nonconvex, analyzes convergence of an inexact method under KL assumption
- Frankel et al., 2015: f, g can both be nonconvex

• . . .

Variable metric proximal gradient

$$\operatorname{prox}_{g}^{H}(x) = \operatorname{argmin}_{z} \left\{ g(z) + \frac{1}{2} \| z - x \|_{H}^{2} \right\}, \quad H \succ 0$$

Major practical drawback:

- No closed-form for computing \mathbf{prox}_q^H in general, even for very simple g
- Closed form for \mathbf{prox}_q^H if:
 - if $g = \| \cdot \|_1$ then *H* must be **diagonal**
 - if $g = \|\cdot\|_2$ then *H* must have **constant diagonal**
- Otherwise, need inner iterative procedure to compute **prox**^{*H*}
- Change in oracle
 - before: ∇f and **prox**_{γ} g (often very simple to compute)
 - after: ∇f and **prox**^{*H*} (much harder in general)
- Not as easily implementable as original proximal gradient method

Newton-type method for optimality conditions

$$R(x) = x - \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x)) = 0 \qquad (\clubsuit)$$

- Any local minimum x_* satisfies $R(x_*) = 0$
- System of nonlinear, nonsmooth equations
- Idea: apply Newton-type method to solve (♠)

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = x^{k} + d^{k}$$

- Choose B_k (approximately) as $JR(x^k)^{-1}$
- Need to damp the last step to enforce convergence
- Key: penalty function for line search

Newton-type method for optimality conditions

$$R(x) = x - \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x)) = 0 \qquad (\clubsuit)$$

- Any local minimum x_* satisfies $R(x_*) = 0$
- System of nonlinear, nonsmooth equations
- Idea: apply Newton-type method to solve (♠)

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = x^{k} + d^{k}$$

- Choose B_k (approximately) as $JR(x^k)^{-1}$
- Need to damp the last step to enforce convergence
- Key: penalty function for line search

Newton-type method for optimality conditions

$$R(x) = x - \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x)) = 0 \qquad (\clubsuit)$$

- Any local minimum x_* satisfies $R(x_*) = 0$
- System of nonlinear, nonsmooth equations
- Idea: apply Newton-type method to solve (♠)

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = x^{k} + d^{k}$$

- Choose B_k (approximately) as $JR(x^k)^{-1}$
- Need to damp the last step to enforce convergence
- Key: penalty function for line search

$$\varphi_{\gamma}(x) = \min_{z} \left\{ Q_{\gamma}(z;x) = f(x) + \langle z - x, \nabla f(x) \rangle + g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}$$

$$\varphi_{\gamma}(x) = \min_{z} \left\{ Q_{\gamma}(z;x) = f(x) + \langle z - x, \nabla f(x) \rangle + g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}$$

$$\varphi_{\gamma}(x) = \min_{z} \left\{ Q_{\gamma}(z;x) = f(x) + \langle z - x, \nabla f(x) \rangle + g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}$$

$$\varphi_{\gamma}(x) = \min_{z} \left\{ f(x) + \langle z - x, \nabla f(x) \rangle + g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}$$

Theorem

If g is convex (results can be extended to g being nonconvex)

1. φ_{γ} is strictly continuous

2.
$$\varphi_{\gamma} \leq \varphi$$
 for any $\gamma > 0$

3.
$$\varphi(z) \leq \varphi_{\gamma}(x) - \frac{1-\gamma L}{2\gamma} \|x - z\|^2$$
 where $z = \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x))$

4.
$$\varphi_{\gamma}(x) = \varphi(x)$$
 for any stationary point x

- **5.** inf $\varphi_{\gamma} = \inf \varphi$ and argmin $\varphi_{\gamma} = \operatorname{argmin} \varphi$ for $\gamma \in (0, L^{-1})$
 - **1.** implies that φ_{γ} is everywhere finite
 - if $\gamma < L^{-1}$, **2.** and **3.** imply that z (strictly) decreases $arphi_\gamma$
 - if $\gamma < L^{-1}$, **5.** implies minimizing φ equivalent to minimizing φ_{γ}

$$\varphi_{\gamma}(x) = \min_{z} \left\{ f(x) + \langle z - x, \nabla f(x) \rangle + g(z) + \frac{1}{2\gamma} \|z - x\|^2 \right\}$$

Theorem

If g is convex (results can be extended to g being nonconvex)

1. φ_{γ} is strictly continuous

2.
$$\varphi_{\gamma} \leq \varphi$$
 for any $\gamma > 0$

3.
$$\varphi(z) \leq \varphi_{\gamma}(x) - \frac{1-\gamma L}{2\gamma} \|x - z\|^2$$
 where $z = \mathbf{prox}_{\gamma g}(x - \gamma \nabla f(x))$

4.
$$\varphi_{\gamma}(x) = \varphi(x)$$
 for any stationary point x

- **5.** inf $\varphi_{\gamma} = \inf \varphi$ and argmin $\varphi_{\gamma} = \operatorname{argmin} \varphi$ for $\gamma \in (0, L^{-1})$
 - 1. implies that φ_{γ} is everywhere finite
 - if $\gamma < L^{-1}$, **2.** and **3.** imply that z (strictly) decreases φ_{γ}
 - if $\gamma < L^{-1}$, **5.** implies minimizing arphi equivalent to minimizing $arphi_\gamma$
$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

From the theorem: φ_{γ} continuous and

$$\varphi_{\gamma}(z^k) \leq \varphi_{\gamma}(x^k) - \frac{1-\gamma L}{2\gamma} \|x^k - z^k\|^2$$

Therefore: $\tau_k \in (0, 1]$ exists such that

$$\varphi_{\gamma}(x^{k+1}) \leq \varphi_{\gamma}(x^k) - \alpha \frac{1-\gamma L}{2\gamma} \|x^k - z^k\|^2 \qquad \alpha \in (0,1)$$

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

$$f = \frac{1}{2} \operatorname{dist}^2(\cdot, \ell)$$
$$g = \delta_C$$

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

$$f = \frac{1}{2} \operatorname{dist}^2(\cdot, \ell)$$
$$g = \delta_C$$

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

$$f = \frac{1}{2} \operatorname{dist}^2(\cdot, \ell)$$
$$g = \delta_C$$

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

$$f = \frac{1}{2} \operatorname{dist}^2(\cdot, \ell)$$
$$g = \delta_C$$

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

$$f = \frac{1}{2} \operatorname{dist}^2(\cdot, \ell)$$
$$g = \delta_C$$

$$z^{k} = \mathbf{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

$$f = \frac{1}{2} \operatorname{dist}^2(\cdot, \ell)$$
$$g = \delta_C$$

$$z^{k} = \operatorname{prox}_{\gamma g}(x^{k} - \gamma \nabla f(x^{k}))$$

$$d^{k} = B_{k}(z^{k} - x^{k}) \qquad \qquad B_{k} \in \mathbb{R}^{n \times n} \text{ nonsingular}$$

$$x^{k+1} = (1 - \tau_{k})z^{k} + \tau_{k}(x^{k} + d^{k}) \qquad \qquad \tau_{k} \in (0, 1]$$

How to choose B_k ? Quasi-Newton: start with nonsingular B_0 , update it s.t.

$$B_k y^k = s^k \quad \text{(inverse secant condition)} \quad \begin{cases} s^k = x^k - x^{k-1} \\ y^k = R(x^k) - R(x^{k-1}) \end{cases}$$

- (Modified) Broyden method yields superlinear convergence
- Limited-memory BFGS: works well in practice, no need to store B^k
- Products with B^k computed in O(n) using inner products only

Example: lasso (or basis pursuit)

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

$$\lambda = 0.05\lambda_{\max}$$
$$nnz(x_{\star}) = 90$$

Example: lasso (or basis pursuit)

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

$$\lambda = 0.02\lambda_{\max}$$
$$nnz(x_{\star}) = 187$$

Example: lasso (or basis pursuit)

minimize
$$\frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$$
 $A \in \mathbb{R}^{1000 \times 2500}$

$$\lambda = 0.01 \lambda_{\max}$$
$$nnz(x_{\star}) = 404$$

Outline

1. Preliminary concepts, composite optimization, proximal mappings

- 2. Proximal gradient method
- 3. Duality
- 4. Accelerated proximal gradient
- 5. Newton-type proximal gradient methods
- 6. Concluding remarks

Concluding remarks

Proximal gradient (PG) method:

- Extends classical gradient descent to composite problems
- Convergence rate guarantees in the convex case
- Convergence to local minima in the nonconvex case (under assumptions)
- Accelerated variants greatly improve convergence (and makes it practical)

Newton-type PG:

- Variable metric PG exist, which require solvng inner subproblem in general
- PANOC: Newton-type method for the composite optimality conditions
- Same oracle as PG: ∇f and $\mathbf{prox}_{\gamma q}$
- Same global convergence as PG
- Much faster local convergence using e.g. L-BFGS directions

References

Theory books:

- Bertsekas, "Convex Optimization Theory", 2009
- Rockafellar, Wets, "Variational Analysis", 2009
- Bauschke, Combettes, "Convex Analysis and Monotone Operator Theory in Hilbert Spaces", 2017

Algorithms books:

- Bertsekas, "Convex Optimization Algorithms", 2015
- Beck, "First-Order Methods in Optimization", 2017

(Accelerated) proximal gradient method:

- Beck, Teboulle, "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems", 2009
- Attouch et al, "Convergence of descent methods for semi-algebraic and tame problems: ...", 2011
- Nesterov, "Gradient methods for minimizing composite functions", 2013
- Li, Lin, "Accelerated Proximal Gradient Methods for Nonconvex Programming", 2015

Newton-type proximal gradient methods:

- Becker, Fadili, "A quasi-Newton proximal splitting method", 2012
- Lee et al, "Proximal Newton-Type Methods for Minimizing Composite Functions", 2014
- Chouzenoux et al, "Variable Metric Forward-Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function", 2014
- Frankel et al, "Splitting Methods with Variable Metric for Kurdyka-Lojasiewicz Functions and General Convergence Rates", 2015
- Themelis et al, "Forward-backward envelope for the sum of two nonconvex functions: ...", 2016
- Stella et al, "A Simple and Efficient Algorithm for Nonlinear Model Predictive Control", 2017
- Stella et al, "Newton-type Alternating Minimization Algorithm for Convex Optimization", 2018

Proximal Gradient Algorithms: Applications in Signal Processing Part III

Niccolò Antonello

niccolo.antonello@idiap.ch

EUSIPCO 2019

IDIAP Research Institute

StructuredOptimization.jl

Niccolò Antonello (Idiap Research Institute)

Outline

- Introduction to Julia
- StructuredOptimization.jl
 - AbstractOperators.jl
 - ProximalOperators.jl
 - ProximalAlgorithms.jl
- Demos

Introuction to

The Julia language

- General-purpose programming language
- Designed specifically for scientific computing
- Young language
 - Born in 2012
 - 1.0 stable release Summer 2018

The Julia language features

- Dynamic language (Like Python, MATLAB)
- Interoperability
 - Easily call other languages (C, Fortran)
- Designed to be fast
 - Approaches C, faster than Python
- Open Source

• Syntax very close to MATLAB

```
In [118]: # solving a random linear system of equations (y = A*x)
A = randn(3,3)
x = randn(3) # just a vector
y = A\x
```

Out[118]: 3-element Array{Float64,1}: 2.0664785413005244 -3.0015294370755936 -1.5437559125502291

• ...but often very close to Python

In [119]:	a,b = (1,2) # Tuples
Out[119]:	(1, 2)
In [120]:	[i+j for i = 1:3, j =1:3] # Comprehensions
Out[120]:	3×3 Array{Int64,2}: 2 3 4 3 4 5 4 5 6

```
• Ahead-of-time compilation
```

```
In [121]: function foo(x)
    return sum(x)
end
x = randn(1000)
# first time you run a function code is compiled
@time foo(x)
# second time code is re-used
@time foo(x);
```

```
0.024094 seconds (3.84 k allocations: 170.800 KiB)
0.000005 seconds (5 allocations: 176 bytes)
```

Learning Julia

- Full documentation <u>docs.julialang.org (https://docs.julialang.org/en/v1/)</u>
- Responsive and helpful community in <u>Discourse (https://discourse.julialang.org)</u>
- Help funtion

search: cos cosh cosd cosc Cos cospi cosine acos acosh acosd sincos const clos e

Out[125]: Cos(x)

Compute cosine of x, where x is in radians.

cos(A::AbstractMatrix)

Compute the matrix cosine of a square matrix A.

If A is symmetric or Hermitian, its eigendecomposition (<u>eigen (@ref)</u>) is used to compute the cosine. Otherwise, the cosine is determined by calling <u>exp (@ref)</u>.

Examples

jldoctest
julia> cos(fill(1.0, (2,2)))
2×2 Array{Float64,2}:
 0.291927 -0.708073
 -0.708073 0.291927

cos(x::AbstractExpression)

Cosine function:

 $\cos(\mathbf{x})$

See documentation of AbstractOperator.Cos.

Integrated development environment (IDE)

- <u>Juno (http://junolab.org)</u> (Atom extension) ← user friendly IDE
- <u>Jupyter notebooks (https://jupyter.org)</u> (such as this one) available also online (juliabox (https://juliabox.com))
- Other editors such as Vim, Spacemacs have dedicated extensions

Package manager

- Julia has built-in package manager
- Installing packages
 julia>] add AbstractOperators

Optimization in Julia

- JuMP.jl (https://github.com/JuliaOpt/JuMP.jl)
 - LP, MIP, SOCP, NLP
- <u>Convex.jl (https://github.com/JuliaOpt/Convex.jl)</u>
 - Convex Optimization (like MATLAB's CVX)
- Optim.jl (https://github.com/JuliaNLSolvers/Optim.jl)
 - Smooth Nonlinear Programming

StructuredOptimization.jl

- Large scale and nonsmooth problems
- Convex & Nonconvex
- PG algorithms
- Modeling language with mathematical formulation

StructuredOptimization.jl: Package ecosystem

Joins 3 independent packages:

- ProximalOperators.jl
- AbstractOperators.jl
- ProximalAlgorithms.jl

ProximalOperators.jl

Proximal Operators $\mathbf{y} = \operatorname{prox}_{\gamma g}(\mathbf{x}) = \arg\min_{\mathbf{z}} \left\{ g(\mathbf{z}) + \frac{1}{2\gamma} \|\mathbf{z} - \mathbf{x}\|^2 \right\},$

where $g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \gamma > 0.$

- Generalization of projection
- Often has efficient closed form

Library of functions with efficient prox

- Indicators of sets
 - Norm balls e.g. $S = \{x : \sum_i |x_i| \le r\}$
- Norm and regularization functions
 - Norms e.g. $||x||_1, ||x||_{\infty}$
- Penalties and other functions
 - Least squares, Huber loss, Logistic loss

Example: ℓ_1 -norm

In [126]:	<pre>using ProximalOperators # load a package lambda = 3.5 # regularization parameter f = NormL1(lambda) # one can create the L1-norm as follows</pre>
Out[126]:	description : weighted L1 norm domain : AbstractArray{Real}, AbstractArray{Complex} expression : $x \mapsto \lambda x _1$ parameters : $\lambda = 3.5$

In [128]: # `prox` evaluates proximal operator at `x`
optional positive stepsize `gamma`
gamma = 0.5
x = randn(10)
y, fy = prox(f, x, gamma)
returning proximal point y and the value of the f(y)

Out[128]: ([0.0, 0.0, 0.0, -0.00310438, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.010865314173881 369)

In [129]: # `prox!` evaluates the proximal operator in-place # (Note: by convention func. with ! are in-place) y = similar(x); # pre-allocate y fy = prox!(y, f, x, gamma)

Out[129]: 0.010865314173881369
ProximalOperators.jl calculus rules

Modify & combine functions

- Convex conjugate
- Functions combinations (Separable sum)
- Function regularization (Moreau Envelope)
- Pre and post composition

Example: Precomposition

Construct a least squares function with diagonal matrix:

 $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{y}\|^2$

In [130]: d, y = randn(10), randn(10);

In [131]: f_ls = SqrNormL2() # smooth function

```
Out[131]: description : weighted squared Euclidean norm
domain : AbstractArray{Real}, AbstractArray{Complex}
expression : x \mapsto (\lambda/2) ||x||^2
parameters : \lambda = 1.0
```

In [132]: f = PrecomposeDiagonal(f_ls, d, y)

Out[132]: description : Precomposition by affine diagonal mapping of weighted squared Eu clidean norm domain : AbstractArray{Real}, AbstractArray{Complex} expression : $x \mapsto f(diag(a)*x + b)$ parameters : $f(x) = x \mapsto (\lambda/2) ||x||^2$, $a = Array{Float64,1}$, $b = Array{Float6}$

```
4, 1
```

In [133]: x = randn(10) y, fy = prox(f,x)

Out[133]: ([1.73048, -0.384114, 0.298391, 0.885389, -0.567672, -0.166953, -0.103638, -0. 368458, -0.240603, 0.396272], 2.1379379614662475)

In [134]: gradfx, fx = gradient(f,x)

Out[134]: ([-0.0572666, 2.11036, 2.10945, 0.358283, -1.87252, 0.0232842, 0.177813, -1.00 873, 1.43095, -0.21392], 5.933046424575226) **AbstractOperators**

AbstractOperators.jl extends syntax typically used for matrices to mappings.

In [135]:	<pre>using AbstractOperators A = DCT(3,4) # create a 2-D Discrete Cosine Transform operator</pre>
Out[135]:	\mathscr{F} c $\mathbb{R}^{(3, 4)} \rightarrow \mathbb{R}^{(3, 4)}$
In [136]:	<pre>x = randn(3,4) # notice that x is not restricted to a vector! y = A*x # apply the linear operator</pre>
Out[136]:	3×4 Array{Float64,2}: 0.383866 -1.40719 -0.727502 -0.452948 -0.468083 0.740363 -0.237086 -0.49221 0.492823 -1.47733 0.313025 -2.24597

Fast (Matrix free) operators library

- Basic operators (Eye, DiagOp)
- DSP
- Transformations (e.g DFT, DCT)
- Filtering (e.g Conv, Xcorr)
- Nonlinear functions (Cos, Sin)

Matrix free?

Use fast operators, avoid building matrices.

In [138]: # Fourier transform N = 2^9 x = randn(Complex{Float64},N) A = [exp(-im*2*pi*k*n/(N)) for k =0:N-1, n=0:N-1]; #Fourier Matrix In [139]: A_mf = DFT(Complex{Float64},(2^9,)) # (matrix free)

Out[139]: ℱ ℂ^512 → ℂ^512

In [140]:	<pre># not good for memory println("Size Fourier Matrix: ", sizeof(A)) println("Size Abstract Operator: ", sizeof(A_mf))</pre>
	Size Fourier Matrix: 4194304 Size Abstract Operator: 24
In [141]:	<pre>#and neither for speed! print("Fourier Matrix:") @time A*x print("Abstract Operators:") @time A_mf*x;</pre>

Fourier Matrix: 0.000896 seconds (5 allocations: 8.281 KiB) Abstract Operators: 0.000017 seconds (5 allocations: 8.281 KiB)

AbstractOperators.jl calculus rules

- Concatenation HCAT, VCAT, DCAT
- Composition
 - Linear and Nonlinear
- Transformations
 - Scale, Affine addition
 - Adjoint and Jacobian

Automatic differentiation

$$f(\mathbf{x}) = \tilde{f}(AB\mathbf{x}),$$

where A and B linear operators

$$\nabla f(\mathbf{x}) = B^* A^* \nabla \tilde{f}(AB\mathbf{x})$$

 A^* and B^* adjoint operators with fast transformation

In [143]:	<pre># define operators B = IDCT(5) # inverse DCT transform A = FiniteDiff((5,)) # finite difference operator B, A</pre>
Out[143]:	$(\mathscr{F}c^{-1} \mathbb{R}^5 \rightarrow \mathbb{R}^5, \delta x \mathbb{R}^5 \rightarrow \mathbb{R}^4)$
In [144]:	C = A*B # can combine operators
Out[144]:	$\delta x * \mathcal{F} c^{-1} \mathbb{R}^5 \rightarrow \mathbb{R}^4$

$$\mathbf{x} \longrightarrow \mathbb{B} \xrightarrow{\mathsf{Bx}} \mathsf{A} \xrightarrow{\mathsf{ABx}} \xrightarrow{\mathbf{r}} \tilde{f} \longrightarrow \tilde{f}(\mathsf{ABx})$$

 $f(\mathbf{x}) = \tilde{f}(AB\mathbf{x})$

In [145]: x = randn(5) # random point r = C*x # r = A*B*x (Forward pass) f_t = SqrNormL2() # least squares cost function f = f_t(r) # evaluate f(x) = g(A*B*x)

Out[145]: 4.5266875469669605

In [146]: Vf_t, f_tx = gradient(f_t,r)
Vf = C'*Vf_t; # get gradient: adjoint operator C' (Backpropagation)

 $\nabla f(\mathbf{x}) = B^* A^* \nabla \tilde{f}(AB\mathbf{x})$

```
In [147]: # gradient using finite differences
using LinearAlgebra
x_eps = zero(x)
Vf_FD = zero(x)
for i = 1:length(x_eps)
    x_eps .= 0
    x_eps[i] = sqrt(eps())
    Vf_FD[i] = (f_t(C*(x.+x_eps))-f)./sqrt(eps())
end
norm( Vf_FD - Vf ) # testing gradient using
```

Out[147]: 2.067756216756867e-7

ProximalAlgorithms.jl

Proximal algorithms for nonsmooth optimization in Julia.

- (Accelerated) **Proximal Gradient** (aka Forward-backward)
- PANOC

Many others:

- Asymmetric forward-backward-adjoint algorithm (AFBA)
- Chambolle-Pock primal dual algorithm
- Davis-Yin splitting algorithm
- Douglas-Rachford splitting algorithm
- Vũ-Condat primal-dual algorithm

PANOC, ZeroFPR, ForwardBackward

Solve problem:

$$\underset{\mathbf{x}}{\operatorname{argmin}} f(A\mathbf{x}) + g(\mathbf{x})$$

- *f* smooth function
- A linear operator
- *g* nonsmooth function

Example: sparse deconvolution

$$\mathbf{x}^{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{h} * \mathbf{x} - \mathbf{y}\|^{2} + \lambda \|\mathbf{x}\|_{1}$$

- **h** impulse response (FIR)
- y noisy measurement
- x unkown source clean signal (sparse)

Construct
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{h} * \mathbf{x} - \mathbf{y}\|^2$$
 and $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$

In [151]: using AbstractOperators
 linop = Conv(size(x_gt), h) # convolution operator

```
Out[151]: ★ R^2000 → R^2999
```

In [152]: using ProximalOperators
smooth = PrecomposeDiagonal(SqrNormL2(), 1.0, -y)
nonsmooth = NormL1(1e-3);

Create PANOC solver

StructuredOptimization.jl

Structured optimization problem:

$$\underset{\mathbf{x}}{\operatorname{minimize}} f_1(A_1\mathbf{x}) + f_2(A_2\mathbf{x}) + \dots + f_N(A_N\mathbf{x})$$

- Cost function composed of different terms
- f_i loss functions
- A_i linear operators
- Constraints: indicator functions

Structured optimization problem:

$$\underset{\mathbf{x}}{\operatorname{minimize}} f_1(A_1\mathbf{x}) + f_2(A_2\mathbf{x}) + \dots + f_N(A_N\mathbf{x})$$

StructuredOptimization.jl converts it to the PG general problem:

$$\underset{\mathbf{x}}{\operatorname{minimize}} f(A\mathbf{x}) + g(\mathbf{x})$$

- *f* smooth (differentiable)
 - automatic differentiation → AbstractOperators.jl
- *g* nonsmooth (including constraints)
 - efficient proximal mappings → ProximalOperators.jl

Example: Sparse Deconvolution $\mathbf{x}^{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{h} * \mathbf{x} - \mathbf{y}\|^{2} + \lambda \|\mathbf{x}\|_{1}$

In [156]: using StructuredOptimization
x = Variable(length(x_gt)) # define optimization variable

```
Out[156]: Variable(Float64, (2000,))
```

In [157]: # (ls short hand for 0.5*norm(...)^2)
@minimize ls(conv(x,h) - y) + le-3*norm(x, 1); # solve problem

Matrix free optimization

```
In [159]: ~x .= 0
_, its = @time @minimize ls( conv(x,h) - y ) + le-3*norm(x, 1)
x_mf = copy(~x);
```

0.185090 seconds (17.13 k allocations: 6.785 MiB, 6.34% gc time)

In [160]: ~x .= 0; Nx = length(x_gt)
H = hcat([[zeros(i);h;zeros(Nx-1-i)] for i = 0:Nx-1]...)
_, its_mf = @time @minimize ls(H*x - y) + le-3*norm(x, 1);
its_mf == its

0.342836 seconds (17.44 k allocations: 6.720 MiB)

Out[160]: true

Example: constraint optimization

Refine the LASSO solution using:

minimize
$$\frac{1}{2} ||(\mathbf{E}\mathbf{z}) * \mathbf{h} - \mathbf{y}||^2$$

subject to $\mathbf{z} \ge 0$

- \mathbf{z} is a vector of length $\|\mathbf{x}\|_0$
- E is a matrix that expands z to the support of x^{\star}

In [162]:	<pre>using LinearAlgebra idx = findall(.!((~x) .≈ 0.0)) # indices nonzero elements E = Diagonal(ones(length(~x)))[:,idx] # create expansion matrix</pre>
	<pre>z = Variable((~x)[idx]) # initialize var. with nonzero elements @minimize ls(conv(E*z,h) - y) st z >= 0.0; # solve problem</pre>

Limitations

- Only PG algorithms supported
- g must be efficiently computable proximal mappings

Nonsmooth function $g(B\mathbf{x})$ must satisfy:

1. *B* is a **tight frame**

• $BB^* = \mu I$, where $\mu \ge 0$ 2. *g* is a separable sum: $g(B\mathbf{x}) = \sum_j h_j(C_j \mathbf{x}_j)$

- \mathbf{x}_j non-overlapping slices of \mathbf{x}
- C_j tight frames

In [164]:	<pre>n = 10 A,b = randn(2*n,n),randn(2*n) x = Variable(n) @minimize ls(A*x-b)+norm(dct(x),1);</pre>
	# nonsmooth fun composed with orthogonal operator (rule 1)
In [165]:	<pre>#@minimize ls(A*x-b)+norm(A*x,1) # rule 1 not satisfied!</pre>
In [166]:	<pre>#@minimize ls(A*x - b) + maximum(x) st x >= 2.0 # rule 2 not satisfied!</pre>
In [167]:	<pre>@minimize ls(A*x - b) + maximum(x[1:5]) st x[6:10] >= 2.0; # accepted: optimization variables partitioned in nonoverlapping groups</pre>

Demos

- Line Spectral estimation
- Video background removal
- Audio Declipping

Line Spectral Estimation

Goal:

• recover frequencies & amplitudes of signal **y**

Assumption:

• **y** sparse mixture of *N* sinusoids.

Simple solutions:

- DFT
- zero-padded DFT of **y** with *s* super-resolution factor.

Spectral leakage:

- frequencies merge
- amplitude not estimated correctly

Lasso formulation:

$$\mathbf{x}_{1}^{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|SF^{-1}\mathbf{x} - \mathbf{y}\|^{2} + \lambda \|\mathbf{x}\|_{1},$$

- F^{-1} : Inverse Fourier transform
- S: selection mapping takes first N_t samples

```
In [19]: using StructuredOptimization
x = Variable(Complex{Float64}, s*Nt) # define complex-valued variable
lambda = le-3*norm(xzp./(s*Nt),Inf) # set lambda
@minimize ls(ifft(x)[1:Nt]-complex(y))+lambda*norm(x,1) with PANOC(tol = le-8)
x1 = copy(~x); # copy solution
```

In [20]: scatter(f_s, abs.(x1[1:div(s*Nt,2)+1]./(s*Nt)); label = "LASSO", m=:square)
plot!(f_s, abs.(xzp./Nt)[1:div(s*Nt,2)+1]; label = "dft zero pad.", ylim=[0.2;1
], xlim=[0;4e3], xlabel="Frequency", ylabel="Amplitude")
scatter!(fk, abs.(A) ./2; label = "ground truth", ylim=[0.2;1], xlim=[0;4e3])

Lasso results

- \mathbf{x}_1^{\star} estimates improve!
- Amplitude usually underestimated

Non-convex problem

$$\mathbf{x}_{0}^{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|SF^{-1}\mathbf{x} - \mathbf{y}\|^{2} \text{ s.t. } \|\mathbf{x}\|_{0} \leq 2N.$$

In [22]: # notice that following problem is warm-started by previous solution
@minimize ls(ifft(x)[1:Nt]-complex(y)) st norm(x,0) <= 2*N with PANOC(tol = 1e-8
);
x0 = copy(~x);</pre>

Demo: Video Background removal

Video

- Static background
- Moving foreground

Goal

• Separate foreground from static background

In [5]: using Images include("utils/load_video.jl") n, m, l = size(Y)Gray.([Y[:,:,1] Y[:,:,2] Y[:,:,3]])

Out[5]:

Low rank approximation

minimize
$$\frac{1}{2} \|\mathbf{L} + \mathbf{S} - \mathbf{Y}\|^2 + \lambda \|\operatorname{vec}(\mathbf{S})\|_1$$

subject to rank $(\mathbf{L}) \le 1$

- **Y**: *l*-th column has *l*-th frame
- L: background (low-rank)
- S: foreground (sparse)

minimize $\frac{1}{2} \|\mathbf{L} + \mathbf{S} - \mathbf{Y}\|^2 + \lambda \|\operatorname{vec}(\mathbf{S})\|_1$ subject to rank $(\mathbf{L}) \le 1$

```
In [6]: using StructuredOptimization
Y = reshape(Y,n*m,l) # reshape video
L = Variable(n*m,l) # define variables
S = Variable(n*m,l)
@minimize ls(L+S-Y) + 3e-2*norm(S,l) st rank(L) <= 1 with PANOC(tol = 1e-4);</pre>
```

In [7]: L, S = ~L, ~S # extract vectors from variables
S[S .!= 0] .= S[S .!= 0] .+L[S .!= 0]
add background to foreground changes in nonzero elements
S[S.== 0] .= 1.0
put white in null pixels
Y, S, L = reshape(Y,n,m,l), reshape(S,n,m,l), reshape(L,n,m,l);

In [8]: idx = [1;3] img = Gray.(vcat([[Y[:,:,i] S[:,:,i] L[:,:,i]] for i in idx]...))

Demo: Audio de-clipping

Audio recoding of loud source can saturate


```
In [1]: using WAV, Plots
# load wav file
yt, Fs = wavread("data/clipped.wav"); yt = yt[:,1][:]
C = maximum(abs.(yt)) # clipping level
# plotting a frame of the audio signal
idxs = 2^11+1:2^12;
```

```
In [2]: plot(yt[idxs]; label = "clipped signal", xlabel="Samples", ylabel="Amplitude", yli
m=[-0.4; 0.4])
plot!([1;length(idxs)], [C.*ones(2), -C.*ones(2)]; color=[:red :red], label = ["s
aturation" ""])
```


$$\begin{array}{l} \underset{\mathbf{x},\mathbf{y}}{\text{minimize}} & \frac{1}{2} \\ \text{subject to} & \|N \\ M \end{array}$$

$$\frac{1}{2} \|F_{i,c}\mathbf{x} - \mathbf{y}\|^{2},$$
$$\|M\mathbf{y} - M\tilde{\mathbf{y}}\| \le \epsilon$$
$$M_{+}\mathbf{y} \ge C$$
$$M_{-}\mathbf{y} \le -C$$
$$\|\mathbf{x}\|_{0} \le N$$

Input:

- $\tilde{\mathbf{y}}$ frame of clipped signal

Optimization variables:

- **x** DCT transform declipped frame ($F_{i,c}$ brings to time domain)
- y time domain declipped frame

Constraints on y:

- *M* selection matrix of uncorrupted samples
- M_{\pm} selection matrix of saturated samples

Constraints on **x**:

• **x** is sparse ℓ_0 -ball constraint (sparsity DCT domain) (*nonconvex*)

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{y}}{\text{minimize}} & \frac{1}{2} \|F_{i,c}\mathbf{x} - \mathbf{y}\|^2, \\ \text{subject to} & \|M\mathbf{y} - M\tilde{\mathbf{y}}\| \leq \epsilon \\ & M_+\mathbf{y} \geq C \\ & M_-\mathbf{y} \leq -C \\ & \|\mathbf{x}\|_0 \leq N \end{array}$$

Nonconvex problem: refine solution by increasing ${\cal N}$

```
In []: z, \in = 0, sqrt(1e-5) #weighted Overlap-Add
        while z+Nl < Nt
            fill!(~x,0.); fill!(~y,0.) # initialize variables
            Ip = sort(findall( yt[z+1:z+Nl] .>= C)) #pos clip idxs
            In = sort(findall( yt[z+1:z+Nl] .<= -C)) #neg clip idxs
            I = sort(findall(abs.(yt[z+1:z+N1]) .< C)) #uncor idxs</pre>
            yw .= yt[z+1:z+N1].*win # weighted frame
            for N = 30:30:30*div(N1,30) # increase active components DCT
                cstr = (norm(x, 0) \le N,
                        norm(y[I]-yw[I]) \leq \epsilon,
                        v[Ip] >= C.*win[Ip],
                        y[In] \leq -C.*win[In])
                @minimize f st cstr with PANOC(tol = 1e-4, verbose = false)
                if norm(idct(~x) - ~y) <= & break end</pre>
            end
            yd[z+1:z+N1] .+= (~y).*win # store declipped signal
            z += Nl-overlap  # update index
        end
```

```
In [ ]: plot(yd[idxs], label = "declipped signal", xlabel="Time (samples)", ylabel="Amplit
    ude", ylim=[-0.4; 0.4])
    plot!(yt[idxs]; label = "clipped signal")
    plot!([1;length(idxs)], [C.*ones(2), -C.*ones(2)]; color=[:red :red], label = ["s
    aturation" ""])
```

In []: using LinearAlgebra

```
wavwrite( 0.9 .* normalize(yd[:],Inf), "data/declipped.wav"; Fs = Fs, nbits = 16,
compression=WAVE_FORMAT_PCM) # save wav file
```

Clipped audio:

Declipped audio:

Conclusions

- Proximal gradient (PG) methods apply to wide variety of signal processing tasks
- PG framework applies to large-scale inverse problems with non-smooth terms
- PG framework applies to both convex and nonconvex problems
- Accelerated and Newton-type extensions of PG enjoy much faster convergence
- Julia software toolbox offers modeling language with mathematical notation
- More signal processing demos & examples available @ https://github.com/kul-forbes/StructuredOptimization.jl

Conclusions

Additional resources

- N. Antonello, L. Stella, P. Patrinos and T. van Waterschoot, "*Proximal gradient algorithms: applications in signal processing*", arXiv:1803.01621, Mar. 2018. https://arxiv.org/abs/1803.01621
- Software packages:
 - https://github.com/kul-forbes/ProximalOperators.jl
 - https://github.com/kul-forbes/AbstractOperators.jl
 - https://github.com/kul-forbes/ProximalAlgorithms.jl
 - https://github.com/kul-forbes/StructuredOptimization.jl

Acknowledgements

- Thanks to Andreas Themelis (KU Leuven) and Pontus Giselsson (Lund University) who kindly provided some of the figures used.
- Thanks to AWS AI Labs, IDIAP, KU Leuven, FWO and ERC for funding.