Tutorial: Determinantal Point Processes and their Application to Signal Processing and Machine Learning

Simon Barthelmé, Nicolas Tremblay

CNRS, GIPSA-lab, Univ. Grenoble-Alpes, France

・ロト ・四ト ・ヨト ・ヨト

Computation

Applications

イロト 不得 トイヨト イヨト

э

A Coruna, EUSIPCO 2019 1 / 72

Conclusion

Introduction

DPPs to produce diverse samples DPPs as a tool in SP/ML DPPs to characterize

Definition, basic properties

Repulsive point processes are hard DPPs, the nitty-gritty

Computation

Sampling from a DPP DPPs as mixtures

Applications

Examples of applications Zoom on an application: Coresets

Conclusion

Barthelmé, Tremblay

DPP Tutorial

pplications 000000000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Coruna, EUSIPCO 2019 2 / 72

Conclusion

In a nutshell, determinantal point processes (or DPP) :

- are random processes that induce diversity.
- are tractable.
- are used for three main purposes:
 - i/ produce diverse samples of a large database
 - ii/ use as a tool in a variety of SP/ML contexts
 - iii/ characterize various observed phenomena.

Applications

Conclusion

DPPs induce diversity

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

Definition, basic properties

Applications

Conclusion

DPPs induce diversity

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of DPP sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of DPP sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of DPP sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of DPP sampling

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

DPPs induce diversity

Figure: Example of DPP sampling

Barthelmé, Tremblay

DPP Tutorial

Introduction	
00000000000	

pplications 00000000000000 Conclusion

i/ This sample diversity can be directly useful¹²:

summary generation:

¹left figure: from Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 4 / 72

Introduction	
000000000000	

finition, basic properties

omputation

Applications

Conclusio

i/ This sample diversity can be directly useful¹²:

summary generation:

search engines / recommendation:

'bolt' query

¹left figure: from Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 4 / 72

Introduction	Definition,
0000000000000	000000

finition, basic properties

omputation

Applications

Conclusion

i/ This sample diversity can be directly useful¹²:

search engines / recommendation:

'bolt' query

- ii/ DPP samples can also be used as a tool in several SP/ML contexts:
 - Monte Carlo integration
 - Feature selection problems
 - Coresets
 - etc.

summary generation:

¹left figure: from Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013

²right figure: from G. Gautier's slides guilgautier.github.io/pdfs/GaBaVa17_slides.pdf 🗄 + + 🚊 + - 🚊 - 🔊 🔍

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 4 / 72

omputation

Applications

Conclusion

DPPs as a tool: an example

A Coruna, EUSIPCO 2019 5 / 72

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

omputation

Applications

Conclusion

DPPs as a tool: an example

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

omputation 0000000000000000000000

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of iid uniform sampling

DPP Tutorial

Figure: Example of iid uniform sampling

Barthelmé, Tremblay

DPP Tutorial

イロト イヨト イヨト イヨト æ A Coruna, EUSIPCO 2019 5 / 72

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: iid estimations of the mean

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling

DPP Tutorial

omputation 0000000000000000000000 Applications

Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: DPP estimations of the mean

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

DPPs as a tool: an example

Figure: Comparison of both estimators: variance reduction (here by a factor 3)

Barthelmé, Tremblay

DPP Tutorial

Introduction	
0000000000	

iii/ Finally, DPPs are used to characterize various phenomena.

Barthelmé, Tremblay

DPP Tutorial

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□ A Coruna, EUSIPCO 2019 6 / 72

Definition, basic properties

Computation

Applications

Conclusion

iii/ Finally, DPPs are used to *characterize* various phenomena.

Where do DPPs arise?

Barthelmé, Tremblay

DPP Tutorial

Definition, basic properties

Computation

Applications

Conclusion

iii/ Finally, DPPs are used to *characterize* various phenomena.

Where do DPPs arise?

Barthelmé, Tremblay

DPP Tutorial

Vefinition, basic properties

Computation

Applications

Conclu

iii/ Finally, DPPs are used to *characterize* various phenomena.

Where do DPPs arise?

.

Barthelmé, Tremblay

DPP Tutorial

<ロト < 部ト < 書ト < 書ト 書 の < で A Coruna, EUSIPCO 2019 6 / 72

efinition, basic properties

Computation

Applications

iii/ Finally, DPPs are used to *characterize* various phenomena.

Where do DPPs arise?

Barthelmé, Tremblay

DPP Tutorial

<ロト < 部ト < 書ト < 書ト 書 の < で A Coruna, EUSIPCO 2019 6 / 72

Computation

Applications

Conclusion

iii/ Finally, DPPs are used to *characterize* various phenomena.

Where do DPPs arise?

and more ...

Barthelmé, Tremblay

DPP Tutorial

< □ > < ② > < ≧ > < ≧ > < ≧ > ≥ の < ⊘ A Coruna, EUSIPCO 2019 6 / 72

Conclusion

Eigenvalues of the Gaussian Unitary Ensemble¹

- Consider a Hermitian matrix $H \in \mathbb{C}^{n \times n}$ with
 - diagonal elements of the form $H_{jj} = X$ with X drawn iid from $\mathcal{N}(0, 1)$
 - off-diagonal elements of the form $H_{jk} = X + iY$ with X and Y drawn iid from $\mathcal{N}(0, 1/2)$.

 $\label{eq:action} \begin{array}{ccc} ^{1} \text{see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005 } & < \textcircled{O} & < \textcircled{O} & < \textcircled{O} & < \textcircled{O} & < \end{matrix} \\ \begin{array}{cccc} & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\$

Conclusion

Eigenvalues of the Gaussian Unitary Ensemble¹

- Consider a Hermitian matrix $\mathsf{H} \in \mathbb{C}^{n \times n}$ with
 - diagonal elements of the form $H_{jj} = X$ with X drawn iid from $\mathcal{N}(0, 1)$
 - off-diagonal elements of the form $H_{jk} = X + iY$ with X and Y drawn iid from $\mathcal{N}(0, 1/2)$.
- It has *n* real eigenvalues. They are distributed s.t.:

$$\mathbb{P}(\lambda_1,\ldots,\lambda_n) \propto \exp^{-\sum_j \lambda_j^2} \prod_{j < k} (\lambda_j - \lambda_k)^2$$

Conclusion

Eigenvalues of the Gaussian Unitary Ensemble¹

- Consider a Hermitian matrix $H \in \mathbb{C}^{n \times n}$ with
 - diagonal elements of the form $H_{jj} = X$ with X drawn iid from $\mathcal{N}(0, 1)$
 - off-diagonal elements of the form $H_{jk} = X + iY$ with X and Y drawn iid from $\mathcal{N}(0, 1/2)$.
- It has *n* real eigenvalues. They are distributed s.t.:

$$\mathbb{P}(\lambda_1,\ldots,\lambda_n) \propto \exp^{-\sum_j \lambda_j^2} \prod_{j < k} (\lambda_j - \lambda_k)^2$$

 \propto det M²

where $M_{jk} = \lambda_k^{j-1} \exp^{-\frac{1}{2}\lambda_k^2}$.

 ¹see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005 > < </td>
 < </td>
 > < </td>

 > < </td>

 > < </td>

 > < </td>

Vefinition, basic properties

Computation

Applications

Conclusion

Eigenvalues of the GUE: illustration¹

Examples of 6 point processes in 1D (3 GUE and 3 uniform):

 $[\]label{eq:action} \begin{array}{ccc} ^{1} \text{see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005 } & < \textcircled{O} & < \textcircled{O} & < \textcircled{O} & < \textcircled{O} & < \end{matrix} \\ \begin{array}{cccc} & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$

lefinition, basic properties

omputation

Applications

Conclusion

Eigenvalues of the GUE: illustration¹

Examples of 6 point processes in 1D (3 GUE and 3 uniform):

 $[\]label{eq:action} \begin{array}{ccc} ^{1} \text{see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005 } & < \textcircled{O} & < \textcircled{O} & < \textcircled{O} & < \textcircled{O} & < \end{matrix} \\ \begin{array}{cccc} & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$

lefinition, basic properties

omputation

Applications

Conclusion

Eigenvalues of the GUE: illustration¹

Examples of 6 point processes in 1D (3 GUE and 3 uniform):

 ¹see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005 × (⊕ > (∈) >

efinition, basic properties

omputation

Applications

Conclusion

A spinless fermion in a harmonic potential¹

At temperature T = 0, the probability distribution of the particle is a simple Gaussian:

 ¹Macchi, The coincidence approach to stochastic point processes. Adv. Appl: Probab., 1975 ≥ + < ≥ + ≥ - </td>
 ≥ -
 <</td>
 <</td>
 <</td>
 <</td>
 <</td>

omputation 0000000000000000000000 Applications

Conclusion

Two non-interacting fermions¹

Pauli's exclusion principle implies, after a few calculations, that, at T = 0:

$$\begin{split} \mathbb{P}(x_1, x_2) \propto (x_2 - x_1)^2 e^{-(x_1^2 + x_2^2)} \\ \propto \left(det \ \begin{bmatrix} e^{-\frac{1}{2}x_1^2} & e^{-\frac{1}{2}x_2^2} \\ x_1 e^{-\frac{1}{2}x_1^2} & x_2 e^{-\frac{1}{2}x_2^2} \end{bmatrix} \right)^2 \end{split}$$

 ¹Macchi, The coincidence approach to stochastic point processes. Adv. Appl□Probab, 1975 =>< ₹ =>
 ≥
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

omputation

Applications

Conclusion

Two non-interacting fermions¹

Pauli's exclusion principle implies, after a few calculations, that, at T = 0:

$$\begin{split} \mathbb{P}(x_1, x_2) \propto (x_2 - x_1)^2 e^{-(x_1^2 + x_2^2)} \\ \propto \left(\det \begin{bmatrix} e^{-\frac{1}{2}x_1^2} & e^{-\frac{1}{2}x_2^2} \\ x_1 e^{-\frac{1}{2}x_1^2} & x_2 e^{-\frac{1}{2}x_2^2} \end{bmatrix} \right)^2 \end{split}$$

 ¹Macchi, The coincidence approach to stochastic point processes. Adv. Appl□ Probab., 1975 => < =>
 >> =
 <</td>
 <</td>

 <

finition, basic properties

Computation

pplications

Conclusion

Introduction

DPPs to produce diverse samples DPPs as a tool in SP/ML DPPs to characterize

Definition, basic properties

Repulsive point processes are hard DPPs, the nitty-gritty

Computation

Sampling from a DPP DPPs as mixtures

Applications

Examples of applications Zoom on an application: Coresets

Conclusion

Barthelmé, Tremblay

DPP Tutorial

< □ > < 書 > < 書 > < 書 > こ > う へ () A Coruna, EUSIPCO 2019 11 / 72

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

A Coruna, EUSIPCO 2019 12 / 72

Interim: repulsive point processes are hard

- There are many ways of defining point processes that feature repulsion; some may look much more natural than DPPs
- An unfortunate fact of point process theory is that repulsive point processes are *hard*, theoretically and empirically
- Desirable features:
 - 1. Probability density of p.p. is tractable (including normalisation constant)
 - 2. Inclusion probabilities (intensity functions) are tractable
 - 3. Sampling is tractable
 - 4. Model is easy to understand
- DPPs have properties (1-3) and arguably (4) once you get used to them
- Most other repulsive processes have one or two (at best)

Gibbs point processes

- Many repulsive point processes can be described using the general framework of Gibbs point processes
- A Gibbs point process takes the following form:

$$p(\mathcal{X}) = \frac{\exp(-\beta \sum_{i < j} v(x_i, x_j))}{Z_{\beta}}$$

- $v(x_i, x_j)$ is called a *pairwise potential*
- the sum runs over all pairs of points
- example : v(x_i, x_j) = d(x_i, x_j) where d is a distance, encourages points to be far apart.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Definition, basic properties

omputation

Applications

Conclusion

The hard sphere model

The hard sphere model (AKA hard-core model) is used in physics to describe a set of particles that cannot overlap. See Löwen (2000) 1 .

A Coruna, EUSIPCO 2019 14 / 72

¹Löwen, H. (2000). Fun with hard spheres. In Statistical physics and spatial statistics (pp. 295-331). Springer, Berlin, Heidelberg.

omputation

Applications

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

A Coruna, EUSIPCO 2019 15 / 72

The hard sphere model

- We assume that $\mathcal{X} = \mathbf{x}_1, \dots, \mathbf{x}_m$, with *m* fixed and $\mathbf{x}_i \in [0, 1]^d$
- The pairwise potential is simply:

$$v(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} \infty & \text{if } \|\mathbf{x}_i - \mathbf{x}_j\|^2 < r \\ 0 & \text{otherwise} \end{cases}$$

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Coruna, EUSIPCO 2019 16 / 72

Conclusion

Things to think about

- What's the normalisation constant for the hard-sphere model? Hint: can you relate it to the probability that *m* points sampled independently have a minimum pairwise distance > *r*?
- What are the valid configurations like when *m* is large?
- How would you sample from the hard-sphere model?

pplications

イロト イヨト イヨト イヨト 二日

A Coruna, EUSIPCO 2019 17 / 72

Conclusion

Normalisation constant

• Normalisation constant:

$$\int_{\Omega^m} \prod_{i < j} \mathbb{I}(\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2 > r) d\boldsymbol{x}_1 \dots d\boldsymbol{x}_m$$

• Intractable (except in dimension one)!

Applications

Conclusion

Packing limit

As m becomes large, we reach the packing limit, and most configurations are impossible

In the general case packing is a very hard problem (image from Wikipedia)

DPP Tutorial

omputation

pplications

Conclusion

- Possible sampling algorithm: "dart throwing".
- Pick a random initial location uniformly
- Pick a second location uniformly among remaining possible locations
- Pick a third location uniformly among remaining possible locations
- etc. until you have *m* spheres or further sampling is impossible (start again)
- Very good for small *m*, very bard for large *m*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

omputation

pplications

Conclusion

Summary: the hard sphere model

- Simplest, most natural model you can imagine (property 4)
- But:
 - 1. Probability density is intractable (because normalisation constant is intractable for d>1)
 - 2. Inclusion probabilities (intensity functions) are intractable for general domains, at least as far as we know
 - 3. Sampling is easy for small m (not very repulsive), then in large m becomes equivalent to the notoriously hard sphere packing problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

omputation

Applications

Conclusion

DPPs, the nitty-gritty

- · We'll see that DPPs tick all boxes, contrary to most Gibbs processes
- The set-up cost is a bit higher; it's important to understand how these processes are defined, and to be careful about the notation
- · We will now go through a few definitions in detail

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

Some notation for discrete point processes

- Ω is a base set of size n representing the items to sample from. w.l.o.g we may take $\Omega=\{1,\ldots,n\}$
- \mathcal{X} is a random subset of Ω
- We note $m = |\mathcal{X}|$, which may be a random variable

omputation

Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

L-ensembles

- The repulsion in DPPs is based on a notion of similarity between items in Ω.
- The similarity between all pairs of items in Ω is stored in a $n \times n$ matrix called (for historical reasons) the "L-ensemble".
- We note this matrix **L**, with L_{ij} the similarity between items *i* and *j*
- L is assumed to be positive definite.

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Coruna, EUSIPCO 2019 24 / 72

Conclusion

L-ensembles

- We'll come across several ways of constructing the L matrix.
- For now, assume that the items are vectors in \mathbb{R}^d . We can use a kernel function to describe similarity.
- Example: Gaussian kernel

$$L_{ij} = \exp\left(-rac{1}{2\sigma^2}||\mathbf{x}_i - \mathbf{x}_j||^2
ight)$$

Barthelmé, Tremblay

DPP Tutorial

omputation

Applications

Conclusion

Similarity via the Gaussian kernel

omputation

Applications

Conclusion

Similarity via the Gaussian kernel

Applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

A Coruna, EUSIPCO 2019 26 / 72

DPP: formal definition

• We say that \mathcal{X} (random set) is distributed according to a DPP if:

$$p(\mathcal{X} = X) \propto \det \mathbf{L}_X$$

- $L_{\mathcal{X}}$ is the restriction of L to the items in \mathcal{X}
- IMPORTANT!!!! Here the number of items in \mathcal{X} , $m = |\mathcal{X}|$, is not fixed and may therefore vary.

omputation

pplications

Conclusion

A closer look

• The probability mass function is fairly simple:

$$p(\mathcal{X} = X) \propto \det \mathsf{L}_X$$

- det $L_{\mathcal{X}} \geqslant 0,$ by positive-definiteness of L
- In addition: $\sum_{\mathcal{X}} \det L_{\mathcal{X}} = \det(L + I)$ is the normalisation constant (tractable!)
- So why does this induce repulsion?

Introduction	Definition, basic properties
0000000000	000000000000000000000000000000000000000

omputation

Applications

イロン イボン イヨン イヨン 三日

A Coruna, EUSIPCO 2019 28 / 72

Conclusion

Determinants: geometric interpretation

Determinants measure the (signed) volume of the paralleliped spanned by the columns of a matrix. Illustration by Yigit Pilavci.

Conclusion

Why does the determinant induce repulsion?

-		46	77	188
$L_{\mathcal{X}} =$	46	1.00	0.01	0.70
	77	0.01	1.00	0.06
	188	0.70	0.06	1.00

Determinant: 0.51.

A Coruna, EUSIPCO 2019 29 / 72

æ

イロト イヨト イヨト イヨト

Computation

Applications

Conclusion

Why does the determinant induce repulsion?

-		67	178	125
$L_{\mathcal{X}} =$	67	1.00	0.95	0.89
	178	0.95	1.00	0.97
	125	0.89	0.97	1.00

Determinant: 0.005.

DPP Tutorial

Inclusion probabilities

- Are certain, or pairs of items are more likely to be sampled?
- Formally: let ${\mathcal S}$ denote a fixed (non-random) set. The "inclusion probabilities" are of the form:

 $p(S \subseteq X)$

- If $S = \{i\}$, a singleton, equivalent to $p(i \in X)$, the probability that item i is sampled
- If $S = \{i, j\}$, a pair, equivalent to $p(i \in X \text{ and } j \in X)$, the probability that both items are sampled

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

omputation

Applications

Conclusion

Marginal kernels

- In DPPs the inclusion probabilities are quite remarkable
- For a DPP with L-ensemble $\boldsymbol{\mathsf{L}}$ the inclusion probabilities are as follows

$$p(\mathcal{S} \subseteq \mathcal{X}) = \det \mathsf{K}_{\mathcal{S}}$$

where:

$$\mathbf{K} = \mathbf{L}(\mathbf{L} + \mathbf{I})^{-1}$$

• K is called the marginal kernel of the DPP

Barthelmé, Tremblay

DPP Tutorial

< □ > < ② > < ≧ > < ≧ > < ≧ > ≧ の Q (~ A Coruna, EUSIPCO 2019 32 / 72

Conclusion

L-ensemble vs. marginal kernel

Example.

$$\mathbf{L} = \begin{pmatrix} 1 & 0.946 & 0.681 & 0.634 & 0.611 \\ 0.946 & 1 & 0.864 & 0.825 & 0.805 \\ 0.681 & 0.864 & 1 & 0.997 & 0.993 \\ 0.634 & 0.825 & 0.997 & 1 & 0.999 \\ 0.611 & 0.805 & 0.993 & 0.999 & 1 \end{pmatrix}$$

can be used to compute p(X = X).

$$\mathbf{K} = \mathbf{L}(\mathbf{L} + \mathbf{I})^{-1} = \begin{pmatrix} 0.328 & 0.246 & 0.075 & 0.053 & 0.042 \\ 0.246 & 0.234 & 0.135 & 0.117 & 0.108 \\ 0.075 & 0.135 & 0.206 & 0.210 & 0.212 \\ 0.053 & 0.117 & 0.210 & 0.219 & 0.223 \\ 0.042 & 0.108 & 0.212 & 0.223 & 0.227 \end{pmatrix}$$

can be used to compute $p(S \in X)$

Barthelmé, Tremblay

DPP Tutorial
omputation

Applications

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Coruna, EUSIPCO 2019 34 / 72

Conclusion

First-order inclusion probabilities

First-order inclusion probabilities are just:

$$p(i \in \mathcal{X}) = K_{ii}$$

- Exercise: work out $E(|\mathcal{X}|)$
- Hint: $|\mathcal{X}| = \sum_{j \in \Omega} \mathbb{I}(j \in \mathcal{X})$

Applications 000000000000000

First-order inclusion probabilities are (generally) not uniform!

Radius prop. to
$$p(i \in \mathcal{X}) = K_{ii}$$

Barthelmé, Tremblay DPP Tutorial

omputation

Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

Second-order inclusion probabilities

- Note $\pi_i = p(i \in \mathcal{X})$
- Poisson sampling : go through all n items and include item i with probability π_i independently
- Exercise: let 𝔅 be a Poisson sample with the same first-order inclusion probabilities as 𝔅. Compute p(i, j ⊆ 𝔅). Compare to p(i, j ⊆ 𝔅): how does repulsion manifest itself?

Introduction	Definition, basic properties
0000000000	000000000000000000000000000000000000000

Conclusion

Fixed-size DPPs

- Often it's preferable to set the size of $\mathcal X$ to a fixed value.
- A fixed-size DPP is a DPP, conditioned on |X| = m. They were introduced by Kulesza & Taskar as "k-DPPs". Here we call them "m-DPPs" for consistency.
- Def. \mathcal{X} is a m-DPP with L-ensemble L if

$$p(\mathcal{X}) = \begin{cases} \frac{\det L_{\mathcal{X}}}{e_m(\mathsf{L})} & \text{if } |\mathcal{X}| = m \\ 0 & \text{otherwise} \end{cases}$$

- *e_m*(L) is the normalisation constant, and is easy to compute from the spectrum of L.
- Otherwise an m-DPP is very similar to a DPP: we're simply forbidding sets of a size smaller or greater than *m*

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 37 / 72

イロト イヨト イヨト イヨト 二日

A Coruna, EUSIPCO 2019 38 / 72

Conclusion

Inclusion probabilities in m-DPPs

• The bad news: m-DPPs do not, in general, have a marginal kernel, i.e. there may not be a matrix ${\bf K}$ such that

$$p(\mathcal{S} \subseteq \mathcal{X}) = \det \mathbf{K}_{\mathcal{S}}$$

when \mathcal{S} is a m-DPP.

• Exact inclusion probabilities are tricky to compute, especially for $|\mathcal{S}|>1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Coruna, EUSIPCO 2019 39 / 72

Conclusion

Inclusion probabilities in m-DPPs

• The good news: we showed in Barthelmé, Tremblay, Amblard (2019) that there is an approximate marginal kernel, i.e. for large *n* and small |S|, there's a matrix \tilde{K} such that

$$p(\mathcal{S} \subseteq \mathcal{X}) pprox \mathsf{det}\, \mathbf{ ilde{K}}_{\mathcal{S}}$$

• $\tilde{\mathbf{K}}$ is easy to compute:

$$\tilde{\mathbf{K}} = \alpha \mathbf{L} (\alpha \mathbf{L} + \mathbf{I})^{-1}$$

where α is such that $\operatorname{Tr} \tilde{\mathbf{K}} = m$

Applications

Conclusion

Projection DPPs

- m-DPPs do not have exact marginal kernels, with one very important exception
- If m = r = rank L, then *there is* an exact marginal kernel, with a very specific form
- Let L = UDU^t, the eigendecomposition of L, and D the r × r matrix of eigenvalues.
- The marginal kernel is simply $\mathbf{K} = \mathbf{U}\mathbf{U}^t$, a projection matrix ($\mathbf{K}^2 = \mathbf{K}$)
- Accordingly these DPPs are called *projection DPPs*.
- In a sense they are both DPPs and m-DPPs
- They are *central* to the overall theory

イロト イボト イヨト ・ ヨ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An example of a projection DPP

- Here's an example of how to build a projection DPP. Assume the items are just points along a line: x_1, \ldots, x_n .
- We build a matrix of polynomial features:

$$\mathbf{M} = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{r-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{r-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{r-1} \end{pmatrix}$$

• We build an L-ensemble based on those features:

$$L = MM^t$$

- L has rank r and dimension $n \times n$
- If we set m = r, ie. we sample as many points as we have polynomial features, than what we have is a projection DPPs.

Computation

pplications

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Coruna, EUSIPCO 2019 42 / 72

Conclusion

Summary so far

- DPPs have tractable inclusion probabilities, *but* the number of items sampled is random (in general)
- m-DPPs have fixed sample size, but the inclusion probabilities are less tractable
- One exception: projection DPPs have fixed sample size, *and* the inclusion probabilities are tractable

pplications

イロト イヨト イヨト イヨト 二日

A Coruna, EUSIPCO 2019 43 / 72

Conclusion

Introduction

DPPs to produce diverse samples DPPs as a tool in SP/ML DPPs to characterize

Definition, basic properties

Repulsive point processes are hard DPPs, the nitty-gritty

Computation

Sampling from a DPP DPPs as mixtures

Applications

Examples of applications Zoom on an application: Coresets

Conclusion

Barthelmé, Tremblay

DPP Tutorial

pplications

Conclusion

Some computational issues

- There's a few computational issues, but we'll look at the two main ones:
 - 1. How to sample from a DPP efficently
 - 2. How to create an L-ensemble efficiently
- We can't cover the theory in detail so focus is on practical aspects
- See our package DPP.jl for efficient Julia implementation; DPPy by Guillaume Gautier for Python tools

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () A Coruna, EUSIPCO 2019 45 / 72

Conclusion

Samplers for DPPs

- For DPPs there are both exact and inexact samplers
- The inexact samplers (eg. Gibbs sampler) use an MCMC chain to generate approximate samples cheaply.
- However getting an exact sample is often not much more expensive: we will describe a method based on Hough et al. (2006)

Definition, basic properties

Computation

Applications

Conclusion

A Metropolis-Hastings sampler

Initial configuration

Barthelmé, Tremblay

DPP Tutorial

▲□ ▶ ▲● ▶ ▲ ■ ▶ ▲ ■ か へ ○ A Coruna, EUSIPCO 2019 46 / 72

Definition, basic properties

Computation

Applications

Conclusion

A Metropolis-Hastings sampler

Barthelmé, Tremblay

DPP Tutorial

▲□ ト < □ ト < 亘 ト < 亘 ト < 亘 ト < 亘 へ へ へ A Coruna, EUSIPCO 2019 46 / 72</p>

Vefinition, basic properties

Computation

Applications

Conclusion

A Metropolis-Hastings sampler

Compute acceptance ratio

Barthelmé, Tremblay

DPP Tutorial

▲□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Vefinition, basic properties

Computation

Applications 000000000000000 Conclusion

A Metropolis-Hastings sampler

Accept or reject new configuration

Barthelmé, Tremblay

DPP Tutorial

▲□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Applications

A Metropolis-Hastings sampler

Initialisation: set X to some random subset of size m. For t = 1toT, do:

- Propose swap: construct \mathcal{X}' by removing random item from $\mathcal{X},$ adding a random item from $\Omega-\mathcal{X}$
- Evaluate acceptance ratio r = det L_{X'}
 det L_X
 det L_X
- Set $\mathcal{X} \leftarrow \mathcal{X}'$ with probability *r*.

If ${\mathcal T}$ is large enough, the final configuration is an almost-exact sample from an m-DPP with ensemble ${\bf L}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Applications

イロト 不得下 イヨト イヨト 二日

A Coruna, EUSIPCO 2019 48 / 72

Conclusion

A Metropolis-Hastings sampler

- The sampler we've just described is really easy to implement!
- Feel free to try it for yourself after the tutorial, should just take a few minutes
- Bonus points if you can adapt it to DPPs and not just m-DPPs
- For most practical purposes we recommend the exact sampler we describe next

Applications

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Coruna, EUSIPCO 2019 49 / 72

Conclusion

The direct sampler

- It turns out that sampling from a projection DPP is easy
- The algorithm just picks points sequentially from the appropriate probability distribution
- For generic DPPs, we'll see that it's possible to reduce the problem to the sampling of a projection DPP

Sampling sequentially

- Take a set of *m* items $\mathcal{X} = \{x_1, \dots, x_m\}$ and order it (arbitrarily) into a sequence x_1, \dots, x_m
- Our goal is to sample $\mathcal{X} \sim proj DPP(K)$ by sampling first x_1 , then x_2 , then x_3 etc. up to a x_m
- Formally:

 $x_1 \sim p(x_1)$ $x_2 \sim p(x_2|x_1)$ $x_3 \sim p(x_3|x_1, x_2)$

Barthelmé, Tremblay

DPP Tutorial

Conclusion

What are these conditional distributions?

- $p(x_1)$ is the distribution of an arbitrary item taken from a projection DPP that's just the inclusion probability
- p(x₂|x₁) is the distribution of an arbitrary item taken from a projection DPP, given that item x₁ is in the set. That's a conditional inclusion probability.
- etc.
- As it turns out, these distributions are tractable in *proj-DPPs*, and this leads to an algorithm that is both easy to implement and fast²
- Nice bit of theory: conditional distribution of x_t equals the conditional variance of a Gaussian process with the same kernel sampled at $x_1 \dots x_{t-1}$!

A Coruna, EUSIPCO 2019 51 / 72

²Alg. due to Hough et al. (2006), Gillenwater (2014) for a faster version. See DDPy documentation by G. Gautier for more

Applications 000000000000000 Conclusion

The direct sampling algorithm in action

DPP Tutorial

Applications 000000000000000 Conclusion

The direct sampling algorithm in action

DPP Tutorial

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ● ○ Q (~ A Coruna, EUSIPCO 2019 52 / 72

Applications 000000000000000 Conclusion

The direct sampling algorithm in action

DPP Tutorial

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ● ○ Q (~ A Coruna, EUSIPCO 2019 52 / 72

Applications 000000000000000 Conclusion

The direct sampling algorithm in action

DPP Tutorial

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > < ○ へ ↔ A Coruna, EUSIPCO 2019 52 / 72

Applications 000000000000000 Conclusion

The direct sampling algorithm in action

Barthelmé, Tremblay

DPP Tutorial

▲ ⑦ ト ▲ 重 ト ▲ 重 ト 重 少 Q (~ A Coruna, EUSIPCO 2019 52 / 72

Sampling generic DPPs

- · At this point we know how to sample from projection DPPs
- Now we need to sample from generic (m)-DPPs
- Luckily, we can show that generic (m)-DPPs are just mixtures of projection DPPs
- · Recall: to sample from a mixture of Gaussians, pick randomly one of the Gaussians then sample from that Gaussian.
- Same here: we'll have to form a random projection DPP, then sample from that projection DPP

Applications

Conclusion

Cauchy-Binet lemma

- We'll sketch the proof that all DPPs are mixtures of projection DPPs.
- Central ingredient is the Cauchy-Binet lemma.
- Let $\mathbf{A}_{m \times n}$ and $\mathbf{B}_{n \times m}$, with $n \ge m$. We seek to compute det **AB**.
- If $n = m \mathbf{A}$ and \mathbf{B} are square, and so det $\mathbf{AB} = \det \mathbf{A} \det \mathbf{B}$. Cauchy-Binet generalises this formula to n > m.

$$\det \mathbf{AB} = \sum_{|\mathcal{Y}|=m} \det \mathbf{A}_{:,\mathcal{Y}} \det \mathbf{B}_{\mathcal{Y},:}$$

• Here \mathcal{Y} is a subset of $1, 2, \ldots, n$ of size m and the sum runs over all such subsets.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 54 / 72

イロト イヨト イヨト イヨト 二日

Applications 00000000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Coruna, EUSIPCO 2019 55 / 72

Conclusion

Proof sketch that DPPs are mixtures of projection DPPs

Consider the eigendecomposition of L, $L = UDU^t$, and the probability of set \mathcal{X} .

$$p(\mathcal{X}) \propto \det \mathsf{L}_{\mathcal{X}} = \det \mathsf{U}_{\mathcal{X},:} \mathsf{D}^{\frac{1}{2}} \mathsf{D}^{\frac{1}{2}} \mathsf{U}^{t}_{:,\mathcal{X}} = (\det \mathsf{AB})$$

Apply Cauchy-Binet:

$$p(\mathcal{X}) \propto \sum_{|\mathcal{Y}| = |\mathcal{X}|} \det \mathbf{U}_{\mathcal{X}, \mathcal{Y}} \mathbf{D}_{\mathcal{Y}, \mathcal{Y}}^{\frac{1}{2}} \det \mathbf{D}_{\mathcal{Y}, \mathcal{Y}}^{\frac{1}{2}} \mathbf{U}_{\mathcal{Y}, \mathcal{X}}^{t}$$

Now we have square matrices inside the sum, so this is just:

$$p(\mathcal{X}) \propto \sum_{|\mathcal{Y}| = |\mathcal{X}|} \det \mathbf{U}_{\mathcal{X},\mathcal{Y}} \mathbf{U}_{\mathcal{Y},\mathcal{X}}^t \det \mathbf{D}_{\mathcal{Y},\mathcal{Y}}$$

Barthelmé, Tremblay

DPP Tutorial

Applications

Proof sketch that DPPs are mixtures of projection DPPs

Looking at:

$$p(\mathcal{X}) \propto \sum_{|\mathcal{Y}| = |\mathcal{X}|} \det U_{\mathcal{X}, \mathcal{Y}} U_{\mathcal{Y}, \mathcal{X}}^t \det D_{\mathcal{Y}, \mathcal{Y}}$$

with \mathcal{X} as a variable, we see the following structure appearing:

$$p(\mathcal{X}) \propto \sum_{|\mathcal{Y}|=|\mathcal{X}|} f(\mathcal{X}|\mathcal{Y})g(\mathcal{Y})$$

which expresses $p(\mathcal{X})$ as a marginal! Here $f(\mathcal{X}|\mathcal{Y}) = \det \mathbf{U}_{\mathcal{X},\mathcal{Y}} \mathbf{U}_{\mathcal{Y},\mathcal{X}}^{t}$, and that's a projection DPP where we select the eigenvectors given by \mathcal{Y} to form the L-ensemble. $g(\mathcal{Y}) = \det(\mathbf{D}_{\mathcal{Y}})$ is also a DPP, this time with a diagonal L-ensemble!

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 56 / 72

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Applications

Computational considerations

- A tally of computational costs:
 - 1. We need to generate the **L** matrix at cost $\mathcal{O}(n^2)$
 - 2. We need to compute the eigendecomposition of L at cost $\mathcal{O}(n^3)$
 - 3. We need to sample at cost $\mathcal{O}(nk^2)$

Barthelmé, Tremblay

DPP Tutorial

Applications

Computational considerations

- Overall the dominating cost is the eigendecomposition at cost $\mathcal{O}(n^3)$
- Fortunately that cost can be brought down to $\mathcal{O}(nk^2)$ if you design L to have rank $\mathcal{O}(k)$
- For example: use k polynomial features, or use Random Fourier Features
- See Tremblay et al. (2018) on coresets ³ for a list of tricks
- In a nutshell: DPPs have very good (linear) scaling in *n*, meaning the original set can be in the millions
- However, poor scaling in k, so that the subset you sample will be in the hundreds

Introduction Definition, basic properties

Computation

Applications 000000000000000

ヘロト ヘロト ヘヨト ヘヨト

3

A Coruna, EUSIPCO 2019 59 / 72

Conclusion

Introduction

DPPs to produce diverse samples DPPs as a tool in SP/ML DPPs to characterize

Definition, basic properties

Repulsive point processes are hard DPPs, the nitty-gritty

Computation

Sampling from a DPP DPPs as mixtures

Applications

Examples of applications Zoom on an application: Coresets

Conclusion

Barthelmé, Tremblay

DPP Tutorial

efinition, basic properties

Computation

Applications

Example of application: generate extractive summaries¹

document cluster

- The trick is to find a good feature space to embed sentences and a proper DPP kernel
- Both can be parametrized (tf, idf, etc.) and then learned²

Barthelmé, Tremblay

A Coruna, EUSIPCO 2019 60 / 72

²e.g., Kulesza et al, Near-optimal map inference for DPPs, NIPS 2012.

¹Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013 + 🗇 + 4 🗄 + 4 🚊 + 4 🚊 + 4

efinition, basic properties

omputation

Applications

Conclusion

Example of application: search algorithms¹

"philadelphia"

 Introduction Definition, basi 000000000 00000000

efinition, basic properties

omputation

Applications

"DDPs as a tool" applications

Monte-Carlo integration ^{1 2}:

$$\int f(x)\mu(dx) \simeq \sum_{n=1}^N \omega_n f(x_n)$$

where the x_i 's are the so-called quadratic nodes.

Mini-batch sampling for stochastic gradient descent ³:

$$L(\theta) = \sum_{i} L_{i}(\theta)$$

GD: $\theta \leftarrow \theta - \eta \nabla L(\theta) = \theta - \eta \sum_{i} \nabla L_{i}(\theta)$
mini-batch GD: $\theta \leftarrow \theta - \eta \sum_{i \in \mathcal{X}} \nabla L_{i}(\theta)$

• Column subset selection problem for best rank-k approximation ⁴

Barthelmé, Tremblay

DPP Tutorial

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

¹Gautier et al., On two ways to use DPPs for Monte Carlo integration, ICML, 2019.

²Bardenet et al., Monte Carlo with DPPs, Annals of Applied Probability, In Press.

³Zhang et al., DPPs for Mini-Batch Diversification, UAI, 2017.

⁴Belhadji et al, A DPP for column subset selection, Arxiv, 2018.
Applications

Zoom on one application:

Coresets¹

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018. Barthelmé, Tremblay DPP Tutorial

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで A Coruna, EUSIPCO 2019 63 / 72

Applications

Conclusion

Coresets

- Consider a dataset $\mathcal{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, say: *n* points in dimension *d*.
- Let Θ be a parameter space and consider cost functions of the form:

$$L(\mathcal{X}, \theta) = \sum_{i=1}^{n} f(\mathbf{x}_i, \theta)$$

where $f : \mathcal{X} \to \mathbb{R}^+$, and $\theta \in \Theta$.

• A classical ML objective: find

$$\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta).$$

• k-means, k-medians, linear/logistic regressions fall in this class of problems

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 64 / 72

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Applications

Conclusion

Coresets

- Consider a subset $\mathcal{S} \subset \mathcal{X}$ (possibly with repetitions)
- Associate a weight $\omega_s > 0$ to each element $oldsymbol{s} \in \mathcal{S}$
- Define

$$\hat{L}(\mathcal{S}, \theta) = \sum_{\boldsymbol{s} \in \mathcal{S}} \omega_{\boldsymbol{s}} f(\boldsymbol{s}, \theta)$$

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

Coresets

• S is an ϵ -coreset of X wrt L if:

 $orall heta \in \Theta \qquad (1-\epsilon) L(\mathcal{X}, heta) \ \leqslant \ \hat{L}(\mathcal{S}, heta) \ \leqslant \ (1+\epsilon) L(\mathcal{X}, heta)$

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

Coresets

• S is an ϵ -coreset of X wrt L if:

 $\forall \theta \in \Theta \qquad (1-\epsilon) L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon) L(\mathcal{X},\theta)$

Barthelmé, Tremblay

DPP Tutorial

Applications

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Coruna, EUSIPCO 2019 66 / 72

Conclusion

Coresets

• S is an ϵ -coreset of X wrt L if:

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

• Multiplicative approximation: gold standard of approximation methods

Applications

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Coruna, EUSIPCO 2019 66 / 72

Conclusion

Coresets

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \operatorname*{argmin}_{\theta \in \Theta} \hat{L}(\mathcal{S}, \theta).$$

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclusion

Coresets

•
$$S$$
 is an ϵ -coreset of X wrt L if:

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(\mathcal{S}, \theta).$$

• Why are coresets interesting?

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 66 / 72

イロト イヨト イヨト イヨト 二日

Applications

Conclusion

Coresets

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(\mathcal{S}, \theta).$$

• Why are coresets interesting?

 $\hat{L}(\mathcal{S}, \hat{\theta}^*)$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 66 / 72

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Applications

Conclusion

Coresets

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(\mathcal{S}, \theta).$$

• Why are coresets interesting?

 $\hat{L}(\mathcal{S}, \hat{\theta}^*) \leqslant \hat{L}(\mathcal{S}, \theta^*)$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 66 / 72

イロト イヨト イヨト イヨト 二日

Applications

Conclusion

Coresets

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(\mathcal{S}, \theta).$$

• Why are coresets interesting?

 $\hat{L}(\mathcal{S}, \hat{ heta}^*) \leqslant \hat{L}(\mathcal{S}, heta^*) \leqslant (1+\epsilon) L(\mathcal{X}, heta^*)$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 66 / 72

Applications

Conclusion

Coresets

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(S, \theta).$$

• Why are coresets interesting?

$$(1-\epsilon)L(\mathcal{X},\hat{ heta}^*)\leqslant\hat{L}(\mathcal{S},\hat{ heta}^*)\leqslant\hat{L}(\mathcal{S}, heta^*)\leqslant(1+\epsilon)L(\mathcal{X}, heta^*)$$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 66 / 72

イロト イヨト イヨト イヨト 二日

Applications

Conclusion

Coresets

$$\forall \theta \in \Theta \qquad (1-\epsilon)L(\mathcal{X},\theta) \ \leqslant \ \hat{L}(\mathcal{S},\theta) \ \leqslant \ (1+\epsilon)L(\mathcal{X},\theta)$$

- Multiplicative approximation: gold standard of approximation methods
- Denote by $\hat{\theta}^*$ the argmin of \hat{L} :

$$\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(\mathcal{S}, \theta).$$

• Why are coresets interesting?

$$(1-\epsilon)L(\mathcal{X}, heta^*)\leqslant (1-\epsilon)L(\mathcal{X},\hat{ heta}^*)\leqslant \hat{L}(\mathcal{S},\hat{ heta}^*)\leqslant \hat{L}(\mathcal{S}, heta^*)\leqslant (1+\epsilon)L(\mathcal{X}, heta^*)$$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 66 / 72

イロト イヨト イヨト イヨト 二日

Applications

Conclusion

Coresets: illustration on the 1-means problem

• Data ${\mathcal X}$

Barthelmé, Tremblay

DPP Tutorial

Applications

Conclu

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X}, \theta) = \sum_{i=1}^{n} \|\mathbf{x}_i - \theta\|^2$$

Barthelmé, Tremblay

A Coruna, EUSIPCO 2019 67 / 72

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications

イロン イボン イヨン イヨン 三日

A Coruna, EUSIPCO 2019 67 / 72

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X}, \theta) = \sum_{i=1}^{n} \|\mathbf{x}_i - \theta\|^2$$

• Optimal θ :

$$\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$$

Applications

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X},\theta) = \sum_{i=1}^{n} \|\mathbf{x}_{i} - \theta\|^{2}$$

- Optimal θ :
 - $\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$
- A weighted subset ${\cal S}$

3

イロン イ理 とく ヨン イ ヨン

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X}, \theta) = \sum_{i=1}^{n} \|\mathbf{x}_i - \theta\|^2$$

- Optimal θ :
 - $\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$
- A weighted subset ${\mathcal S}$
- Estimated cost function:

$$\hat{L}(\mathcal{S}, \theta) = \sum_{\boldsymbol{s} \in \mathcal{S}} \omega_{\boldsymbol{s}} \| \boldsymbol{s} - \theta \|^2$$

イロン イ理 とく ヨン イ ヨン

A Coruna, EUSIPCO 2019

3

67 / 72

Applications

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X},\theta) = \sum_{i=1}^{n} \|\mathbf{x}_{i} - \theta\|^{2}$$

- Optimal θ :
 - $\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$
- A weighted subset ${\mathcal S}$
- Estimated cost function:

$$\hat{L}(\mathcal{S}, heta) = \sum_{oldsymbol{s} \in \mathcal{S}} \omega_{oldsymbol{s}} \|oldsymbol{s} - heta\|^2$$

•
$$S$$
 is a ϵ -coreset if:
 $\forall \theta \quad \left| \frac{\hat{L}}{L} - 1 \right| \leqslant \epsilon$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

A Coruna, EUSIPCO 2019

3

67 / 72

Applications

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X}, \theta) = \sum_{i=1}^{n} \|\mathbf{x}_i - \theta\|^2$$

• Optimal θ :

$$\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$$

- A weighted subset ${\mathcal S}$
- Estimated cost function:

$$\hat{L}(\mathcal{S}, \theta) = \sum_{\boldsymbol{s} \in \mathcal{S}} \omega_{\boldsymbol{s}} \| \boldsymbol{s} - \theta \|^{2}$$

•
$$S$$
 is a ϵ -coreset if:
 $\forall \theta \quad \left| \frac{\hat{L}}{L} - 1 \right| \leqslant \epsilon$

イロト イヨト イヨト イヨト

-2

A Coruna, EUSIPCO 2019 67 / 72

Applications

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X},\theta) = \sum_{i=1}^{n} \|\mathbf{x}_{i} - \theta\|^{2}$$

- Optimal θ :
 - $\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$
- A weighted subset ${\mathcal S}$
- Estimated cost function:

$$\hat{L}(\mathcal{S}, \theta) = \sum_{\boldsymbol{s} \in \mathcal{S}} \omega_{\boldsymbol{s}} \| \boldsymbol{s} - \theta \|$$

• S is a ϵ -coreset if: $\forall \theta \quad \left| \frac{\hat{L}}{L} - 1 \right| \leqslant \epsilon$

DPP Tutorial

Applications

Coresets: illustration on the 1-means problem

- Data ${\mathcal X}$
- Cost function:

$$L(\mathcal{X},\theta) = \sum_{i=1}^{n} \|\mathbf{x}_{i} - \theta\|^{2}$$

• Optimal θ :

$$\theta^* = \operatorname*{argmin}_{\theta \in \Theta} L(\mathcal{X}, \theta)$$

- A weighted subset ${\mathcal S}$
- Estimated cost function:

$$\hat{L}(\mathcal{S}, \theta) = \sum_{\boldsymbol{s} \in \mathcal{S}} \omega_{\boldsymbol{s}} \| \boldsymbol{s} - \theta \|^2$$

- S is a ϵ -coreset if: $\forall \theta \quad \left| \frac{\hat{L}}{L} - 1 \right| \leqslant \epsilon$
- Estimated optimal θ : $\hat{\theta}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \hat{L}(S, \theta)$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 67 / 72

Random coresets

- Random context: suppose S is a random subset $S \subset X$ (possibly with repetitions)
- Importance sampling notations:
 - Define ϵ_i the random variable counting the number of times \mathbf{x}_i is in S
 - To each element x_i associate a weight $\omega_i = \frac{1}{\mathbb{E}(\epsilon_i)}$
- One has:

$$\hat{L}(S,\theta) = \sum_{i=1}^{n} f(\mathbf{x}_i,\theta) \frac{\epsilon_i}{\mathbb{E}(\epsilon_i)}$$

and thus \hat{L} is an unbiased estimator of L:

$$\mathbb{E}\left(\hat{L}(\mathcal{S},\theta)\right) = \sum_{i=1}^{n} f(\mathbf{x}_{i},\theta) = L(\mathcal{X},\theta).$$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 68 / 72

イロン イボン イヨン イヨン 三日

Introduction	Definition, basic properties	Computation	Applications	Conc
0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000	

Sensitivity

• The sensitivity of a datapoint $x_i \in \mathcal{X}$ with respect to $f : \mathcal{X}, \Theta \to \mathbb{R}^+$ is:

$$\sigma_i = \max_{\theta \in \Theta} \frac{f(\mathbf{x}_i, \theta)}{L(\mathcal{X}, \theta)} \qquad \in [0, 1].$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A Coruna, EUSIPCO 2019 69 / 72

Also, the total sensitivity is defined as $\mathfrak{S} = \sum_{i=1}^{n} \sigma_i$.

Introduction	Definition, basic properties	Computation	Applications	Concl
0000000000	000000000000000000000000000000000000000	0000000000000000000	00000000000000	

Sensitivity

• The sensitivity of a datapoint $x_i \in \mathcal{X}$ with respect to $f : \mathcal{X}, \Theta \to \mathbb{R}^+$ is:

$$\sigma_i = \max_{ heta \in \Theta} rac{f(oldsymbol{x}_i, heta)}{L(\mathcal{X}, heta)} \qquad \in [0, 1].$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Coruna, EUSIPCO 2019 69 / 72

Also, the total sensitivity is defined as $\mathfrak{S} = \sum_{i=1}^{n} \sigma_i$.

• In general, the sensitivity is unknown analytically.

Introduction	Definition, basic properties	Computation	Applications	Co
0000000000	000000000000000000000000000000000000000	00000000000000000000	000000000000000000000000000000000000000	

Sensitivity

• The sensitivity of a datapoint $x_i \in \mathcal{X}$ with respect to $f : \mathcal{X}, \Theta \to \mathbb{R}^+$ is:

$$\sigma_i = \max_{ heta \in \Theta} rac{f(oldsymbol{x}_i, heta)}{L(\mathcal{X}, heta)} \qquad \in [0, 1].$$

Also, the total sensitivity is defined as $\mathfrak{S} = \sum_{i=1}^{n} \sigma_i$.

In general, the sensitivity is unknown analytically.

 1-means is an exception. In this case, supposing wlog that the data is centered (*i.e.*: ∑_j x_j = 0), one shows:

$$\sigma_i = \frac{1}{n} \left(1 + \frac{\|x_i\|^2}{v} \right),$$

where
$$v = \frac{1}{n} \sum_{x \in \mathcal{X}} ||x||^2$$
. Thus, $\mathfrak{S} = 2$.

Barthelmé, Tremblay

DPP Tutorial

Sensitivity

• The sensitivity of a datapoint $x_i \in \mathcal{X}$ with respect to $f : \mathcal{X}, \Theta \to \mathbb{R}^+$ is:

$$\sigma_i = \max_{ heta \in \Theta} rac{f(oldsymbol{x}_i, heta)}{L(\mathcal{X}, heta)} \qquad \in [0, 1].$$

Also, the total sensitivity is defined as $\mathfrak{S} = \sum_{i=1}^{n} \sigma_i$.

In general, the sensitivity is unknown analytically.

 1-means is an exception. In this case, supposing wlog that the data is centered (*i.e.*: ∑_j x_j = 0), one shows:

$$\sigma_i = \frac{1}{n} \left(1 + \frac{\|x_i\|^2}{v} \right),$$

where
$$v = \frac{1}{n} \sum_{x \in \mathcal{X}} ||x||^2$$
. Thus, $\mathfrak{S} = 2$.

イロト 不得 トイヨト イヨト 二日

A Coruna, EUSIPCO 2019

69 / 72

DPP Tutorial

Introduction Definition, basic properties

Computation

Applications

Conclusion

A classical iid coreset theorem¹

Let *p* ∈ [0, 1]ⁿ be a probability distribution over all datapoints X with p_i the probability of sampling x_i and ∑_i p_i = 1.

Introduction Definition, basic properties

: properties Co

Applications

A classical iid coreset theorem¹

- Let *p* ∈ [0, 1]ⁿ be a probability distribution over all datapoints X with p_i the probability of sampling x_i and ∑_i p_i = 1.
- Draw S: *m* iid samples with replacement according to *p*.

Introduction Definition, basic propert

ition, basic properties

Computation

Applications

Conclusion

A classical iid coreset theorem¹

- Let *p* ∈ [0, 1]ⁿ be a probability distribution over all datapoints X with p_i the probability of sampling x_i and ∑_i p_i = 1.
- Draw S: *m* iid samples with replacement according to *p*.
- Associate importance sampling weights to each sample of S.

ntroduction Definition, basic properties

Computation

Applications

Conclusion

A classical iid coreset theorem¹

- Let *p* ∈ [0, 1]ⁿ be a probability distribution over all datapoints X with p_i the probability of sampling x_i and ∑_i p_i = 1.
- Draw S: m iid samples with replacement according to **p**.
- Associate importance sampling weights to each sample of S.
- **Theorem**. The weighted subset S is a ϵ -coreset with high probability if:

$$m \ge \mathcal{O}\left(\frac{d'}{\epsilon^2}\left(\max_i \frac{\sigma_i}{p_i}\right)^2\right),$$

where d' is the pseudo-dimension of Θ (a generalization of the Vapnik-Chervonenkis dimension).

Applications

A classical iid coreset theorem¹

- Let *p* ∈ [0, 1]ⁿ be a probability distribution over all datapoints X with p_i the probability of sampling x_i and ∑_i p_i = 1.
- Draw S: *m* iid samples with replacement according to *p*.
- Associate importance sampling weights to each sample of S.
- Theorem. The weighted subset S is a ϵ -coreset with high probability if:

$$m \geqslant \mathcal{O}\left(\frac{d'}{\epsilon^2}\left(\max_i \frac{\sigma_i}{p_i}\right)^2\right),$$

where d' is the pseudo-dimension of Θ (a generalization of the Vapnik-Chervonenkis dimension).

• The optimal probability distribution minimizing the rhs is $p_i = \sigma_i / \mathfrak{S}$.

Applications

A Coruna, EUSIPCO 2019 70 / 72

A classical iid coreset theorem¹

- Let $\boldsymbol{p} \in [0,1]^n$ be a probability distribution over all datapoints \mathcal{X} with p_i the probability of sampling x_i and $\sum_i p_i = 1$.
- Draw S: m iid samples with replacement according to p.
- Associate importance sampling weights to each sample of S.
- **Theorem.** The weighted subset S is a ϵ -coreset with high probability if:

$$m \geqslant \mathcal{O}\left(rac{d'}{\epsilon^2}\left(\max_i rac{\sigma_i}{p_i}
ight)^2
ight),$$

where d' is the pseudo-dimension of Θ (a generalization of the Vapnik-Chervonenkis dimension).

- The optimal probability distribution minimizing the rhs is $p_i = \sigma_i / \mathfrak{S}$.
- In this case, S is a ϵ -coreset with high probability if:

$$m \ge \mathcal{O}\left(\frac{d'\mathfrak{S}^2}{\epsilon^2}\right).$$

¹Langberg and Schulman, Universal ε-approximators for integrals, SIAM, 2010 Ν (Ξ) Λ Ξ Ν (Ξ) Ν Ξ Ν (Ξ) Barthelmé, Tremblav DPP Tutorial

ntroduction Definition, basic properties

omputation

Applications

Conclusion

DPPs for Coresets: a result¹

- Consider any iid sampling scheme, defined by:
 - *m* the number of samples to draw
 - $\forall i, 0 \leq p_i \leq 1/m$ and $\sum_i p_i = 1$

¹Tremblay et al., *DPPs for Coresets*, Arxiv, 2018. Barthelmé, Tremblay DPP Tutorial

Introduction Definition, basic properties

omputation 0000000000000000000000 Applications

Conclusion

DPPs for Coresets: a result¹

- Consider any iid sampling scheme, defined by:
 - *m* the number of samples to draw
 - $\forall i, 0 \leq p_i \leq 1/m$ and $\sum_i p_i = 1$
- Consider a marginal kernel K verifying:
 - K is projective of rank m: $K = UU^t$ with $U \in \mathbb{R}^{n \times m}$ and $U^tU = I_m$.
 - $\forall i, K_{ii} = mp_i$.

Applications

Conclusion

DPPs for Coresets: a result¹

- Consider any iid sampling scheme, defined by:
 - *m* the number of samples to draw
 - $\forall i, 0 \leq p_i \leq 1/m$ and $\sum_i p_i = 1$
- Consider a marginal kernel K verifying:
 - K is projective of rank m: $K = UU^t$ with $U \in \mathbb{R}^{n \times m}$ and $U^t U = I_m$.
 - $\forall i, K_{ii} = mp_i$.
- Lemma. Such a kernel necessarily exists. In general, there are many dof left to define U.
Conclusion

DPPs for Coresets: a result¹

- Consider any iid sampling scheme, defined by:
 - *m* the number of samples to draw
 - $\forall i, 0 \leq p_i \leq 1/m$ and $\sum_i p_i = 1$
- Consider a marginal kernel K verifying:
 - K is projective of rank m: $K = UU^t$ with $U \in \mathbb{R}^{n \times m}$ and $U^tU = I_m$.
 - $\forall i, K_{ii} = mp_i$.
- Lemma. Such a kernel necessarily exists. In general, there are many dof left to define U.
- Sample Siid by drawing m samples iid from p
- Sample S_{dpp} from the DPP of kernel K.
- Recall that S_{dpp} is necessarily of size *m*.

Applications

Conclusion

DPPs for Coresets: a result¹

- Consider any iid sampling scheme, defined by:
 - *m* the number of samples to draw
 - $\forall i, 0 \leq p_i \leq 1/m$ and $\sum_i p_i = 1$
- Consider a marginal kernel K verifying:
 - K is projective of rank m: K = UU^t with U ∈ ℝ^{n×m} and U^tU = I_m.
 - $\forall i, K_{ii} = mp_i$.
- Lemma. Such a kernel necessarily exists. In general, there are many dof left to define U.
- Sample S_{iid} by drawing m samples iid from p
- Sample S_{dpp} from the DPP of kernel K.
- Recall that S_{dpp} is necessarily of size *m*.
- Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

¹Tremblay et al., *DPPs for Coresets*, Arxiv, 2018. Barthelmé, Tremblay DPP Tutorial troduction Definition, basic properties

omputation

Applications

Conclusion

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$\forall \theta \in \Theta \qquad \mathsf{Var}\left[\hat{L}(\mathcal{S}_{\mathsf{dpp}}, \theta)\right] \leqslant \mathsf{Var}\left[\hat{L}(\mathcal{S}_{\mathsf{iid}}, \theta)\right]$$

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

• For *any* iid sampling scheme, there exists (at least) a projective DPP sampling scheme outperforming it.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Applications

Conclusion

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

- For *any* iid sampling scheme, there exists (at least) a projective DPP sampling scheme outperforming it.
- This is in particular true for the ideal sensitivity-based iid sampling scheme.

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

Applications

Conclusion

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

- For *any* iid sampling scheme, there exists (at least) a projective DPP sampling scheme outperforming it.
- This is in particular true for the ideal sensitivity-based iid sampling scheme.
- The *best* marginal kernel is for now out-of-reach: it poses deep questions rooted in frame theory.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Applications

Conclusion

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

- For *any* iid sampling scheme, there exists (at least) a projective DPP sampling scheme outperforming it.
- This is in particular true for the ideal sensitivity-based iid sampling scheme.
- The *best* marginal kernel is for now out-of-reach: it poses deep questions rooted in frame theory.
- Even if we were able to find it, it would probably be untractable.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Conclusion

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

- For *any* iid sampling scheme, there exists (at least) a projective DPP sampling scheme outperforming it.
- This is in particular true for the ideal sensitivity-based iid sampling scheme.
- The *best* marginal kernel is for now out-of-reach: it poses deep questions rooted in frame theory.
- Even if we were able to find it, it would probably be untractable.
- $\rightarrow\,$ We propose a computationally efficient heuristic based on the Gaussian kernel:
 - Compute r Random Fourier Features² (r = O(m)) and obtain Ψ ∈ ℝ^{n×r} s.t. ΨΨ^t ∈ ℝ^{n×n} approximates the Gaussian kernel
 - Sample an *m*-DPP from $L = \Psi \Psi^t$

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

Conclusion

DPPs for Coresets: a result¹

• Coreset variance reduction theorem. One has:

$$orall heta \in \Theta$$
 $Var\left[\hat{L}(\mathcal{S}_{dpp}, heta)
ight] \leqslant Var\left[\hat{L}(\mathcal{S}_{iid}, heta)
ight]$

- For *any* iid sampling scheme, there exists (at least) a projective DPP sampling scheme outperforming it.
- This is in particular true for the ideal sensitivity-based iid sampling scheme.
- The *best* marginal kernel is for now out-of-reach: it poses deep questions rooted in frame theory.
- Even if we were able to find it, it would probably be untractable.
- $\rightarrow\,$ We propose a computationally efficient heuristic based on the Gaussian kernel:
 - Compute r Random Fourier Features² (r = O(m)) and obtain Ψ ∈ ℝ^{n×r} s.t. ΨΨ^t ∈ ℝ^{n×n} approximates the Gaussian kernel
 - Sample an *m*-DPP from $L = \Psi \Psi^t$
- \rightarrow This runs in $\mathcal{O}(nm^2 + nmd)$

Barthelmé, Tremblay

DPP Tutorial

A Coruna, EUSIPCO 2019 72 / 72

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

²Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008

¹Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Applications

Conclusion

In practice: the 1-means controlled example¹

- Data \mathcal{X} , parameter θ
- Cost func.

$$L(\mathcal{X}, \theta) = \sum_{i=1}^{n} \|\mathbf{x}_i - \theta\|^2$$

Compare:

- uniform iid sampling
- sensitivity iid: ideal iid sampling based on exact sensitivities
- *m*-DPP (heuristic) based on RFFs of the Gaussian *L*-ensemble

$$\mathsf{L}_{ij} = \exp^{-\left\|\mathbf{x}_i - \mathbf{x}_j\right\|^2 / s^2}$$

¹Tremblay et al., *DPPs for Coresets*, Arxiv, 2018. Barthelmé, Tremblay DPP Tutorial

・ロト ・ (日) ・ (三) ・ (三) ・ (三) ・ (三) ・ (○) へ (○) ·

Conclusion

Conclusion: take home messages

- DPPs create random, diverse samples.
- They are tractable (inclusion probabilities at all orders are known), and good approximations are known for *m*-DPPs.
- This does not mean they are the best choice for all applications! They are *many* other (less tractable) repulsive processes out there.
- They are used in practice
- They are not expensive to sample in many applications (where low-rank approximations of the kernel can be computed efficiently): $O(nm^2)$
- Toolboxes exist: DPPy¹ in Python, DPP.jl² in Julia

²gricad-gitlab.univ-grenoble-alpes.fr/barthesi/dpp.jl

¹github.com/guilgautier/DPPy

Conclusion

Conclusion

DPPs have links with many other theories:

- graph theory
- Gaussian processes
- multivariate polynomials
- random matrices
- etc.

pplications

Conclusion

Conclusion: what next?

- accelerate sampling for large *m*
- DPPs for large dimensional data?
- parallel implementations

Barthelmé, Tremblay

DPP Tutorial