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In a nutshell, determinantal point processes (or DPP) :

• are random processes that induce diversity.

• are tractable.
• are used for three main purposes:

i/ produce diverse samples of a large database
ii/ use as a tool in a variety of SP/ML contexts
iii/ characterize various observed phenomena.
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DPPs induce diversity

Figure: Example of iid uniform sampling
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Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 3 / 72



Introduction Definition, basic properties Computation Applications Conclusion

DPPs induce diversity

Figure: Example of iid uniform sampling
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i/ This sample diversity can be directly useful12:

summary generation:

search engines / recommendation:

ii/ DPP samples can also be used as a tool in several SP/ML contexts:

• Monte Carlo integration
• Feature selection problems
• Coresets
• etc.

1 left figure: from Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013
2right figure: from G. Gautier’s slides guilgautier.github.io/pdfs/GaBaVa17_slides.pdf
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DPPs as a tool: an example

Figure:
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DPPs as a tool: an example

Figure: iid estimations of the mean
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Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 5 / 72



Introduction Definition, basic properties Computation Applications Conclusion

DPPs as a tool: an example

Figure: Example of DPP sampling
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DPPs as a tool: an example

Figure: DPP estimations of the mean

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 5 / 72



Introduction Definition, basic properties Computation Applications Conclusion

DPPs as a tool: an example

Figure: Comparison of both estimators: variance reduction (here by a factor 3)
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iii/ Finally, DPPs are used to characterize various phenomena.
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Eigenvalues of the Gaussian Unitary Ensemble1

• Consider a Hermitian matrix H ∈ Cn×n with
• diagonal elements of the form Hjj = X with X drawn iid from N (0, 1)
• off-diagonal elements of the form Hjk = X + iY with X and Y drawn iid from
N (0, 1/2).

• It has n real eigenvalues. They are distributed s.t.:

P(λ1, . . . , λn) ∝ exp−
∑

j λ
2
j
∏
j<k

(λj − λk )2

∝ det M2

where Mjk = λj−1
k exp−

1
2
λ2
k .

1see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005
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Eigenvalues of the GUE: illustration1

Examples of 6 point processes in 1D (3 GUE and 3 uniform):

λ

1see, e.g., Johansson, Random matrices and DPPs, Arxiv (lecture notes), 2005
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A spinless fermion in a harmonic potential1

V (x) =
1

2
x2

At temperature T = 0, the probability distribution of the particle is a simple Gaussian:

x

1Macchi, The coincidence approach to stochastic point processes. Adv. Appl. Probab., 1975
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Two non-interacting fermions1

Pauli’s exclusion principle implies, after a few
calculations, that, at T = 0:

P(x1, x2) ∝ (x2 − x1)2e−(x2
1 +x2

2 )

∝
(

det

[
e−

1
2
x2

1 e−
1
2
x2

2

x1e
− 1

2
x2

1 x2e
− 1

2
x2

2

])2

x

P(x2 | x1 =   )

1Macchi, The coincidence approach to stochastic point processes. Adv. Appl. Probab., 1975
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Interim: repulsive point processes are hard

• There are many ways of defining point processes that feature repulsion; some may
look much more natural than DPPs

• An unfortunate fact of point process theory is that repulsive point processes are
hard, theoretically and empirically
• Desirable features:

1. Probability density of p.p. is tractable (including normalisation constant)
2. Inclusion probabilities (intensity functions) are tractable
3. Sampling is tractable
4. Model is easy to understand

• DPPs have properties (1-3) and arguably (4) once you get used to them

• Most other repulsive processes have one or two (at best)
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Gibbs point processes

• Many repulsive point processes can be described using the general framework of
Gibbs point processes

• A Gibbs point process takes the following form:

p(X ) =
exp(−β

∑
i<j v(xi , xj ))

Zβ

• v(xi , xj ) is called a pairwise potential

• the sum runs over all pairs of points

• example : v(xi , xj ) = d(xi , xj ) where d is a distance, encourages points to be far
apart.
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The hard sphere model

Allowed Not allowed

The hard sphere model (AKA hard-core model) is used in physics to describe a set of
particles that cannot overlap. See Löwen (2000) 1.

1Löwen, H. (2000). Fun with hard spheres. In Statistical physics and spatial statistics (pp. 295-331). Springer,
Berlin, Heidelberg.
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The hard sphere model

• We assume that X = x1, . . . , xm, with m fixed and xi ∈ [0, 1]d

• The pairwise potential is simply:

v(xi , xj ) =

{
∞ if

∥∥xi − xj
∥∥2
< r

0 otherwise
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Things to think about

• What’s the normalisation constant for the hard-sphere model? Hint: can you
relate it to the probability that m points sampled independently have a minimum
pairwise distance > r?

• What are the valid configurations like when m is large?

• How would you sample from the hard-sphere model?
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Normalisation constant

• Normalisation constant:∫
Ωm

∏
i<j

I(
∥∥xi − xj

∥∥2
> r)dx1 . . . dxm

• Intractable (except in dimension one)!
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Packing limit

As m becomes large, we reach the packing limit, and most configurations are
impossible

In the general case packing is a very hard problem (image from Wikipedia)
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Sampling

• Possible sampling algorithm: “dart throwing”.

• Pick a random initial location uniformly

• Pick a second location uniformly among remaining possible locations

• Pick a third location uniformly among remaining possible locations

• etc. until you have m spheres or further sampling is impossible (start again)

• Very good for small m, very bard for large m
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Summary: the hard sphere model

• Simplest, most natural model you can imagine (property 4)
• But:

1. Probability density is intractable (because normalisation constant is intractable for
d > 1)

2. Inclusion probabilities (intensity functions) are intractable for general domains, at least
as far as we know

3. Sampling is easy for small m (not very repulsive), then in large m becomes equivalent
to the notoriously hard sphere packing problem

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 20 / 72



Introduction Definition, basic properties Computation Applications Conclusion

DPPs, the nitty-gritty

• We’ll see that DPPs tick all boxes, contrary to most Gibbs processes

• The set-up cost is a bit higher; it’s important to understand how these processes
are defined, and to be careful about the notation

• We will now go through a few definitions in detail
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Some notation for discrete point processes

• Ω is a base set of size n representing the items to sample from. w.l.o.g we may
take Ω = {1, . . . , n}
• X is a random subset of Ω

• We note m = |X |, which may be a random variable
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L-ensembles

• The repulsion in DPPs is based on a notion of similarity between items in Ω.

• The similarity between all pairs of items in Ω is stored in a n × n matrix called
(for historical reasons) the “L-ensemble”.

• We note this matrix L, with Lij the similarity between items i and j

• L is assumed to be positive definite.

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 23 / 72
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L-ensembles

• We’ll come across several ways of constructing the L matrix.

• For now, assume that the items are vectors in Rd . We can use a kernel function
to describe similarity.

• Example: Gaussian kernel

Lij = exp

(
−

1

2σ2
||xi − xj ||2

)
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Similarity via the Gaussian kernel
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Similarity via the Gaussian kernel
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DPP: formal definition

• We say that X (random set) is distributed according to a DPP if:

p(X = X ) ∝ det LX

• LX is the restriction of L to the items in X
• IMPORTANT!!!! Here the number of items in X , m = |X |, is not fixed and may

therefore vary.
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A closer look

• The probability mass function is fairly simple:

p(X = X ) ∝ det LX

• det LX > 0, by positive-definiteness of L

• In addition:
∑
X det LX = det(L + I) is the normalisation constant (tractable!)

• So why does this induce repulsion?
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Determinants: geometric interpretation

x

y

(a, d)

(a+b,c+d)

(b, c)

|ad − bc|

Determinants measure the (signed) volume of the paralleliped spanned by the columns
of a matrix. Illustration by Yigit Pilavci.
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Why does the determinant induce repulsion?
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●
46

77

188
LX =

46 77 188
46 1.00 0.01 0.70
77 0.01 1.00 0.06

188 0.70 0.06 1.00

Determinant: 0.51.
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Why does the determinant induce repulsion?

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

4

x1

x 2

●
● ●67

178125
LX =

67 178 125
67 1.00 0.95 0.89

178 0.95 1.00 0.97
125 0.89 0.97 1.00

Determinant: 0.005.
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Inclusion probabilities

• Are certain, or pairs of items are more likely to be sampled?

• Formally: let S denote a fixed (non-random) set. The “inclusion probabilities”
are of the form:

p(S ⊆ X )

• If S = {i}, a singleton, equivalent to p(i ∈ X ), the probability that item i is
sampled

• If S = {i , j}, a pair, equivalent to p(i ∈ X and j ∈ X ), the probability that both
items are sampled
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Marginal kernels

• In DPPs the inclusion probabilities are quite remarkable

• For a DPP with L-ensemble L the inclusion probabilities are as follows

p(S ⊆ X ) = detKS

where:
K = L(L + I)−1

• K is called the marginal kernel of the DPP
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L-ensemble vs. marginal kernel

Example.

L =


1 0.946 0.681 0.634 0.611

0.946 1 0.864 0.825 0.805
0.681 0.864 1 0.997 0.993
0.634 0.825 0.997 1 0.999
0.611 0.805 0.993 0.999 1


can be used to compute p(X = X ).

K = L(L + I)−1 =


0.328 0.246 0.075 0.053 0.042
0.246 0.234 0.135 0.117 0.108
0.075 0.135 0.206 0.210 0.212
0.053 0.117 0.210 0.219 0.223
0.042 0.108 0.212 0.223 0.227


can be used to compute p(S ∈ X )
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First-order inclusion probabilities

• First-order inclusion probabilities are just:

p(i ∈ X ) = Kii

• Exercise: work out E (|X |)
• Hint: |X | =

∑
j∈Ω I(j ∈ X )
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First-order inclusion probabilities are (generally) not uniform!
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Second-order inclusion probabilities

• Note πi = p(i ∈ X )

• Poisson sampling : go through all n items and include item i with probability πi
independently

• Exercise: let Y be a Poisson sample with the same first-order inclusion
probabilities as X . Compute p(i , j ⊆ Y). Compare to p(i , j ⊆ X ): how does
repulsion manifest itself?
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Fixed-size DPPs

• Often it’s preferable to set the size of X to a fixed value.

• A fixed-size DPP is a DPP, conditioned on |X | = m. They were introduced by
Kulesza & Taskar as “k-DPPs”. Here we call them “m-DPPs” for consistency.

• Def. X is a m-DPP with L-ensemble L if

p(X ) =

{
det LX
em(L)

if |X | = m

0 otherwise

• em(L) is the normalisation constant, and is easy to compute from the spectrum of
L.

• Otherwise an m-DPP is very similar to a DPP: we’re simply forbidding sets of a
size smaller or greater than m
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Inclusion probabilities in m-DPPs

• The bad news: m-DPPs do not, in general, have a marginal kernel, i.e. there may
not be a matrix K such that

p(S ⊆ X ) = detKS

when S is a m-DPP.

• Exact inclusion probabilities are tricky to compute, especially for |S| > 1
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Inclusion probabilities in m-DPPs

• The good news: we showed in Barthelmé, Tremblay, Amblard (2019) that there is
an approximate marginal kernel, i.e. for large n and small |S|, there’s a matrix K̃
such that

p(S ⊆ X ) ≈ det K̃S

• K̃ is easy to compute:
K̃ = αL(αL + I)−1

where α is such that Tr K̃ = m
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Projection DPPs

• m-DPPs do not have exact marginal kernels, with one very important exception

• If m = r = rank L, then there is an exact marginal kernel, with a very specific form

• Let L = UDUt , the eigendecomposition of L, and D the r × r matrix of
eigenvalues.

• The marginal kernel is simply K = UUt , a projection matrix (K2 = K)

• Accordingly these DPPs are called projection DPPs.

• In a sense they are both DPPs and m-DPPs

• They are central to the overall theory
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An example of a projection DPP

• Here’s an example of how to build a projection DPP. Assume the items are just
points along a line: x1, . . . , xn.

• We build a matrix of polynomial features:

M =


1 x1 x2

1 . . . x r−1
1

1 x2 x2
2 . . . x r−1

2
...

...
... . . .

...

1 xn x2
n . . . x r−1

n


• We build an L-ensemble based on those features:

L = MMt

• L has rank r and dimension n × n

• If we set m = r , ie. we sample as many points as we have polynomial features,
than what we have is a projection DPPs.
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Summary so far

• DPPs have tractable inclusion probabilities, but the number of items sampled is
random (in general)

• m-DPPs have fixed sample size, but the inclusion probabilities are less tractable

• One exception: projection DPPs have fixed sample size, and the inclusion
probabilities are tractable
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Introduction
DPPs to produce diverse samples
DPPs as a tool in SP/ML
DPPs to characterize

Definition, basic properties
Repulsive point processes are hard
DPPs, the nitty-gritty

Computation
Sampling from a DPP
DPPs as mixtures

Applications
Examples of applications
Zoom on an application: Coresets

Conclusion

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 43 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Some computational issues

• There’s a few computational issues, but we’ll look at the two main ones:
1. How to sample from a DPP efficently
2. How to create an L-ensemble efficiently

• We can’t cover the theory in detail so focus is on practical aspects

• See our package DPP.jl for efficient Julia implementation; DPPy by Guillaume
Gautier for Python tools
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Samplers for DPPs

• For DPPs there are both exact and inexact samplers

• The inexact samplers (eg. Gibbs sampler) use an MCMC chain to generate
approximate samples cheaply.

• However getting an exact sample is often not much more expensive: we will
describe a method based on Hough et al. (2006)
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A Metropolis-Hastings sampler
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A Metropolis-Hastings sampler

Initialisation: set X to some random subset of size m. For t = 1toT , do:

• Propose swap: construct X ′ by removing random item from X , adding a random
item from Ω−X
• Evaluate acceptance ratio r =

det LX′
det LX

• Set X ← X ′ with probability r .

If T is large enough, the final configuration is an almost-exact sample from an m-DPP
with ensemble L
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A Metropolis-Hastings sampler

• The sampler we’ve just described is really easy to implement!

• Feel free to try it for yourself after the tutorial, should just take a few minutes

• Bonus points if you can adapt it to DPPs and not just m-DPPs

• For most practical purposes we recommend the exact sampler we describe next
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The direct sampler

• It turns out that sampling from a projection DPP is easy

• The algorithm just picks points sequentially from the appropriate probability
distribution

• For generic DPPs, we’ll see that it’s possible to reduce the problem to the
sampling of a projection DPP
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Sampling sequentially

• Take a set of m items X = {x1, . . . , xm} and order it (arbitrarily) into a sequence
x1, . . . , xm

• Our goal is to sample X ∼ proj − DPP(K) by sampling first x1, then x2, then x3

etc. up to a xm

• Formally:

x1 ∼ p(x1)

x2 ∼ p(x2|x1)

x3 ∼ p(x3|x1, x2)

...
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What are these conditional distributions?

• p(x1) is the distribution of an arbitrary item taken from a projection DPP - that’s
just the inclusion probability

• p(x2|x1) is the distribution of an arbitrary item taken from a projection DPP,
given that item x1 is in the set. That’s a conditional inclusion probability.

• etc.

• As it turns out, these distributions are tractable in proj-DPPs, and this leads to
an algorithm that is both easy to implement and fast2

• Nice bit of theory: conditional distribution of xt equals the conditional variance of
a Gaussian process with the same kernel sampled at x1 . . . xt−1!

2Alg. due to Hough et al. (2006), Gillenwater (2014) for a faster version. See DDPy documentation by G.
Gautier for more
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The direct sampling algorithm in action
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The direct sampling algorithm in action
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Sampling generic DPPs

• At this point we know how to sample from projection DPPs

• Now we need to sample from generic (m)-DPPs

• Luckily, we can show that generic (m)-DPPs are just mixtures of projection DPPs

• Recall: to sample from a mixture of Gaussians, pick randomly one of the
Gaussians then sample from that Gaussian.

• Same here: we’ll have to form a random projection DPP, then sample from that
projection DPP
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Cauchy-Binet lemma

• We’ll sketch the proof that all DPPs are mixtures of projection DPPs.

• Central ingredient is the Cauchy-Binet lemma.

• Let Am×n and Bn×m, with n > m. We seek to compute detAB.

• If n = m A and B are square, and so detAB = detA detB. Cauchy-Binet
generalises this formula to n > m.

detAB =
∑
|Y|=m

detA:,Y detBY,:

• Here Y is a subset of 1, 2, . . . , n of size m and the sum runs over all such subsets.
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Proof sketch that DPPs are mixtures of projection DPPs

Consider the eigendecomposition of L, L = UDUt , and the probability of set X .

p(X ) ∝ det LX = detUX ,:D
1
2 D

1
2 Ut

:,X = (detAB)

Apply Cauchy-Binet:

p(X ) ∝
∑
|Y|=|X|

detUX ,YD
1
2
Y,Y detD

1
2
Y,YU

t
Y,X

Now we have square matrices inside the sum, so this is just:

p(X ) ∝
∑
|Y|=|X|

detUX ,YU
t
Y,X detDY,Y
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Proof sketch that DPPs are mixtures of projection DPPs

Looking at:

p(X ) ∝
∑
|Y|=|X|

detUX ,YU
t
Y,X detDY,Y

with X as a variable, we see the following structure appearing:

p(X ) ∝
∑
|Y|=|X|

f (X|Y)g(Y)

which expresses p(X ) as a marginal! Here f (X|Y) = detUX ,YU
t
Y,X , and that’s a

projection DPP where we select the eigenvectors given by Y to form the L-ensemble.
g(Y) = det(DY ) is also a DPP, this time with a diagonal L-ensemble!
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Computational considerations

• A tally of computational costs:
1. We need to generate the L matrix at cost O(n2)

2. We need to compute the eigendecomposition of L at cost O(n3)

3. We need to sample at cost O(nk2)
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Computational considerations

• Overall the dominating cost is the eigendecomposition at cost O(n3)

• Fortunately that cost can be brought down to O(nk2) if you design L to have
rank O(k)

• For example: use k polynomial features, or use Random Fourier Features

• See Tremblay et al. (2018) on coresets 3 for a list of tricks

• In a nutshell: DPPs have very good (linear) scaling in n, meaning the original set
can be in the millions

• However, poor scaling in k, so that the subset you sample will be in the hundreds

3Tremblay et al., DPPs for Coresets, Arxiv, 2018.
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DPPs as a tool in SP/ML
DPPs to characterize

Definition, basic properties
Repulsive point processes are hard
DPPs, the nitty-gritty
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Example of application: generate extractive summaries1

• The trick is to find a good feature space to embed sentences and a proper DPP
kernel

• Both can be parametrized (tf, idf, etc.) and then learned2

2e.g., Kulesza et al, Near-optimal map inference for DPPs, NIPS 2012.
1Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013
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Example of application: search algorithms1

1Kulesza and Taskar, DPPs for machine learning, Found. and Trends in ML, 2013
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“DDPs as a tool” applications

• Monte-Carlo integration 1 2:∫
f (x)µ(dx) '

N∑
n=1

ωnf (xn)

where the xi ’s are the so-called quadratic nodes.

• Mini-batch sampling for stochastic gradient descent 3:

L(θ) =
∑
i

Li (θ)

GD : θ ← θ − η∇L(θ) = θ − η
∑
i

∇Li (θ)

mini-batch GD : θ ← θ − η
∑
i∈X
∇Li (θ)

• Column subset selection problem for best rank-k approximation 4

1Gautier et al., On two ways to use DPPs for Monte Carlo integration, ICML, 2019.
2Bardenet et al., Monte Carlo with DPPs, Annals of Applied Probability, In Press.
3Zhang et al., DPPs for Mini-Batch Diversification, UAI, 2017.
4Belhadji et al, A DPP for column subset selection, Arxiv, 2018.
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Zoom on one application:

• Coresets1

1Tremblay et al., DPPs for Coresets, Arxiv, 2018.
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Coresets

• Consider a dataset X = (x1, . . . , xn), say: n points in dimension d .

• Let Θ be a parameter space and consider cost functions of the form:

L(X , θ) =
n∑

i=1

f (xi , θ)

where f : X → R+, and θ ∈ Θ.

• A classical ML objective: find

θ∗ = argmin
θ∈Θ

L(X , θ).

• k-means, k-medians, linear/logistic regressions fall in this class of problems
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Coresets

• Consider a subset S ⊂ X (possibly with repetitions)

• Associate a weight ωs > 0 to each element s ∈ S
• Define

L̂(S, θ) =
∑
s∈S

ωs f (s, θ)

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 65 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Coresets

• S is an ε-coreset of X wrt L if:

∀θ ∈ Θ (1− ε)L(X , θ) 6 L̂(S, θ) 6 (1 + ε)L(X , θ)

• Multiplicative approximation: gold standard of approximation methods

• Denote by θ̂∗ the argmin of L̂:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ).

• Why are coresets interesting?

(1− ε)L(X , θ∗) 6 (1− ε)L(X , θ̂∗) 6 L̂(S, θ̂∗) 6 L̂(S, θ∗) 6 (1 + ε)L(X , θ∗)

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 66 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Coresets

• S is an ε-coreset of X wrt L if:

∀θ ∈ Θ (1− ε)L(X , θ) 6 L̂(S, θ) 6 (1 + ε)L(X , θ)

• Multiplicative approximation: gold standard of approximation methods

• Denote by θ̂∗ the argmin of L̂:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ).

• Why are coresets interesting?

(1− ε)L(X , θ∗) 6 (1− ε)L(X , θ̂∗) 6 L̂(S, θ̂∗) 6 L̂(S, θ∗) 6 (1 + ε)L(X , θ∗)
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Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 66 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Coresets: illustration on the 1-means problem

• Data X

• Cost function:

L(X , θ) =
n∑

i=1

‖xi − θ‖2

• Optimal θ:

θ∗ = argmin
θ∈Θ

L(X , θ)

• A weighted subset S
• Estimated cost function:

L̂(S, θ) =
∑
s∈S

ωs ‖s − θ‖2

• S is a ε-coreset if:

∀θ

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε

• Estimated optimal θ:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ)
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Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 67 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Coresets: illustration on the 1-means problem

• Data X
• Cost function:

L(X , θ) =
n∑

i=1

‖xi − θ‖2

• Optimal θ:

θ∗ = argmin
θ∈Θ

L(X , θ)

• A weighted subset S
• Estimated cost function:

L̂(S, θ) =
∑
s∈S

ωs ‖s − θ‖2

• S is a ε-coreset if:

∀θ

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε

• Estimated optimal θ:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ)

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 67 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Coresets: illustration on the 1-means problem

• Data X
• Cost function:

L(X , θ) =
n∑

i=1

‖xi − θ‖2

• Optimal θ:

θ∗ = argmin
θ∈Θ

L(X , θ)

• A weighted subset S
• Estimated cost function:

L̂(S, θ) =
∑
s∈S

ωs ‖s − θ‖2

• S is a ε-coreset if:

∀θ

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε

• Estimated optimal θ:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ)

θ

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 67 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Coresets: illustration on the 1-means problem

• Data X
• Cost function:

L(X , θ) =
n∑

i=1

‖xi − θ‖2

• Optimal θ:

θ∗ = argmin
θ∈Θ

L(X , θ)

• A weighted subset S
• Estimated cost function:

L̂(S, θ) =
∑
s∈S

ωs ‖s − θ‖2

• S is a ε-coreset if:

∀θ

∣∣∣∣∣ L̂L − 1

∣∣∣∣∣ 6 ε

• Estimated optimal θ:

θ̂∗ = argmin
θ∈Θ

L̂(S, θ)

θ
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Random coresets

• Random context: suppose S is a random subset S ⊂ X (possibly with repetitions)
• Importance sampling notations:

• Define εi the random variable counting the number of times xi is in S
• To each element xi associate a weight ωi = 1

E(εi )

• One has:

L̂(S, θ) =
n∑

i=1

f (xi , θ)
εi

E(εi )

and thus L̂ is an unbiased estimator of L:

E
(
L̂(S, θ)

)
=

n∑
i=1

f (xi , θ) = L(X , θ).
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Sensitivity

• The sensitivity of a datapoint xi ∈ X with respect to f : X ,Θ→ R+ is:

σi = max
θ∈Θ

f (xi , θ)

L(X , θ)
∈ [0, 1].

Also, the total sensitivity is defined as S =
∑n

i=1 σi .

• In general, the sensitivity is unknown analytically.

• 1-means is an exception. In this case,
supposing wlog that the data is centered
(i.e.:

∑
j xj = 0), one shows:

σi =
1

n

(
1 +
‖xi‖2

v

)
,

where v = 1
n

∑
x∈X ‖x‖

2. Thus, S = 2.
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Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 69 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Sensitivity

• The sensitivity of a datapoint xi ∈ X with respect to f : X ,Θ→ R+ is:

σi = max
θ∈Θ

f (xi , θ)

L(X , θ)
∈ [0, 1].

Also, the total sensitivity is defined as S =
∑n

i=1 σi .

• In general, the sensitivity is unknown analytically.

• 1-means is an exception. In this case,
supposing wlog that the data is centered
(i.e.:

∑
j xj = 0), one shows:

σi =
1

n

(
1 +
‖xi‖2

v

)
,

where v = 1
n

∑
x∈X ‖x‖

2. Thus, S = 2.
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A classical iid coreset theorem1

• Let p ∈ [0, 1]n be a probability distribution over all datapoints X with pi the
probability of sampling xi and

∑
i pi = 1.

• Draw S: m iid samples with replacement according to p.

• Associate importance sampling weights to each sample of S.

• Theorem. The weighted subset S is a ε-coreset with high probability if:

m > O
(
d ′

ε2

(
max

i

σi

pi

)2
)
,

where d ′ is the pseudo-dimension of Θ (a generalization of the
Vapnik-Chervonenkis dimension).

• The optimal probability distribution minimizing the rhs is pi = σi/S.

• In this case, S is a ε-coreset with high probability if:

m > O
(
d ′S2

ε2

)
.

1Langberg and Schulman, Universal ε-approximators for integrals, SIAM, 2010
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DPPs for Coresets: a result1

• Consider any iid sampling scheme, defined by:
• m the number of samples to draw
• ∀i, 0 6 pi 6 1/m and

∑
i pi = 1

• Consider a marginal kernel K verifying:
• K is projective of rank m: K = UUt with U ∈ Rn×m and UtU = Im.
• ∀i,Kii = mpi .

• Lemma. Such a kernel necessarily exists. In general, there are many dof left to
define U.

• Sample Siid by drawing m samples iid from p
• Sample Sdpp from the DPP of kernel K.

• Recall that Sdpp is necessarily of size m.

• Coreset variance reduction theorem. One has:

∀θ ∈ Θ Var
[
L̂(Sdpp, θ)

]
6 Var

[
L̂(Siid, θ)

]

1Tremblay et al., DPPs for Coresets, Arxiv, 2018.

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 71 / 72



Introduction Definition, basic properties Computation Applications Conclusion

DPPs for Coresets: a result1

• Consider any iid sampling scheme, defined by:
• m the number of samples to draw
• ∀i, 0 6 pi 6 1/m and

∑
i pi = 1

• Consider a marginal kernel K verifying:
• K is projective of rank m: K = UUt with U ∈ Rn×m and UtU = Im.
• ∀i,Kii = mpi .

• Lemma. Such a kernel necessarily exists. In general, there are many dof left to
define U.

• Sample Siid by drawing m samples iid from p
• Sample Sdpp from the DPP of kernel K.

• Recall that Sdpp is necessarily of size m.

• Coreset variance reduction theorem. One has:

∀θ ∈ Θ Var
[
L̂(Sdpp, θ)

]
6 Var

[
L̂(Siid, θ)

]

1Tremblay et al., DPPs for Coresets, Arxiv, 2018.
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DPPs for Coresets: a result1

• Coreset variance reduction theorem. One has:

∀θ ∈ Θ Var
[
L̂(Sdpp, θ)

]
6 Var

[
L̂(Siid, θ)

]

• For any iid sampling scheme, there exists (at least) a projective DPP sampling
scheme outperforming it.

• This is in particular true for the ideal sensitivity-based iid sampling scheme.

• The best marginal kernel is for now out-of-reach: it poses deep questions rooted
in frame theory.

• Even if we were able to find it, it would probably be untractable.

→ We propose a computationally efficient heuristic based on the Gaussian kernel:
• Compute r Random Fourier Features2 (r = O(m)) and obtain Ψ ∈ Rn×r s.t.

ΨΨt ∈ Rn×n approximates the Gaussian kernel
• Sample an m-DPP from L = ΨΨt

→ This runs in O(nm2 + nmd)

2Rahimi et al., Random features for large-scale kernel machines, NIPS, 2008
1Tremblay et al., DPPs for Coresets, Arxiv, 2018.
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• Coreset variance reduction theorem. One has:

∀θ ∈ Θ Var
[
L̂(Sdpp, θ)

]
6 Var

[
L̂(Siid, θ)

]

• For any iid sampling scheme, there exists (at least) a projective DPP sampling
scheme outperforming it.

• This is in particular true for the ideal sensitivity-based iid sampling scheme.

• The best marginal kernel is for now out-of-reach: it poses deep questions rooted
in frame theory.

• Even if we were able to find it, it would probably be untractable.

→ We propose a computationally efficient heuristic based on the Gaussian kernel:
• Compute r Random Fourier Features2 (r = O(m)) and obtain Ψ ∈ Rn×r s.t.

ΨΨt ∈ Rn×n approximates the Gaussian kernel
• Sample an m-DPP from L = ΨΨt

→ This runs in O(nm2 + nmd)
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In practice: the 1-means controlled example1

• Data X , parameter θ

• Cost func.

L(X , θ) =
n∑

i=1

‖xi − θ‖2

Compare:

• uniform iid sampling

• sensitivity iid: ideal iid
sampling based on exact sensitivities

• m-DPP (heuristic) based on RFFs of
the Gaussian L-ensemble

Lij = exp−‖xi−xj‖2
/s2

1Tremblay et al., DPPs for Coresets, Arxiv, 2018.
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Conclusion: take home messages

• DPPs create random, diverse samples.

• They are tractable (inclusion probabilities at all orders are known), and good
approximations are known for m-DPPs.

• This does not mean they are the best choice for all applications! They are many
other (less tractable) repulsive processes out there.

• They are used in practice

• They are not expensive to sample in many applications (where low-rank
approximations of the kernel can be computed efficiently): O(nm2)

• Toolboxes exist: DPPy1 in Python, DPP.jl2 in Julia

1github.com/guilgautier/DPPy
2gricad-gitlab.univ-grenoble-alpes.fr/barthesi/dpp.jl
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Conclusion

DPPs have links with many other theories:

• graph theory

• Gaussian processes

• multivariate polynomials

• random matrices

• etc.

Barthelmé, Tremblay DPP Tutorial A Coruna, EUSIPCO 2019 75 / 72



Introduction Definition, basic properties Computation Applications Conclusion

Conclusion: what next?

• accelerate sampling for large m

• DPPs for large dimensional data?

• parallel implementations
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