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Parametric models

I A parametric model Pθ is defined as a set of pdfs that are
parametrized by a finite-dimensional parameter vector θ:

Pθ , {pX (x1, . . . , xM |θ),θ ∈ Θ ⊆ Rq} .

I The (lack of) knowledge about the phenomenon of interest is
summarized in θ that needs to be estimated.

I Pros: Parametric inference procedures are generally “simple”
due to the finite dimensionality of θ.

I Cons: A parametric model could be too restrictive and a
misspecification problem1 may occur [1,2,3,4,5,6].

1
S. Fortunati, F. Gini, M. S. Greco and C. D. Richmond, “Performance Bounds for Parameter Estimation

under Misspecified Models: Fundamental Findings and Applications”, IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 142-157, Nov. 2017.
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Non-parametric models

I A non-parametric model Pp is a collection of pdfs possibly
satisfying some functional constraints (i.e. symmetry):

Pp , {pX (x1, . . . , xM) ∈ K} ,

where K is some constrained set of pdfs.

I Pros: The risk of model misspecification is minimized.

I Cons: In non-parametric inference we have to face with
infinite-dimensional estimation problem.

I Cons: Non-parametric inference may be a prohibitive task due
to the large amount of required data.
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Semiparametric models

I A semiparametric model2 Pθ,g is a set of pdfs characterized
by a finite-dimensional parameter θ ∈ Θ along with a
function, i.e. an infinite-dimensional parameter, g ∈ L [7]:

Pθ,g , {pX (x1, . . . , xM |θ, g),θ ∈ Θ ⊆ Rq, g ∈ L} .

I Usually, θ is the (finite-dimensional) parameter of interest
while g can be considered as a nuisance parameter.

I Pros: All parametric signal models involving an unknown
noise distribution are semiparametric models.

I Cons: Tools from functional analysis are needed.

2
P.J. Bickel, C.A.J Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric

Models, Johns Hopkins University Press, 1993.
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Examples: CES distributions

I A CES distributed random vector x ∈ CN admits a pdf [8]:

pX (x;µ,Σ) = cN,g |Σ|−1g((x− µ)HΣ−1(x− µ)),

I cN,g is a normalizing constant,
I g ∈ G, g : R+

0 → R+ is the density generator,
I µ ∈ CN is the mean value,
I Σ ∈MN is the (full rank) scatter matrix.

I The set of all CES pdfs is a semiparametric model of the form:

Pµ,Σ,g ,
{
pX |pX (x|µ,Σ, g),µ ∈ CN ,Σ ∈MN , g ∈ G

}
.

I This semiparametric model is a particular instance of the more
general set of semiparametric group models [9, Sec. 4.2].
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Examples: Missing data

I Let z , (xT , yT )T be a complete dataset, where:
I x is the observed (available) dataset.
I y is the unobservable (missing) dataset.

I Problem: Estimate θ ∈ Θ from the observed dataset x when
the pdf pY of the missing data y is unknown.

I The pdf pX of the observed dataset can be expressed as:

pX (x|θ) =

∫
Y
pX ,Y (x, y|θ)dy =

∫
Y
pX |Y (x|y,θ)pY (y)dy.

I The set of all the pdfs of the observed dataset x is a
semiparametric mixture model of the form [9, Sec. 4.5], [10]:

Pθ,pZ , {pX |pX (x|θ, pY ),θ ∈ Θ, pY ∈ K} .
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Examples: Non-linear regression

I Let us consider the general non-linear regression model:

x = f (z,θ) + ε,

I θ ∈ Θ: parameter vector to be estimated,
I f ∈ F : possibly unknown non-linear function,
I z: random vector with possibly unknown pdf pZ ∈ K,
I ε: random noise with possibly unknown pdf pε ∈ E

I The set of all pdfs for x is a semiparametric model of the form:

Pθ,f ,pZ ,pε , {pX (x|θ, f , pZ , pε),θ ∈ Θ, f ∈ F , pZ ∈ K, pε ∈ E} .

I This model is a general form of a semiparametric regression
model [9, Sec. 4.3].
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Examples: Autoregressive processes

I Consider the AR(p) process:

xn =

p∑
i=1

θixn−i + wn, n ∈ (−∞,∞)

I θ , [θ1, . . . , θp]: parameter vector to be estimated.
I wn: i.i.d. innovations with unknown pdf pw ∈ W,

I Let x ∈ RN a vector of N observations from an AR(p).

I The set of all possible pdfs for x ∈ RN is a semiparametric
model [11,12]:

Pθ,pw , {pX |pX (x|θ, pw ),θ ∈ Θ, pw ∈ W} .
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Score vectors in parametric models

I Let us consider the following parametric model involving a
finite-dimensional vector of nuisance parameters:

Pθ,η ,
{
pX (x|θ,η),θ ∈ Θ ⊆ Rq,η ∈ Γ ⊆ Rd

}
,

I θ ∈ Θ: vector of the parameters of interest to be estimated,
I η ∈ Γ: vector of the (unknown) nuisance parameters.

I Denote with θ0 and η0 the true value of θ ∈ Θ and η ∈ Γ,
respectively. Then p0(x) , pX (x|θ0,η0).

I Score vectors of the parametric model Pθ,η in θ0 and η0:

sθ0 , ∇θ ln pX (x|θ0,η0), sη0 , ∇η ln pX (x|θ0,η0).
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The Fisher Information Matrix (FIM)

I The FIM for the parametric model Pθ,η is given by:

I(θ0,η0) ,

(
E0

{
sθ0sTθ0

}
E0

{
sθ0sTη0

}
E0

{
sη0sTθ0

}
E0

{
sη0sTη0

} )
=

(
Iθ0θ0 Iθ0η0

ITθ0η0
Iη0η0

)
,

where E0{h} ,
∫
h(x)p0(x)dx.

I Let θ̂(x) be an unbiased estimator of θ0: E0{θ̂(x)} = θ0.

I How can we derive the CRB on the estimation of θ0 in the
presence of the unknown nuisance parameter vector η0?
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Parametric CRB: classical approach

I The Cramér-Rao inequality provides us with a lower bound on
the error covariance matrix of θ̂(x) when η0 is unknown (see
e.g. [13, Sec. 10.7]):

E0

{
(θ̂(x)− θ0)(θ̂(x)− θ0)T

}
≥ CRB(θ0|η0).

I Classical approach: CRB(θ0|η0) can be obtained from the
FIM using the Matrix Inversion Lemma [14]:

CRB(θ0|η0) ,
(

Iθ0θ0 − Iθ0η0I−1
η0η0

ITθ0η0

)−1
.

I It is possible to obtain this same result by using a geometrical,
“Hilbert-space-based” approach [7].
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Hilbert spaces

Definition ([9, A.1, A.2],[15])

A Hilbert space F is a normed vector space

1. equipped with an inner product 〈·, ·〉 and,

2. complete with respect to the norm || · || =
√
〈·, ·〉.

I A normed (metric) space is complete when every Cauchy
sequences in F converges to an element of F .

I f1, f2, · · · is a Cauchy sequence if, for every ε > 0 there is a
positive integer N such that for all i , j > N, we have that:

||fi − fj || < ε.
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The square-integrable functions

I Let (X ,F, µ) be a measure space where X ⊆ RN , F is the
Borel σ-algebra on X and µ is a measure on F. 3

I Then, L2(µ) is the space of all the measurable functions s. t.

L2(µ) =

{
f : X → R

∣∣∣∣∫
X
|f (x)|2dµ(x) <∞

}
.

I The L2(µ) space is an Hilbert space with the following inner
product:

〈f1, f2〉 ,
∫
X
f1(x)f2(x)dµ(x).

I For the standard Lebesgue measure: dµ(x) = dx.

3
Some additional definitions are given in the backup slides.
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The space of scalar zero-mean functions

I Let (X ,F,PX ) be a probability space where X ⊆ RN is the
sample space, F is the Borel σ-algebra on X and PX is a
probability measure. 4

I Let H be the Hilbert space defined as [10, Ch. 2]:

H =
{
h : X → R

∣∣EX{h} = 0,EX{|h|2} <∞
}
.

I The expectation operator EX{·} is

EX{h} ,
∫
X
h(x)dPX (x) =

∫
X
h(x)pX (x)dx,

where pX is the probability density function (pdf).

I The inner product in H is: 〈h1, h2〉 , EX{h1h2}.
4

Some additional definitions are given in the backup slides.
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The projection theorem (1/2)

Theorem

Let U be a closed subspace of an Hilbert space F and take f ∈ F .
We call

d(f ,U) , inf
u∈U
||f − u||, f ∈ F ,

the distance of f to U . Then there exists a unique element ũ ∈ U
for which

||f − ũ|| = d(f ,U).

U ũ = Π(f |U)

fF
f − ũ ∈ U⊥
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The projection theorem (2/2)

I f can be uniquely written as:

f = ũ + (f − ũ),

where ũ , Π(f |U) ∈ U and f − ũ ∈ U⊥.

I ũ is uniquely determined by the orthogonality constraint:

〈f − ũ, u〉 = 〈f − Π(f |U), u〉 = 0, ∀u ∈ U .

U ũ = Π(f |U)

fF
f − ũ ∈ U⊥
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The linear span

I A q-replicating Hilbert space Fq is obtained by the Cartesian
product of the q copies of F as Fq , F × · · · × F , then:

Fq 3 f = (f1, f2, · · · , fq)T , fi ∈ F .

I The inner product of Fq is induced by the one in F :

〈f, g〉 =
∑q

i=1
〈fi , gi 〉 .

I Linear span: Let u = (u1, · · · , uk)T be a column vector of k
elements of F . The linear span of the vector u, defined as:

V , {v|v = Au,A is any matrix in Rq×k},

is a finite-dimensional subspace of Fq.
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Projection onto a finite-dimensional subspace

V , {v|v = Au,A is any matrix in Rq×k}.

I If u1, . . . , uk are linearly independent in F , dim(V) = kq. 5

I The projection of a generic element f ∈ Fq onto the subspace
V is given by [9, A.2], [10, Sec. 2.4]:

Π(f|V) =
〈

f,uT
〉〈

u,uT
〉−1

u,

where [〈
f,uT

〉]
i ,j
, 〈fi , uj〉 ,

i = 1, . . . , q,
j = 1, . . . , k ,[〈

u,uT
〉]

i ,j
, 〈ui , uj〉 , i , j = 1, . . . , k.

5
The proof of this result is in the backup slides (see also [10, Sec. 2.4]).
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The vector-valued zero-mean functions

I Let (X ,F,PX ) be a probability space.

I Let Hq be the q-replicating Hilbert space [10, Ch. 2]:

Hq = H× · · · × H

=
{

h : X → Rq
∣∣∣EX{h} = 0,EX{hTh} <∞

}
,

I The induced inner product is:

〈h1,h2〉 , EX{hT
1 h2}.

I The covariance matrix of h ∈ Hq is:

CX (h) , EX{hhT}.
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Projection onto finite-dimensional subspaces

I Let u = (u1, · · · , uk)T be a column vector of k arbitrary
elements of H and let V be its linear span.

I The orthogonal projection of an arbitrary element h ∈ Hq

onto V is unique and it is given by [9, A.2], [10, Sec. 2.4]:

Π(h|V) = EX{huT}EX{uuT}−1u

= EX{huT}CX (u)−1u.

I Linear Minimum Mean Square Error (LMMSE) estimator:

1. MSE , ||h− Au||2 is minimized by Π(h|V), then
ĥLMMSE = EX{huT}CX (u)−1u.

2. The “orthogonality principle” is nothing but the Projection
Theorem.
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Score vectors as elements of Hr (1/2)

I Let us go back to the parametric model :

Pθ,η ,
{
pX (x|θ,η),θ ∈ Θ ⊆ Rq,η ∈ Γ ⊆ Rd

}
,

I θ ∈ Θ is the vector of the parameters of interest,
I η ∈ Γ is the vector of the (unknown) nuisance parameters,

I γ ,
(
θT ,ηT

)T ∈ Rr , r = q + d .
I p0(x) , pX (x|θ0,η0) is the “true” pdf.

I The score vector for the true parameter vector γ0 is:

sγ0 , ∇γ ln pX (x|γ0) =

(
∇θ ln pX (x|θ0,η0)
∇η ln pX (x|θ0,η0)

)
,

(
sθ0

sη0

)
I sθ0 is q × 1 the score vector of the parameters of interest,
I sη0 is d × 1 the nuisance score vector.
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Score vectors as elements of Hr (2/2)

I Under standard regularity conditions [16]:

E0 {sγ0} =

∫
X
∇γ ln pX (x|γ0)dP0(x)

=

∫
X

∇γpX (x|γ0)

p0(x)
p0(x)dx = ∇γ

∫
X
pX (x|γ0)dx = 0,

and E0

{
sTγ0

sγ0

}
<∞.

I Then, by definition6 of Hr :

Hr 3 sγ0 =

(
sθ0

sη0

)
⇒ sθ0 ∈ H

q, sη0 ∈ Hd .

6Hr =
{

h : X → Rr
∣∣∣E0{h} = 0, E0{hT h} <∞

}
.
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The efficient score vector

I The nuisance tangent space7 Tη0 is defined as the linear span
of sη0 in Hq [10, Ch. 3]:

Tη0 , {t|t = Asη0 ,A is any matrix in Rq×d} ⊂ Hq.

I Let us define the efficient score vector as [9, Ch. 2]:

s̄0 , sθ0 − Π(sθ0 |Tη0)

= sθ0 − E{sθ0sTη0
}I−1

η0η0
sη0 .

Tη0 Π(sθ0|Tη0)

sθ0

Hq

s̄0 � sθ0
− Π(sθ0|Tη0)

7
The geometrical intuition behind this terminology is given in the backup slides.
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Evaluation of the CRB using s̄0

I s̄0 is the residual of sθ0 after projecting it onto the nuisance
tangent space Tη0 .

I Let us define the efficient FIM as:

Ī(θ0|η0) , E0

{
s̄0s̄T0

}
.

I Through direct calculation, we get:

Ī(θ0|η0) = Iθ0θ0 − Iθ0η0I−1
η0η0

ITθ0η0
.

I The inverse of Ī(θ0|η0) is exactly the CRB(θ0|η0) previously
derived by means of the Matrix Inversion Lemma:[

E
{

s̄0s̄T0

}]−1
,
[̄
I(θ0|η0)

]−1
= CRB(θ0|η0).
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The three basic ingredients

I In summary, to derive the CRB(θ0|η0), we only need:

1. The Hilbert space Hq,

2. The nuisance tangent space Tη0 ⊂ Hq of the parametric model
Pθ,η at η0,

3. The projection operator onto Tη0 : Π(sθ0 |Tη0 ).

I Important fact: None of them require the finite dimensionality
of the nuisance parameters [7].

I This alternative way to calculate the CRB can be extended to
semiparametric models.

I To make this extension possible, we have to introduce the
concept of parametric submodel.
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Parametric submodels (1/3)

I Let us recall the semiparametric model:

Pθ,g , {pX (x|θ, g),θ ∈ Θ ⊆ Rq, g ∈ L} .

I The i-th parametric submodel8 of Pθ,g is defined as
[10, Sec. 4.2], [9, Sec. 3.1], [17,18,11], :

Pθ,νi = {pX (x|θ, νi (x,η)),θ ∈ Θ,η ∈ Γi} ,

where:

νi : Γi → L
η 7→ νi (·,η),

I The function νi ∈ L is a known function parametrized by a
vector of unknown parameters.

8
An explicit example of parametric submodel is given in the backup slides.
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Parametric submodels (2/3)

I Denote the “true semiparametric vector” and the related true
pdf as (θT

0 , g0)T and p0(x) , pX (x|θ0, g0), respectively.

I For every i ∈ I, the i-th parametric submodel :

Pθ,νi = {pX (x|θ, νi (x,η),θ ∈ Θ,η ∈ Γi} ,

has to satisfy the following three conditions [10, Sec. 4.2]:

C0) νi : Γi → L is a smooth parametric map,

C1) Pθ,νi ⊆ Pθ,g ,

C2) p0(x) ∈ Pθ,νi , i.e. there exists a vector (θT
0 ,η

T
0 )T such that

pX (x|θ0, νi (x,η0)) = pX (x|θ0, g0) , p0(x).
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Parametric submodels (3/3)

L
ν1

ν2
ν3

Pθ,g

Pθ,ν1

Pθ,ν2

Pθ,ν3

p0

Γ1
Γ2

Γ3

I The generalization to the semiparametric framework can be
done in two steps:

1. Exploit the obtained results in the set of (artificial) parametric
submodels {Pθ,νi}i∈I ,

2. “Take the limit” to generalize them in the infinite-dimensional
semiparametric framework.
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Semiparametric nuisance tangent space (1/2)

I For every parametric submodel:

Pθ,νi = {pX (x|θ, νi (x,η)),θ ∈ Θ,η ∈ Γi} ,

we have a relevant nuisance tangent space:

Tη0,i , {ti |ti = Aisη0,i : Ai is any matrix in Rq×di},

where sη0,i , ∇η ln pX (x|θ0, νi (x,η0)).

I The semiparametric nuisance tangent space is defined as:9

Tg0 ,
⋃

{Pθ,νi
}i∈I

Tη0,i ⊆ H
q.

9
The closure A of a set A is defined as the smallest closed set that contains A, or equivalently, as the set of

all elements in A together with all the limit points of A.
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Semiparametric nuisance tangent space (2/2)

I Recall that the Hilbert space Hq is a complete normed space
with norm:

||h1 − h2|| =
√
E0{(h1 − h2)T (h1 − h2)}, ∀h1,h2 ∈ Hq.

I The semiparametric nuisance tangent space Tg0 ⊆ Hq can be
expressed as [10, Sec. 4.4],[19],[18]: 10

Tg0 ,
{

h ∈ Hq|∀ε > 0,∃i ∈ I : ||h− Aisη0,i || < ε
}

I Unlike Tη0,i that has finite dimension, Tg0 is in general an
infinite-dimensional subspace of Hq.

10
A more explicit definition of the nuisance tangent space requires the notion of Hellinger differentiability

[19],[9, Sec. 3.2]. See also the backup slides.
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The projection operator Π(·|Tg0
)

I The existence and the uniqueness of the projection operator
Π(·|Tg0) is guaranteed by the Projection Theorem.

I The semiparametric efficient score vector for the
estimation of θ0 ∈ Θ in the presence of the nuisance function
g0 ∈ L is [9, Sec. 3.3]:

s̄0 , sθ0 − Π(sθ0 |Tg0).

Tg0 Π(sθ0|Tg0)

sθ0

Hq

s̄0 � sθ0
− Π(sθ0|Tg0)
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The Semiparametric CRB (SCRB) (1/2)

Theorem ([9, Sec. 3.4], [19], [10, Theo. 4.2], [18]):
A lower bound on the MSE of “any” 11 robust estimator of θ0 in
the presence of the nuisance function g0 ∈ L is given by:

SCRB(θ0|g0) = [̄I(θ0|g0)]−1,

where Ī(θ0|g0) , E0{s̄0s̄T0 } is the semiparametric FIM (SFIM) and:

s̄0 , sθ0 − Π(sθ0 |Tg0).

[10] J. M. Begun, W. J. Hall, W.-M. Huang, and J. A. Wellner, “Information and
asymptotic efficiency in parametric-nonparametric models”, The Annals of Statistics,
vol. 11, no. 2, pp. 432-452, 1983.

[9, Sec. 3.4] P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner, Effient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins University Press, 1993.

11
The class of estimators to which the SCRB applies is discussed ahead.
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The Semiparametric CRB (SCRB) (2/2)

I The expression of SCRB(θ0|g0) is formally equivalent to
CRB(θ0|η0) derived for finite-dimensional nuisance vectors.

I The Hilbert-space-based approach allows to handle both finite
and infinite-dimensional nuisance parameters.

I The SCRB(θ0|g0) is higher than any CRB(θ0|η0,i ) derived in
the i-th parametric submodel.

I A semiparametric model contains less information on θ0 than
any of its possible parametric submodel.
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A bound for any robust estimator

I The SCRB is a lower bound for the MSE of any Regular and
Asymptotically Linear (RAL) estimator [9, Sec. 2.2 and Ch.
7], [10, Ch.3], [20, Ch. 4] [21,18,22,23].

I All the robust M-, S-, L- estimators belong to this class [24]:

I It can be shown that every RAL estimator is:

1. Consistent: θ̂(x1, . . . , xM) , θ̂M −→
M→∞

θ0,

2. Asymptotically normal:
√
M(θ̂M − θ0) ∼

M→∞
N (0,Ξ(θ0, g0)).

I Consequently, the following inequality holds [9, Ch. 2 and 3]:

Ξ(θ0, g0) ≥ SCRB(θ0|g0).

I Note that efficient estimators may not exist [25].
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Evaluation of Π(·|Tg0
)

I The crucial step to evaluate SCRB(θ0|g0) is in determining
the semiparametric efficient score vector:

s̄0 , sθ0 − Π(sθ0 |Tg0).

I To this end, we need to:

1. Calculate sθ0 = ∇θ ln pX (x|θ0, g0) (easy task),

2. Evaluate the projection Π(sθ0 |Tg0 ) (difficult task).

I Two possible approaches:

1. Least Favourable Submodel (if it exists) 12,

2. Projection as a conditional expectation.

12
Some additional details are given in the backup slides.
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Projection and conditional expectation (1/3)

I We defined Hq as the Hilbert space of the q-dimensional
zero-mean function on the probability space (X ,F,PX ):

h ≡ h(x), x ∈ X ⊆ RN .

I Let f : RN → R be a measurable function. We define a
statistic V of the random vector x as:

V =d f (x), ∀x ∈ X .

I Let G(V ) ⊆ F be the sub-σ algebra generated by V . 13

I The set of the q-dim zero-mean functions on (X ,G(V ),PX )
is a closed linear subspace, say V, of Hq [26, Theo. 23.2].

13
Additional details are given in the backup slides.
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Projection and conditional expectation (2/3)

I Let r ∈ Hq be a zero-mean function of x ∈ X through the
function f , i.e.: 14

r ≡ r(f (x)) =d r(V ) ∈ V ⊆ Hq.

I Consequently, r ∈ Hq can be considered as a q-dimensional
function defined on (X ,G(V ),PX ) with G(V ) ⊆ F.

V

r1(f (x)) =d r1(V )

h1(x)
Hq

h2(x)h3(x)

r2(f (x)) =d r2(V )

14
The symbol “=d ” means “has the same distribution as”.
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Projection and conditional expectation (3/3)

I The conditional expectation E{h|V } is the unique element in
V, such that [26, Def. 23.3, Theo. 23.3]15:

〈h− E{h|V }, r〉 , E
{

(h− E{h|V })T r
}

= 0, ∀r ∈ V.

Given the Projection Theorem, the previous definition implies:

Π(·|V) = E{·|V }.

V r̃(V ) = E{h(x)|V }

h(x)

Hq

15
This definition is consistent with the classical one [26, Ch. 32]. See the proof in the backup slides.
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Spherically Symmetric (SS) distributions

I Let z ∈ RN be a real-valued random vector.

I Let O be the set of all unitary transformations:

O 3 O : RN → RN

z 7→ O(z) = Oz,

for any unitary matrix O, i.e OTO = OOT = I.

I Then, z is said to be SS-distributed if its distribution is
invariant to any unitary transformations O ∈ O, i.e.

z =d Oz.

I We indicate with S the class of all SS-distributions.
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Properties of the (SS) distributions (1/4)

Property P1 16

I The SS-distributed random vector z ∼ SS(g) has a pdf:

pZ (z) = 2−N/2g
(
||z||2

)
,

where G 3 g , is a function, called density generator and

G =

{
g : R+

0 → R+

∣∣∣∣∫ ∞
0

tN/2−1g(t)dt <∞
}
.

I The set of all SS pdfs can be described as:

S =
{
pZ |pZ (z) = 2−N/2g

(
||z||2

)
,∀g ∈ G

}
.

16
See [27] or [28, Ch. 3] for the proofs of these properties. A comprehensive list is also summarized in [29].
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Properties of the (SS) distributions (2/4)

Property P2

I Let sN , 2πN/2/Γ(N/2) be the surface area of the unit sphere
RSN in RN .

I The pdf of Q =d ||z||2, called 2nd-order modular variate, is:

pQ(q) = sN2−N/2−1qN/2−1g (q) .

I The pdf of R ,
√
Q =d ||z||, called modular variate, is:

pR(r) = sN2−N/2rN−1g
(
r2
)
.
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Properties of the (SS) distributions (3/4)

Property P3: Stochastic Representation Theorem

I Let u ∼ U(RSN) be a random vector uniformly distributed on
RSN , i.e. ||u|| = 1.

I If z ∈ RN is SS-distributed, i.e. z ∼ SS(g), then:

z =d

√
Qu =d Ru,

I Moreover, Q and u (or R and u) are independent.

I P2 and P3 imply that, not knowing the density generator g
has an impact only on the pdf of the r.v. R (or Q).
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Properties of the (SS) distributions (4/4)

Property P4: Invariant statistic

I By definition of SS distributions, || · || is an invariant statistic
since [30, Ch. 6]

||z|| =d ||Oz||,

for every unitary matrix O ∈ O.

I Moreover, given two SS-distributed r.v. z1 and z2, we have:

||z1|| =d ||z2|| ⇒ z1 =d Oz2, ∀O ∈ O.

I Then, the modular variate R =d ||z|| is a maximal invariant
statistic for the set of the SS-distributed random vectors.
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Tangent space and invariance

I Let A be a group of transformations from RN into itself:

A 3 α : RN → RN

z 7→ α(z),

I Suppose that P is a set of pdfs which are invariant with
respect to A, i.e.:

P =
{
pZ |pZ (α(z)) = pZ (z);∀α ∈ A, ∀z ∈ RN

}
.

I Then, the tangent space T of P is given by [9, App. 3]: 17

T =
{
h ∈ H|h(α(z)) = h(z), ∀α ∈ A,∀z ∈ RN

}
17

Remember that H =
{
h : X → R

∣∣∣EX {h} = 0, EX {|h|2} <∞
}

.
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Projection and invariance

If there exists an invariant statistic D for z ∼ pZ s.t.:

D =d D(α(z)), ∀α ∈ A,

then the projection operator on T can be calculated as [9, App. 3]:

Π(·|T ) = E{·|D}.

Example: SS distributions

I The tangent space TS is given by:

TS =
{
h ∈ H|h(||z||) = h(z), ∀z ∈ RN

}
,

I Π(·|TS) = E{·|R} where R =d ||z|| is the modular variate.
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Parametric group models (1/2)

I Let A be a group of parametric transformations from RN into
itself:

A = {α|α(·;θ) , αθ(·);θ ∈ Θ ⊆ Rq}.

I α−1
θ (·) defines the inverse of αθ(·),

I (αθ2 ◦ αθ1 )(·) , αθ2 (αθ1 (·)) denotes the composition,

I θe indicates the parameter vector that characterizes the
identity transformation αθe , s.t. αθe (·) = ·.

Example: Let us define θ , [µ, σ]T , then:

αθ(z) , µ+ σz ,

α−1
θ (z) = (z − µ)/σ, θe , [0, 1]T .
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Parametric group models (2/2)

I Let z ∈ RN be a random vector s.t. z ∼ pZ (z).

I The parametric group model, generated by the action of A on
z can be expressed as:

Pθ =
{
pX |pX (x|θ) = |J(α−1

θ )(x)|pZ (α−1
θ (x));θ ∈ Θ

}
,

where:

I [J(α−1
θ )(x)]i,j , ∂[α−1(x;θ)]i/∂θj is the Jacobian matrix of

the inverse transformation α−1
θ ,

I | · | defines the (absolute value of the) determinant of the
Jacobian matrix.
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Semiparametric group models (1/2)

I If pZ is allowed to vary in a function set L, we get a
semiparametric group model :

Pθ,pZ = {pX |pX (x|θ, pZ ) = |J(α−1
θ )(x)|pZ (α−1

θ (x));

θ ∈ Θ, pZ ∈ L} .

I The calculation of the projection operator can be greatly
simplified!

1. Evaluate the projection on the semiparametric nuisance
tangent space at the identity αθe .

2. “Translate” the projection in any other θ of the parameter
space Θ.
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Semiparametric group models (2/2)

I TpZ ,0(θe) ⊆ Hq: Semiparametric nuisance tangent space at
the identity θe .

I TpZ ,0(θ) ⊆ Hq: Semiparametric nuisance tangent space at a
generic θ ∈ Θ.

The projection operator on TpZ ,0(θ) can be obtained as [9, Sec.
4.2, Lemma 3]:

Π(·|TpZ ,0(θ)) = Π(· ◦ αθ|TpZ ,0(θe)) ◦ α−1
θ , ∀θ ∈ Θ.
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From SS to RES distributions (1/2)

I Let us define the parameter space Θ ⊆ Rq as:

Θ = {θ ∈ Rq|θ = [µT , vecs(Σ)T ]T ;µ ∈ RN ,Σ ∈MN}.

I We can define the group of parametric transformations A as:

A 3 αθ : RN → RN , ∀θ ∈ Θ

z 7→ αθ(z) = µ + Σ1/2z.

I The identity αθe is parametrized by θe = [0T , vecs(I)T ]T ,

I The inverse is simply given by:

α−1
θ (·) = Σ−1/2(· − µ).
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From SS to RES distributions (2/2)

I A random vector x ∈ RN is said to be RES-distributed if it
can be expressed as:

x = αθ(z) = µ + Σ1/2z =d µ +RΣ1/2u,

I z ∼ SS(g) is an SS-distributed random vector,

I u ∼ U(RSN) and R =
√
Q is the modular variate, s.t.:

Q =d ||z||2 = ||α−1
θ (x)||2 = (x− µ)TΣ−1(x− µ).

I RES distributions represent a semiparametric group model:

Pθ,g =
{
pX |pX (x|θ, g) = 2−N/2|Σ|−1/2g(||α−1

θ (x)||2);

θ ∈ Θ, g ∈ G} ,
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Evaluation of the SCRB for the RES class

p(x|θ0, g0) = 2−N/2|Σ0|−1/2g((x− µ0)TΣ−1
0 (x− µ0)),

θ0 = [µT
0 , vecs(Σ0)T ]T .

I Problem: Find the (Constrained) SCRB on the estimation of
the mean vector µ0 and of the scatter matrix Σ0 when the
density generator g0 is unknown.

I To avoid the ambiguity between Σ0 and g0, we put a
constraint on the scatter matrix:

c(Σ0) = 0.

I All the details can be found in [29].
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Evaluation of the SCRB for the RES class

Step A: Evaluation of the score vector sθ0

I By definition:

sθ0 = ∇θ ln pX (x|θ0, g0) =

(
sµ0

svecs(Σ0)

)
I Through direct calculation, we get:

sµ0 =d −2
√
Qψ0(Q)Σ

−1/2
0 u,

svecs(Σ0) =d −DT
N

(
2−1vec(Σ−1

0 )+

+Qψ0(Q)Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )

)
,

I ψ0(t) , d ln g0(t)/dt,

I Duplication matrix : DNvecs(A) = vec(A), ∀A symmetric.
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Evaluation of the SCRB for the RES class

Step B: Evaluation of the projection operator Π(sθ0 |Tg0)

I Due to the group structure underlying the RES class, Tg0

evaluated at the group identity θe is given by:

Tg0(θe) = {l|l = ha; h ∈ TS , a ∈ Rq} ;

where TS is the tangent space of the SS distributions:

TS =
{
h ∈ H|h(||x||) = h(x), ∀x ∈ RN

}
,

I Using the property of the semiparametric group model:

Π(sθ0 |Tg0(θ0)) = Π (sθ0 ◦ αθ0 |Tg0(θe)) ◦ α−1
θ0

= E {sθ0 ◦ αθ0 |R} ◦ α
−1
θ0
.
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Evaluation of the SCRB for the RES class

I Through direct calculation (see [29] for the details):

Π(sθ0 |Tg0) =

(
Π(sµ0 |Tg0)

Π(svecs(Σ0)|Tg0)

)
=d

(
0

−DT
N

(
1
2 + 1

NQψ0(Q)
)
vec(Σ−1

0 )

)
.

I The score function sµ0 of the mean value is orthogonal to the
nuisance tangent space Tg0 ,

I Not knowing the true g0 does not have any impact in the
(asymptotic) estimation performance of µ0 [21].
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Evaluation of the SCRB for the RES class

Step C: Evaluation of the semiparametric FIM Ī(θ0, g0)

I The efficient score vector s̄0 can then be expressed as:

s̄0 = sθ0 − Π(sθ0(x)|Tg0)

=d

 −2
√
Qψ0(Q)Σ

−1/2
0 u

−DT
NQψ0(Q)

(
Σ
−1/2
0 ⊗Σ

−1/2
0 vec(uuT )− vec(Σ−1

0 )
N

)  .

I Finally the SFIM Ī(θ0|g0) can be obtained as:

Ī(θ0|g0) = E0{s̄0s̄T0 }

=

(
C0(s̄µ0) 0

0T C0(s̄vecs(Σ0))

)
,

where C0(h) , E0{hhT}, ∀h ∈ Hq.
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Evaluation of the SCRB for the RES class

I Through direct calculation of the expectation, we get:

C0(s̄µ0) =
4E{Qψ0(Q)2}

N
Σ−1

0 ,

and

C0(s̄vecs(Σ0)) =
2E{Q2ψ0(Q)2}

N(N + 2)
×

×DT
N

(
Σ−1

0 ⊗Σ−1
0 −

1

N
vec(Σ−1

0 )vec(Σ−1
0 )T

)
DN .

I The block-diagonal structure of Ī(θ0|g0) implies that the
estimates of vector µ0 and Σ0 are asymptotically decoupled.

I µ0 can be substituted with any consistent estimator without
affecting the asymptotic performance of the scatter matrix
estimator.
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Evaluation of the SCRB for the RES class

Step D: Evaluation of the constrained SCRB(θ0|g0)

I To avoid the scale-ambiguity problem, we need to put a
constraint on Σ0, i.e. c(Σ0) = 0.

I Let Jc(Σ0) be the Jacobian matrix of the constraint, then
there exists a matrix U s.t. [31,32]:

Jc(Σ0)U = 0, UTU = I.

I The constrained SCRB(θ0|g0) can be expressed as:

CSCRB(θ0|g0) =(
N

4E{Qψ0(Q)2}Σ0 0

0T U
(
UTC0(s̄vecs(Σ0))U

)−1
UT

)
.
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Numerical results

I Let {xm}Mm=1 be a set of M i.i.d. RES-distributed data, s.t.:

xm ∼ RESN(x;µ0,Σ0, g0), m = 1, . . . ,M.

I Let us define {x̄m}Mm=1 as the set of M vectors such that:

x̄m = xm − µ̂, m = 1, . . . ,M,

and µ̂ is the sample mean estimator, i.e.

µ̂ , M−1∑M
m=1 xm.

I µ̂ is a consistent and unbiased estimator.
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Three “semiparametric” estimators (1/3)

I The efficiency w.r.t. the CSCRB of three estimators is
investigated:
I the constrained Sample Covariance matrix (CSCM),
I the constrained Tyler’s estimator (C-Tyler),
I the constrained Huber’s estimator (C-Hub).

I We impose a constraint on the trace: tr(Σ0) = N.

I The CSCM is given by:
Σ̂SCM ,

1

M

M∑
m=1

x̄mx̄Tm

Σ̂CSCM ,
N

tr(Σ̂SCM)
Σ̂SCM

,
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Three “semiparametric” estimators (2/3)

I The C-Tyler and the C-Hub are given by the convergence
point of the following recursion:

S
(k+1)
T =

1

M

M∑
m=1

ϕ(t(k))x̄mx̄Tm

Σ̂
(k+1)
T = NS

(k+1)
T /tr(S

(k+1)
T )

,

where t(k) = x̄Tm(Σ̂
(k)
T )−1x̄m and the starting point is Σ̂

(0)
T = I.

I The weight function ϕ(t) for Tyler’s estimator is [33,8]:

ϕTyler (t) = N/t,
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Three “semiparametric” estimators (3/3)

I The weight function for Huber’s estimator is given by [24,34]

ϕHub(t) =

{
1/b t 6 δ2

δ2/(tb) t > δ2 ,

and
I δ = Fχ2

N
(u), 18

I b = Fχ2
N+2

(δ2) + δ2(1− Fχ2
N

(δ2))/N [8], [34].

I u is a tuning parameter that controls the trade-off between
robustness and efficiency.

I For u → 1 Huber’s estimator is equal to the SCM, while for
u → 0 Huber’s estimator tends to Tyler’s estimator.

18
Fχ2

N (·) indicates the distribution of a chi-squared random variable with N degrees of freedom.
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Simulation setup

I Two different “true” distributions are considered:

1. The t-distribution,
2. The Generalized Gaussian (GG) distribution.

I Simulation parameters
I [Σ0]i,j = ρ|i−j|, ρ = 0.8 i , j = 1, . . . ,N. Moreover N = 8,
I The data power is chosen to be σ2

X = EQ{Q}/N = 4,
I The data mean value is chosen to be [µ0]i = 1, i = 1, . . . ,N,
I The number of the available i.i.d. data vectors is

M = 3N = 24,
I The tuning parameter u of Huber’s estimator u = 0.5.

I The MSE of the scatter matrix estimators is compared with:

1. The CSCRB(θ0|g0) previously derived,
2. The classical constrained CRB, i.e. CCRB(θ0), evaluated

under perfect knowledge of the density generator [35,36].
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t-distribution - Mean vector

εµ0 , ||E{(µ̂− µ0)(µ̂− µ0)T}||F , εCSCRB,µ0 , ||[CSCRB(θ0|g0)]µ0 ||F .
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I For the estimation of µ0, CSCRB coincides with CCRB.

I When the shape parameter λ goes to infinity, the
t-distribution tends to a Gaussian one.

I Then, for λ→∞, the sample mean tends to be efficient.
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t-distribution - Scatter matrix

εα , ||E{(vecs(Σ̂α)− vecs(Σ0))(vecs(Σ̂α)− vecs(Σ0))T}||F ,

εCSCRB,Σ0 , ||[CSCRB(θ0|g0)]Σ0 ||F , εCCRB,Σ0 , ||[CCRB(θ0)]Σ0 ||F .
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I The CSCM tends to be efficient w.r.t. the CSCRB as λ→∞.

I Both C-Tyler’s and C-Huber’s estimators are not efficient with
respect to the CSCRB.
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GG distribution - Mean vector

εµ0 , ||E{(µ̂− µ0)(µ̂− µ0)T}||F , εCSCRB,µ0 , ||[CSCRB(θ0|g0)]µ0 ||F .
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I When s = 1, the GG distribution is exactly Gaussian one.

I Hence, for s = 1, the sample mean is an efficient estimator.



74

GG distribution - Scatter matrix

εα , ||E{(vecs(Σ̂α)− vecs(Σ0))(vecs(Σ̂α)− vecs(Σ0))T}||F ,

εCSCRB,Σ0 , ||[CSCRB(θ0|g0)]Σ0 ||F , εCCRB,Σ0 , ||[CCRB(θ0)]Σ0 ||F .
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I The lack of knowledge of the particular density generator has
an higher impact when the tails of the true distribution
become lighter [37].
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The SCRB for the CES class

I The derivation of:19

I SCRB for the estimation of the mean vector and of the scatter
matrix in CES distributed random vectors,

I The Semiparametric Slepian-Bangs formula,

I The Semiparametric Stochastic CRB (SSCRB),

can be found in [38]:

S. Fortunati, F. Gini, M. S. Greco, A. M. Zoubir, and M. Rangaswamy,
“Semiparametric CRB and Slepian-Bangs formulas for Complex Elliptically
Symmetric distributions,” accepted in IEEE Transactions on Signal Processing,
2019. [Online]. Available: http://arxiv.org/abs/1902.09541.

I The application of these theoretical results to Direction of Arrival
(DOA) estimation problems is discussed in [39]:

S. Fortunati, F. Gini, M. S. Greco, “Semiparametric stochastic CRB for DOA
estimation in elliptical data model,” in 2019 27th European Signal Processing
Conference, EUSIPCO, Sep. 2019.

19
Additional details are given in the backup slides.
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Conclusions

I We provided a fresh look to the Semiparametric Cramér-Rao
Bound (SCRB) by showing its relations with the classical
(parametric) CRB [7].

I The link between parametric and semiparametric framework is
given by the Hilbert-space geometry underling any inference
problem.

I The application of the SCRB to the scatter matrix estimation
in RES and CES distributed data has been discussed.

I Future works will explore possible applications of the
semiparametric inference to well-known signal processing
problems, in particular the semiparametric detection.
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σ-algebras and measures

I Let X be some set and let 2X represent its power set. Then a
subset F ⊆ 2X is called a σ-algebra if (see e.g. [26, Ch. 2]):

1. X ∈ F,

2. If A ∈ X is in F, then so is its complement, X \ A,

3. If {Ai}i∈N ∈ F, then so
∞⋃
i=1

Ai ∈ F.

I A function µ : F→ [0,∞) is called a measure if:

1. µ(∅) = 0 (Null empty set),

2. For all countable collections {Ai}∞i=1 of pairwise disjoint sets in

F, µ

(∞⋃
i=1

Ai

)
=
∑∞

i=1 µ(Ai ) (Countable additivity).

I The couple (X ,F) is a measurable space, while the triplet
(X ,F, µ) is a measure space.
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Probability spaces and random variables

I A probability space is a measure space (Ω,D,P) where:

1. Ω is the sample space that represents the set of all possible
outcomes of a random experiment,

2. D is the σ-algebra on Ω,

3. P is a probability measure, that is a measure P : D→ [0, 1]
satisfying P(Ω) = 1.

I Let (Ω,D,P) be a probability space and (X ,F) a measurable
space.

A random variable (r.v.) X is a measurable function X : Ω→ X ,
that is for every subset A ∈ F, its preimage

X−1(A) , {ω ∈ Ω|X (ω) ∈ A} ,

is an element of the σ-algebra D, i.e. X−1(B) ∈ D.
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Distribution and density functions

I A r.v. allows us to “transport” the probability structure,
defined in the abstract space (Ω,D,P), in (X ,F).

I Specifically, a new probability measure can be defined on
(X ,F) as follows:

PX (A) , P ({ω ∈ Ω|X (ω) ∈ A}) = P(X−1(A)), A ∈ F.

I Consequently, the triplet (X ,F,PX ) is a probability space.

I Example: If X ≡ R and F is the Borel σ-algebra on R, then
PX is the distribution of X [26, Ch. 11].

I The density pX of X is a measurable function satisfying:

PX ((−∞, x ]) =

∫ x

−∞
pX (a)da, ∀x ∈ R.
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Sub-σ-algebra generated by a transformation

I Let (X ,F,PX ) be a probability space as previously defined.

I Let T : (X ,F)→ (Y,L) a measurable transformation on X .

I The preimage of T , i.e.:

G(T ) ,
{
G ∈ F|G = T−1(A), A ∈ L

}
may be a coarser subset of F!

I It can be shown that G(T ) is a σ-algebra [26, Theo. 8.1] and,
clearly, G(T ) ⊆ F.

I G(T ) is then indicated as the sub-σ-algebra generated by the
transformation T [26, Def. 23.3].
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Proof: Finite-dimensionality of the linear span

Theorem

Let u = (u1, · · · , uk)T be a column vector of k arbitrary elements
of an infinite-dimensional Hilbert space F . The linear span of u,
defined as:

V , {v|v = Au,A is any matrix in Rq×k},

is a finite-dimensional subspace of Fq. Moreover, if u1, · · · , uk are
linearly independent in F , then dim(V) = kq.

Proof
I Assume that the entries of u are linearly independent.

I The dimension of a (finite-dimensional) space is equal to the
minimum number of linearly independent vectors required to
span it.
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Proof: Finite-dimensionality of the linear span

I Then if V has dimension qk, there must exist qk linearly
independent q-dimensional vectors such that
V = span{v11, . . . , v1k , vq1, . . . , vq·k}.

I Each vector vij , i = 1, . . . , q; j = 1, . . . , k can be constructed
by putting all except the i-th entry equal to 0 and the i-th
entry equal to uj ∈ F for j = 1, . . . , k, i.e:

v11 . . . v1k v21 . . . v2k

q q q q q q
v1

0
...
0

 . . .


vk
0
...
0




0
v1
...
0

 . . .


0
vk
...
0


. . .

I By visual inspection, it is immediate to verify that they are
linearly independent and this conclude the proof.
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Parametric submodels of the CES model (1/3)

I A CES (zero-mean) random vector x ∈ CN admits a pdf [8]:

pX (x;Σ) = cN,g |Σ|−1g(xHΣ−1x) , CESN(x;Σ, g),

I G 3 g : R+
0 → R+ is the density generator and

G ,
{
g : R+

0 → R+|
∫∞

0 tN−1g(t)dt <∞
}

I The set of all CES pdfs is a semiparametric model of the form:

PΣ,g , {pX |pX (x|Σ, g),Σ ∈MN , g ∈ G} .

I How can we build a parametric submodel of PΣ,g?
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Parametric submodels of the CES model (2/3)

I The set of all the density generator G is a convex set!

Proof

For every g0, g1 ∈ G and for every η ∈ [0, 1], we have that:

1. ηg1(t) + (1− η)g0(t) is a function of t , xHΣ−1x,

2. By linearity,
∫∞

0
tN−1[ηg1(t) + (1− η)g0(t)]dt <∞,

then ηg1 + (1− η)g0 ∈ G and consequently G is a convex set.

I Then it is immediate to verify that:

CESN(x;Σ, g0) = CESN(x;Σ, ηg1 + (1− η)g0)

= ηCESN(x;Σ, g1) + (1− η)CESN(x;Σ, g0).

I PΣ,g is a convex set as well!
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Parametric submodels of the CES model (3/3)

I Let us define a smooth parametric map as:

νi : [0, 1]→ G
η 7→ νi (t, η) , ηgi (t) + (1− η)g0(t),

where gi is a generic density generator while g0 is the true one.

I The relevant i-th parametric submodel is then given by:

PΣ,νηi = {pX |pX (x|Σ, ηgi + (1− η)g0),Σ ∈MN , η ∈ [0, 1]} .

I It is immediate to verify that this submodel satisfies the
conditions C0, C1 and C2 given in slide 32.

I In particular, Condition C2 is verified by choosing η = 0.
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Hellinger differentiability

I Let pX (x|θ) be a parametric pdf with θ ∈ Θ ⊂ Rd .

I We indicate with uθ(x) the following parametric map:

uθ : Θ→ L2

θ 7→ uθ(x) ,
√
pX (x|θ),

I uθ is Hellinger (Fréchet) differentiable in θ0 if there exists a
vector u̇θ0 ≡ u̇θ0(x) such that:

||uθ0+h − uθ0 − u̇T
θ0

h|| = o(
∑

i h
2
i ), h→ 0,

where ||uθ||2 = 〈uθ, uθ〉 =
∫
u2
θ(x)dx.

I u̇θ0 ≡ u̇θ0(x) is the Hellinger derivative of uθ in θ0.
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A geometrical intuition (1/4)

I Since uθ(x) ,
√
pX (x|θ), we have that:

||uθ||2 = 〈uθ, uθ〉 =

∫
pX (x|θ)dx = 1, ∀θ ∈ Θ.

I uθ can be interpreted as a differentiable map between Θ and
(a subset of) the surface S(L2) of the unit sphere in L2.

I Given a point on S(L2), say uθ0 , the tangent space S ⊆ L2 of
S0 at uθ0 is defined by the orthogonality condition:

〈r , uθ0〉 = 0 ⇔ r ∈ S.

I Note that the tangent space S0 is a subset of L2, while
previously we defined it as a subset of H.20

20
Remember that H =

{
h : X → R

∣∣∣EX {h} = 0, EX {|h|2} <∞
}

.
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A geometrical intuition (2/4)

θ0
θ1

θ2

θ4

Θ

uθ0

uθ1

uθ2

uθ3

S r1

r2
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A geometrical intuition (3/4)

I Are the two definition consistent?

I Let us define the (locally) one-to-one transformation:

H0 : S → H

r 7→ H0(r) ,
2r

uθ0

= h.

I Then, we have:

r ∈ S ⇒ 〈r , uθ0〉 =

∫
r(x)uθ0(x)dx = 0

⇒ 2−1

∫
h(x)u2

θ0
(x) = 2−1

∫
h(x)p(x|θ0)dx = 0

⇒ EX{h} = 0⇒ h ∈ H.
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A geometrical intuition (4/4)

I The vice-versa is as follows:

h ∈ H ⇒ EX{h} =

∫
h(x)p(x|θ0)dx = 0

⇒ 2

∫
r(x)u−1

θ0
(x)p(x|θ0)dx = 2

∫
r(x)uθ0(x)dx = 0

⇒ 〈r , uθ0〉 = 0⇒ r ∈ S.

Then the two definition are consistent [9, Sec. 3.1, Prep. 3]:

〈r , uθ0〉 = 0, ∀r ∈ S ⇔ EX{h} = 0, ∀h ∈ H.
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Hellinger derivative and score vector

I Recall that the score vector of pX (x|θ) in θ0 is defined as:

sθ0 , ∇θ ln pX (x|θ0).

I If for all θ ∈ Θ ⊆ Rq [9, Sec. 2.1, Prep. 1]:
I pX (x|θ) is continuously differentiable in θ for almost all x,

I
(∑

i [sθ0 ]2
i

)1/2

∈ L2(P0),

I The FIM I(θ) ,
∫

sθ(x)sTθ (x)pX (x|θ)dx is non-singular and
continuous in θ,

then [9, Sec. 2.1], we have that:

u̇θ0 =
1

2
uθ0sθ0 , u̇θ0 ∈ S

q, sθ0 ∈ H
q.
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The Semiparametric CRB (SCRB)

sθ0

Hq

s̄0 � sθ0
− Π(sθ0|Tg0)

Π(sθ0|Tg0)

Tg0

s̄0,i � sθ0
− Π(sθ0|Tη0,i)

Tη0,i

Π(sθ0|Tη0,i)

Tη0,i ⊆ Tg0 ,∀i ∈ I ⇒ ||s̄0,i || ≥ ||s̄0||, ∀i ∈ I
⇒ E0{s̄0,i s̄

T
0,i} ≥ E0{s̄0s̄T0 } , Ī(θ0|g0)
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The Least Favourable Submodel (1/2)

I The Least Favourable Submodel (LFS) (if it exists) is the ī -th
parametric submodel of Pθ,g s.t.:

sup
{Pθ,νi}

[
E0{s̄0,i s̄

T
0,i}
]−1

= max
{Pθ,νi}

[
E0{s̄0,i s̄

T
0,i}
]−1

= Ī(θ0|νī )
−1,

I Let us define as Least Favourable Direction (LFD) the score
vector [9, Sec. 3.1], [11, Sec. 2.2]:

sη0,ī
(x) = ∇η ln pX (x|γ0, νī (x,η0)),

I Then, as shown previously, for the parametric case:

Π(sθ0 |Tη0,ī
) = E0{sθ0sTη0,ī

}C0(sη0,ī
)−1sη0,ī

.
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The Least Favourable Submodel (2/2)

I The existence of a LFS depends on the “level of richness” of
the set of the parametric submodels {Pθ,νi}i∈I .

I Unfortunately, the existence of a LFS needs to be verified on a
case-by-case basis.

I Moreover, if it exists, figuring out which such LFS is, is not an
easy task (see [11] for some hints on this).

I We refer to [9] for an exhaustive list of semiparametric models
that admits a LFS expressible in “closed-form”.
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Conditional expectation: a remark (1/2)

I Let h ≡ h(X ) be a function of the random variable (r.v.) X .

I We defined the conditional expectation as E{h(X )|Y } as the
unique function of the r.v. Y such that:

E{[h(X )− E{h(X )|Y }]Y } = 0.

I The explicit “operative definition” of E{h(X )|Y } is:

E{h(X )|Y } ,
∫
X
h(x)pX |Y (x |y)dx

=

∫
X
h(x)

pX ,Y (x , y)

pY (y)
dx ,

where pX ,Y is the joint pdf of X and Y , pX |Y is the
conditional pdf of X given Y and pY is the pdf of Y .
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Conditional expectation: a remark (2/2)

I Are the two definitions consistent?

E{[h(X )− E{h(X )|Y }]Y } = 0⇒∫
X ,Y

[h(X )− E{h(X )|Y = y}]pX ,Y (x , y)dxdy = 0

∫
X ,Y

h(x)pX ,Y (x , y)dxdy

=

∫
X ,Y

E{h(X )|Y = y}pX ,Y (x , y)dxdy

=

∫
Y
E{h(X )|Y = y}pY (y)dy

=

∫
Y

[∫
X
h(x)

pX ,Y (x , y)

pY (y)
dx

]
pY (y)dy

=

∫
X ,Y

h(x)pX ,Y (x , y)dxdy . �
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From RES to CES distributions (1/3)

Definition ([40], [28], [8] and [41, Ch. 4])

I Let xR ∈ RN and xI ∈ RN be two real random vectors.

I z , xR + jxI ∈ CN is said to be CES-distributed with mean
vector µ and scatter matrix Σ:

µ = µR + jµI ∈ CN Σ = C1 + jC2 ∈ CN×N ,

iff x̃ , (xTR , x
T
I )T ∈ R2N is RES-distributed with mean vector

µ̃ = (µT
R ,µ

T
I )T and scatter matrix Σ̃ satisfying:

Σ̃ =
1

2

(
C1 −C2

C2 C1

)
,

where C1 is symmetric and C2 is skew-symmetric.
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From RES to CES distributions (2/3)

I Let x̃ ∼ RES2N(x̃; µ̃, Σ̃, g) be a RES-distributed random
vector.

I When the scatter matrix Σ̃ has full rank, we have that:

RES2N(x̃; µ̃, Σ̃, g) , pX̃ (x̃; µ̃, Σ̃, g)

= 2−(2N)/2|Σ̃|−1/2g
(

(x̃− µ̃)T Σ̃−1(x̃− µ̃)T
)

= |Σ|−1g
(

2(z− µ)HΣ−1(z− µ)
)

= pZ (z;µ,Σ, h) , CESN(z;µ,Σ, h),

where h(t) , g(2t).

I The functional form of the density generator remains
unchanged except for the scaling factor 2 of its argument.
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From RES to CES distributions (2/3)

I There exists a one-to-one mapping between a subset of the
RES distributions and the (circular) CES distributions.

I The semiparametric theory already developed for the RES
class holds true for the CES class as well.

I In particular, CES distributions are a semiparametric group
model generated by the set of Complex Spherically Symmetric
(CSS) distributions [28, Sec. 3.5] through the action of:

α(µ,Σ) : CN → CN , ∀µ,Σ

CSS(g) ∼z 7→ α(µ,Σ)(z) = µ + Σ1/2z.
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The SCRB for the CES class

I The steps to derive the SCRB for the CES class follow exactly
the ones already discussed for the RES one.

I Difference: the mean vector µ and the scatter matrix Σ are
complex quantities!

I The Wirtinger or CR -calculus has to be used to evaluate the
derivatives [42,43,44,45,46,47,48,49].

I All the details can be found in [38].
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Slepian-Bangs (SB) formula

I Introduced by Slepian and Bangs in [50] and [51], the SB
formula has been extensively used for many years in array
processing.

I The “classic” SB formula is a compact expression of the
Fisher Information Matrix (FIM) for parameter estimation
under a Gaussian data model [13, Appendix 3C].

I Specifically:

I θ ∈ Θ ⊆ Rd : deterministic parameter vector,
I z ∼ CN(µ(θ),Σ(θ)): complex Gaussian random vector.

I Then the SB formula provides us with a closed-form
expression of the FIM for the estimation of θ ∈ Θ.
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Semiparametric Slepian-Bangs (SSB) formula

I Generalizations to:

1. Non-circular complex Gaussian distributions [52],

2. CES distributions [36],

3. Non-circular CES distributions [53],

4. Model misspecification under Gaussianity assumption [1],

5. Model misspecification under CES assumption [54],

6. Semiparametric model under CES assumption [38].

I Let CN 3 z ∼ CESN(µ(θ),Σ(θ), h) be a CES-distributed
random vector parameterized by θ ∈ Θ ⊆ Rd .

I The semiparametric SB (SSB) formula in [38] provides the
efficient FIM for the estimation of θ in the presence of an
unknown, nuisance density generator h ∈ G.
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Semiparametric Stochastic CRB (SSCRB)

I Assume to have an array of N sensors and K narrowband
sources impinging on the array from {ν1, . . . , νK} directions.

I Data snapshots zm ∼ CESN(z; 0,Σ(ν,Γ, σ2), h0), ∀m whose
density generator h0 ∈ Ḡ is unknown and [55]:

Σ ≡ Σ(ν,Γ, σ2) = A(ν)ΓA(ν)H + σ2IN .

I The SSCRB(ν0|ζ0, σ
2
0, h0) [38,39] generalizes the classical,

Gaussian-based, SCRB [56,57] since:

1. The Gaussianity assumption is replaced by the more general
CES assumption,

2. The additional infinite-dimensional nuisace parameter h0 is
taken into account.
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