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Outline – Part I: The Misspecified CRB
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Why study lower bounds (LBs)?
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 Lower Bounds (LBs) provide a benchmark of

comparison for the performance of any unbiased

estimator.

 If the performance of a certain estimator achieves a

relevant LB, then it is established that no other

unbiased estimators can do better.

 A LB is said to be tight if it reasonably predicts the

performance of the Maximum Likelihood (ML)

estimator.

 The Cramér-Rao Bound (CRB) is an asymptotically

tight bound for any unbiased estimator.



Model misspecification (1/2)

 Classical “matched” assumption: the true data

model and the model assumed to derive the estimation

algorithm are the same, i.e. the model is correctly

specified.

 All the results on the ML estimator and the CRB rely on

this implicit assumption.

 However, much evidence from engineering practice

shows that this assumption is often violated.

 Model misspecification: the assumed data model (i.e.

the data pdf) differs from the true model.
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Model misspecification (2/2)

 There are two main reasons for model misspecification:

1. An imperfect knowledge of the true data model

that leads to a wrong specification of the data pdf.

2. The true data model is known but it is too involved

to pursue the optimal “matched” estimator.

 One may be forced (scenario 1) or may prefer (scenario 2)

to derive an estimator by assuming a simpler but

misspecified data model.

 This suboptimal procedure may lead to some degradation

in the overall system performance.
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Misspecified Lower Bounds (MLBs)

 Assessing the impact of model misspecification on

the estimation performance is crucial to guarantee the

reliability of the (mismatched) estimator.

 Misspecified LBs allow the assumed and true

models to differ, yet establishing performance limits

on estimation error covariance.

 Misspecified LBs indicate how the model mis-

specification affects estimation performance.
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Some history and recent applications (1/3)

 Properties of the Mismatched ML estimator: Huber [1]

(1967), Akaike [2] (1972) and White [3] (1982).

 Generalization to the Bayesian framework: Berk [5]

(1966), Bunke and Milhaud [6] (1998), Richmond and

Basu [7] (2016).

 Cramér-Rao inequality under model misspecification:

Vuong [4] (1986), Richmond and Horowitz [8] (2015),

S. Fortunati, F. Gini, M. S. Greco [11] (2016).

 A tutorial introduction to the Misspecified CRB has been

proposed in:
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S. Fortunati, F. Gini, M. S. Greco and C. D. Richmond, “Performance Bounds for
Parameter Estimation under Misspecified Models: Fundamental Findings and
Applications,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 142-157, Nov. 2017.



 Recent applications of misspecified LBs:

1. Direction of Arrivals estimation in sensor arrays [8]

and MIMO radars [9].

2. Covariance matrix estimation in non-Gaussian data

([10], [11], [12] and [23]).

3. Radar-communication systems coexistence [7].

4. Waveform parameter estimation in the presence of

uncertainty in the propagation model [13].

5. Time of Arrivals (ToA) estimation problem for UWB

signals in the presence of interferences [14].

Some history and recent applications (2/3)
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6. Sparse Bayesian estimation [27].

7. Spectral estimation [28].

8. Estimation of hybrid sinusoidal FM-PPS signals [29].

Some history and recent applications (3/3)
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 Let be an N-dimensional measurement vector.

 Let its true probability density function (pdf)

belonging to a possibly non-parametric model .

 To characterize the statistical behavior of xm, we adopt a

parametric pdf, say with .

 The assumed pdf is implicitly assumed to belong

to a parametric model:

Description of a misspecified problem (1/3)

N

m
∈x ℂ

( )
X m

p ∈x P

P

( | )
X m

f x θ d∈Θ ⊂θ ℝ

( | )
X m

f x θ

{ }( | ), d

X X m
f f= ∈Θ ⊂x θ θ ℝF
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 The classical “matched” estimation theory requires the

existence of a parameter vector such that:

 If this assumption is violated, the model is misspecified.

Description of a misspecified problem (2/3)

∈Θθ

( ) ( | )X m X mp f=x x θ or, equivalently, ( )
X m

p ∈x F
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Model misspecification:

differs from            for every        .( )
X m

p x ∈Θθ( | )X mf x θ

( ) ( | ),
X m X m

p f≠ ∀ ∈Θx x θ θ → ⊄P F



 Suppose to collect M independent, identically distributed

(i.i.d.) N-dimensional measurement vectors:

 Due to the independence assumption, the true joint pdf

of the dataset x is:

 The assumed joint pdf of the dataset x is:

Description of a misspecified problem (3/3)

{ } ( )
1
, , 1, ,

M

m m X mm
p m M

=
= =x x x x∼ …

1
( ) ( )

M

X X mm
p p

=
= ∏x x

1
( | ) ( | )

M

X X mm
f f

=
= ∏x θ x θ
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 This misspecified scenario raises two main questions:

1. Is it still possible to derive LBs on the error

covariance of any mismatched estimator of the

parameter vector θ?

2. How will the classical statistical properties of an

estimator, e.g. unbiasedness, consistency and

efficiency, change in this misspecified model

framework?

 The Misspecified Cramér-Rao Bound (MCRB)

provides answers to these questions.

Two fundamental questions
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 As for the classical CRB, in order to guarantee the

existence of the MCRB, some regularity conditions need

to be imposed.

 Specifically, the assumed parametric model has to be

regular with respect to (wrt) the true one .

 Among the rather technical assumptions that has to

satisfy to be regular wrt , the most important is:

 Existence and uniqueness of the pseudo-true 

parameter vector θ0                                                                    .

Regular models

F

P

F

P
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 If is regular wrt , then there exist a unique interior

point θ0 of Θ, such that:

where Ep{⋅} is the expectation operator wrt the true pdf

and

is the Kullback-Leibler divergence (KLD) between the

true pdf and the assumed pdf.

The pseudo-true parameter vector

F P

( ){ }{ } ( ){ }0 arg min ln | arg min
p X m X X

E f D p f
∈Θ ∈Θ

− =
θ θ

θ x θ≜

( )
X m
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( ) ( )
ln ( )

( | )
X m

X X X m m

X m

p
D p f p d
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≜
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 The vector θ0 is the point the minimizes the KLD between

the true pdf and the assumed pdf .

 Let be the matrix whose entries are given by:

( )
X m

p x ( | )
X m

f x θ

( )
0

0

2

ln |p X m
ij

i j

E f
θ θ

=

 ∂      ∂ ∂  
θ

θ θ

A x θ≜

0θ
A

If     is regular wrt , then the matrix      is non singularF P
0θ

A
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 In the matrix we can recognize a sort of generalization

of the Fisher Information Matrix (FIM).

0θ
A

Generalization of the FIM



 If the model is misspecified, i.e. it does not exists a

parameter vector such that ,

then:

 The second generalization of the FIM is given by:

Another generalization of the FIM

( ) ( )
0

0 0

ln | ln |
.X m X m

p
ij

i j

f f
E

θ θ= =

 ∂ ∂   ⋅   ∂ ∂  
θ

θ θ θ θ

x θ x θ
B ≜

0 0
≠ −θ θB A

( ) ( | )
X m X m

p f=x x θ∈Θθ
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is an MS-unbiased estimator iff:

 The Misspecified (MS)-unbiasedness property generalizes

the classical notion of unbiased estimators.

 In the misspecified model framework, unbiasedness is

defined wrt the pseudo-true parameter vector θ0.

 Let be the available dataset and let be an

estimator derived by assuming the misspecified model .

The MS-unbiasedness property

{ }
1

M

m m=
=x x ˆ( )θ x

ˆ( )θ x

{ } 0
ˆ ˆ( ) ( ) ( )p XE p d= =θ x θ x x x θ

F
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 Let be a misspecified parametric model that is regular

wrt a true model .

The Misspecified Cramér-Rao Bound (1/2) 

Theorem 1 (Vuong 1986): Let be an MS-unbiased

estimator derived under the misspecified model from a

dataset . Then, for every possible :

ˆ( )θ x

F

P

F

( )
X m

p ∈x P

( ) ( )
0 0 0

1 1
0 0

1ˆ( ), MCRB
p
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− −≥ θ θ θC θ x θ A B A θ≜

( ) ( )( ){ }0 0 0
ˆ ˆ ˆ( ), ( ) ( )

T

p p
E − −C θ x θ θ x θ θ x θ≜

where

is the error covariance matrix of the mismatched estimator.
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1

M

m m=
=x x

20
[4] Q. H. Vuong, “Cramér-Rao bounds for misspecified models”, Working paper

652, Division of the Humanities and Social Sciences , Caltech, October 1986.



 The MCRB is a local lower bound (LB) on the error

variance of any MS-unbiased estimator of the pseudo-

true parameter vector θ0.

 MCRB for constrained estimation problem [20]:

 Extension to complex parameters [21]:

The Misspecified Cramér-Rao Bound (2/2) 
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S. Fortunati, F. Gini, M. S. Greco, “The Constrained Misspecified Cramér-Rao
Bound,” IEEE Signal Process. Letters, Vol. 23, No. 5, pp. 718-721, May 2016.

S. Fortunati, “Misspecified Cramér-Rao Bounds for Complex Unconstrained and
Constrained Parameters,” EUSIPCO 2017, Kos, Greece, 28 Aug. 2017–2 Sept. 2017.



 If the model is correctly specified, i.e. if there exists

a parameter vector , such that ,

then:

MCRB vs CRB

0 0
MCRB CRB= − = −  =θ θ θ

B A A

( ) ( | )
X m X m

p f=x x θ∈Θθ

0 =θ θ and

The misspecified framework is consistent 

with the classical matched theory!
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The Mismatched ML estimator (MML) (1/3) 

 As before, suppose to collect M independent, identically

distributed (i.i.d.) N-dimensional measurement vectors:

 The log-likelihood function for the dataset x under a

misspecified model is given by:

 The MML estimator is the point that maximizes :

{ } ( )
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, , 1, ,
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m m X mm
p m M

=
= =x x x x∼ …

1

1
( ) ln ( | ), ( )
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ˆ arg max ( ) arg max ln |
M

MML M X mm
L f

=
∈Θ ∈Θ

= 
θ θ
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F

( )
M

L θ
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The Mismatched ML estimator (MML) (2/3) 

Theorem 2 (Huber 1967, White 1982): Under suitable

regularity conditions, it can be shown that:

Moreover:

( )
. .

0
ˆ .

a s

MML
M →∞
→θ x θ

( )( ) ( )
0 0 0

1 1
0

ˆ , .
d

MML
M

M
− −

→∞
− θ θ θθ x θ 0 A B A∼ N

Huber “sandwich” 
covariance matrix = MCRB

• indicates the almost sure (a.s.) convergence.

• indicates the convergence in distribution.
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→

d

M →∞
∼
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The Mismatched ML estimator (MML) (3/3) 

 The MML estimator is asymptotically MS-unbiased and

its asymptotic error covariance is equal to the MCRB, i.e.

it is an asymptotically efficient estimator wrt the MCRB.

 Consistent with the classical “matched” ML estimator:

∈ Θθ

If the model is correctly specified, i.e. if there exists

such that: ( ) ( | )X m X mp f=x x θ

then:

( )
. .

0
ˆ

a s

ML
M →∞
→ =θ x θ θ

( )( ) ( )1ˆ ,
d

ML
M

M
−

→∞
− −

θ
θ x θ 0 A∼ N

F
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 Let us define the following data-dependent matrices:

 It can be shown (see [3, Theo 3.2]) that:

Consistent estimate of the MCRB 
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 It is possible to infer from the collected dataset whether

or not the assumed model is correctly specified.

 Recall that, if is correctly specified, then .

 Since Aθ and Bθ are unobservable, we can exploit their

sample estimate to implement a composite hypothesis

testing:

 A Wald-type test can be derived to discriminate between

the two hypotheses: correct specification (H0) vs model

misspecification (H1) (see [3, Sec. 4]).

A test for model misspecification
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Example 1: Variance estimation (1/6)

 Problem: we want to estimate the variance of a

Gaussian data set in the presence of misspecified

mean value, e.g. we erroneously assume that the

mean value is zero.

 True data set:

 Assumed data model:

 Note that, as long as ,

{ } ( ) ( )2

1
, , , 0

M

m m X mm
x x p x µ σ µ

=
= ≡ ≠x ∼ N

{ }( | ) (0, ) 
X X m

f f x θ θ θ += ≡ ∀ ∈ℝF N

0µ ≠

( )X mp x ∉F
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 Is the misspecified model regular wrt ?

 We have to check if:

1. there exists the pseudo-true parameter ;

2. the matrix is non singular.

 The KLD can be expressed as:

 Its minimum point, i.e. the pseudo-true parameter,

exists and is unique:

( )mp xF

0θ

0θ
A

( )
2 2 21

1 ln
2 2

X XD p f
µ σ σ
θ θ θ

 
= + − − 

 

2 2
0 , 0θ σ µ µ= + ≠
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Example 1: Variance estimation (2/6)



 The scalar can be evaluated as:

that is always different from zero, since .

0
Aθ

{ }
0

0

2
2

2 2 3 2
0 0 0

ln ( | ) 1 1 1

2 2
X m

p p m

f x
A E E xθ

θ θ

θ
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 ∂  = − = − ∂  
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20,µ σ +≠ ∈ℝ

Since     exists and is unique and the scalar         ,            

then     is regular wrt .F

0θ
0

0Aθ ≠

( )m
p x
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Example 1: Variance estimation (3/6)



 The scalar can be evaluated as:

 By collecting the previous results, the MCRB is given by:

 The MCRB is always greater than the CRB, as expected.

 The MCRB equates the CRB when there is no model

misspecification, i.e. when .

0
Bθ

0

0

2 4 2 2

4
0

ln ( | ) 2 4

4
X m
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f x
B Eθ

θ θ
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=
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4 2 2 4
2

0

2 4 2
MCRB( ) CRB( )

M M M

σ σ µ σθ σ= + ≥ =

0µ =
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Example 1: Variance estimation (4/6)



 Regarding the MML estimator, we have that:

 The MML estimator is not consistent, since it converges

to a value different from the true variance.

 However, the MML is MS-unbiased, since:

 Hence, the error variance of this MML estimator is lower

bounded by the MCRB.
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. .

2 2 2 2
01

1ˆ
a s
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MML mm M
x

M
θ θ σ µ σ
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=

 = = + = 
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Example 1: Variance estimation (5/6)



 MCRB = CRB when : matched case.

 The MML estimator is efficient wrt the MCRB.

2 4

10M

σ =
=
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Example 1: Variance estimation (6/6)
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Example 2: Power estimation (1/6)

 Problem: we want to estimate the statistical power of

a multivariate Gaussian data set under misspecification

of the correlation structure.

 True dataset:

 Assumed data model:

 Note that, as long as ,

( ){ }| ( | ) ,  
X X m N

f f θ θ θ += ≡ ∀ ∈x 0 I ℝF N

0ρ ≠

( )X mp ∉x F

1{ }M

m m==x x ( )2( ) ,X mp σ≡ ∈x 0 ΣN P [ ]
i j

ij
ρ −=Σ



 Is the misspecified model regular wrt ?

 As before, we have to check if:

1. there exists the pseudo-true parameter ;

2. the scalar is non singular.

 The KLD can be expressed as:

 Its minimum point, i.e. the pseudo-true parameter,

exists and is unique:

( )m
p xF

0θ

0
Aθ

( ) 1 2 21
tr( ) ln ln det( )

2
X X

D p f Nθ σ θ σ− = − + − Σ Σ

2
0θ σ=
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Example 2: Power estimation (2/6)



 The scalar can be evaluated as:

that is always different from zero, since .

0
Aθ

{ }
0 0

2

2 2 3 4
0 0
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2 2
TX m

p p m m

f N N
A E Eθ θ θ

θ
θ θ θ σ=

 ∂ = − = − ∂ 
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0Aθ ≠

( )mp x
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Example 2: Power estimation (3/6)



 The scalar can be evaluated as:

 By collecting the previous results, the MCRB is given by:

 The MCRB is always greater than the CRB, as expected.

 MCRB = CRB when there is no model misspecification,

i.e. when .

0
Bθ
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2 2 2
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4 4
0
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T T
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2 2 2
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Example 2: Power estimation (4/6)



 Regarding the MML estimator, we have that:

 The MML estimator is consistent, since it converges to

the true value of the statistical power.

 Moreover, the MML is MS-unbiased, since:

 Hence, the error variance (and the MSE) of this MML

estimator is lower bounded by the MCRB.

( ) { } 2. .
2

0
1

1ˆ tr( )

TTM a s
p m mm m

MML
M

m

E

M N N N

σθ θ σ
→∞=
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p m m

p MML
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E
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θ σ θ

=

= = =
x x

x
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Example 2: Power estimation (5/6)



 MCRB = CRB when : matched case.

 The MML estimator is efficient wrt the MCRB.

2 4

3

8
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N
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=
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Example 2: Power estimation (6/6)



Applications: DOA estimation (1/8)  

 Problem: we want to estimate the Directions of Arrival

(DOAs) of plane-waves signals by means of an array of

sensors.

 This is a core research within the SP community [15].

 The fundamental prerequisite for any DOA estimation

algorithm is that the positions of the sensors in the

array are known exactly.

 Many authors have investigated the impact on the DOA

estimation performance of an imperfect knowledge of

the sensor positions or of the misscalibration of the

array itself (see e.g. [16] and [17]).
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 Some authors have proposed hybrid or modified CRB

with the aim to predict the lowest MSE of the DOA

estimators in the presence of the position uncertainties

([18], [19]).

 All these classical approaches, although reasonable, are

application-dependent and not general.

 The application of the general misspecified estimation

framework to DOA estimation problems has been firstly

proposed by Richmond and Horowitz in their seminal

paper:
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Applications: DOA estimation (2/8)  



 Following [8], consider a ULA of M sensors and a single

plane wave signal impinging on the array from a conic

angle .

 Due to array misscalibration, the true position vector of

the mth sensor is known up to an error term modeled as

a zero-mean Gaussian random vector .

 Define as the unit vector pointing at the direction

of the impinging plane wave.

 Define where λ is the wavelength.

θ

2
3(0, )

m e
σe I∼ N

( )θu

(2 ) ( )θ π λ θk u≜
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Applications: DOA estimation (3/8)  



 The true (perturbed) steering vector is given by:

( )[ ( )] exp ( ) , 1, ,T

m m mj m Mθθ = + =d k p e …
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Applications: DOA estimation (4/8)  

tm=pm+em

pm

t1



 The signal received at the mth sensor is:

 is the deterministic unknown complex amplitude.

 is the disturbance vector composed of a white

Gaussian noise n and possibly also of a jammer j.

 Given particular realizations of em, the disturbance can

be modeled as:

[ ( )] [ ] , 1, ,
m m m

x s m Mθ= ⋅ + =d c …

= +c n j

( )2 20, ( ) ( )H

n M j j j
σ σ θ θ+c I d d∼ N

Power and DOA of the jammer44

s

Applications: DOA estimation (5/8)  



 Since the particular realizations of em is generally

unknown, one may decide to assume the nominal

steering vector in the estimation algorithm:

 The true (but unknown) data model is:

 The assumed parametric data model is:

[ ( )] exp( ), 1, ,T

m m
j m Mθθ = =v k p …

( )2 2( ) ( ), ( ) ( )H

X n M j j jp s θ σ σ θ θ= + ∈x d I d dN P

( ){ }2 2( | , )  ( ), ( ) ( )

where  , [0,2 )

H

X X n M j j j
f f s s

s

θ θ σ σ θ θ

θ π

= ≡ +

∈ ∈

x v I v v

ℂ

NF
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Applications: DOA estimation (6/8)  



 The MCRB can predict how large is the performance

loss in the estimation of due to this model mismatch.
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Applications: DOA estimation (7/8)  



 The MCRB accurately predicts performance of the

Mismatched ML (MML) estimator.

 If the system goal is a 10-to-1 beamsplit ratio, i.e. -

10dB RMSE in beamwidths, then this could be

accomplished with an SNR of ~10dB when the

model is perfectly known.

 However, not knowing precisely the true sensor

positions requires an additional ~10dB of SNR to

achieve the same goal [8].
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Applications: DOA estimation (8/8)  



Applications: Scatter matrix estimation

 The estimation of the correlation structure, i.e. the

scatter or covariance matrix, of a dataset is another

common problem in many SP applications:

 Adaptive detection in radar and sonar systems,

 DOA estimation in array processing,

 Principal Component Analysis (PCA),

 Interference cancellation,

 Portfolio optimization.

 Even if the data may come from disparate applications,

they often share a non-Gaussian heavy-tailed statistical

behavior (in radar and sonar applications, typically it is

due to the high-resolution of the receiving sensor).48
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This is an example of real radar clutter data 
that should be modeleld by an heavy-tailed
distribution, due to the presence of spikes

(values of amplitude larger than what would
be expected if the I&Q data were Gaussian).
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Real high-resolution sea clutter data
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Scatter matrix estimation

 Estimating the scatter matrix of a set of non-Gaussian

data is generally not a trivial task.

 The statistical characterization of non-Gaussian data

requires additional parameters that generally have to be

jointly estimated with the scatter matrix.

 The joint ML estimator of all unknown parameters often

encounters computational difficulties and convergence

(or even existence) issues.

 One could be led to use a simpler (mismatched) model.
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A family of non-Gaussian distributions

52

 A popular family of non-Gaussian pdf’s is the class of

Complex Elliptically Symmetric (CES) distributions.

 Thanks to their flexibility, CES distributions represent a

reliable data model in many areas such as radar, sonar,

and communications [22].

 The complex Normal, Generalized Gaussian, K-

distribution, complex t-distribution and all the

compound-Gaussian pdf’s belong to the CES class.

 The statistical behavior of high-resolution radar clutter

can be accurately characterized by using the CES model

([24,25]).



25

 A complex N-dimensional random vector xm is Complex

Elliptically Symmetric (CES) distributed if its pdf is [22]:

 g is the density generator and γ the mean vector.

 is the full-rank scatter matrix, that is a scaled version

of the covariance matrix .

 A typical constraint is . As a consequence:

( ) ( )( ) ( )1 1( ) , ,
H

X m m m Np g CES g
− −= − − ∈x Σ x γ Σ x γ γ Σ

( )tr N=Σ

Σ

Complex Elliptically Symmetric distributions

{ } { } ( )2 2
tr

( )( ) ,

H

m mH

m m X X

E
E

N N
σ σ− − = =

x x M
M x γ x γ Σ≜ ≜

M
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Estimation of the Scatter Matrix for CES data

 Problem: estimate the scatter matrix of a zero-mean

CES distributed random vector in the presence of

misspecified modeling, as described below.

 Set of M independent CES-distributed data:

 True (unknown) data pdf:

 Assumed data pdf:

 The misspecification is in the choice of the density

generator (which is parametrized by ).

( )( ) , ,X m Np CES g∈x 0 Σ

( )( ; ) , ,X m Nf CES h∈ ζx θ 0 Σ

{ }
1

M N

m m=
= ∈x x ℂ

( )vecs( )
T

T T=θ Σ ζ

ζ



A misspecified scenario

 A possible mismatched scenario in coherent radar [12]:

 the true data pdf is a complex t-distribution;

 the ML estimator of the scatter matrix (and of the

statistical power) is derived under the Gaussian

model assumption.

 The ML estimator of the scatter matrix under the

Gaussian model assumption is the well-known Sample

Covariance Matrix (SCM).

1. Is the SCM a (misspecified) consistent estimator?

2. Is it efficient wrt the MCRB?

3. How large is its performance loss wrt the matched case?
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Misspecified scatter matrix estimation

 True model: the heavy-tailed complex t-distribution.

 λ and η are the shape and scale parameters; they should

be jointly estimated with the scatter matrix.

 The statistical power of xm is:

 The true, or “matched”, parameter vector:

( ) ( )
( )

( )
11

, ,

N

H

X m m mN

N
p

λ λλ λ λλ η
π λ η η

− +
−Γ +    ⋅ +   Γ    

x Σ x Σ x
Σ

≜

( )
2

1

λσ
η λ

=
−

[vecs( ) ] , tr( )T T
Nλ η =τ Σ Σ≜
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 Assumed model: the complex Gaussian distribution.

 The “assumed” parameter vector to be estimated is:

 under the constraint:

 Without such (or similar) constraint, Σ and σ2 cannot be

jointly estimated → there is an ambiguity.

( ) ( ) ( )
1

2

22

1
  , exp

H

m m
X m X m N

f f σ
σπσ

− 
= − 

 

x Σ x
x θ x Σ

Σ
≜

2[vecs( ) ]T Tσ=θ Σ

( ) ( )tr 0N=  − =f θ 0 Σ
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Misspecified scatter matrix estimation



 The constrained MML (CMML) estimator is derived as:
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Σ SCM x x
SCM

x x

x Σ x
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complex t-distribution

 The closed form expression is:
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Misspecified scatter matrix estimation



 The CMML estimator under the Gaussian assumption:
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59

Misspecified scatter matrix estimation

( ) 2ˆ ˆ ˆvecs
T

T

CMML CMML CMMLσ =
  

θ Σ



 The pseudo-true parameter vector is:

 For the case study at hand, it can be shown that:

The CMMLE converges a.s. to:

Hence, it provides consistent estimates for both the

statistical power and the scatter matrix.
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Misspecified scatter matrix estimation
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 CCRB is the constrained “matched” CRB [30,31,32] on

the joint estimation of , λ, and η (for t-distributed data).Σ
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Misspecified scatter matrix estimation
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 CMCRB is the constrained MCRB [20] on the joint

estimation of and (under model misspecification).Σ 2σ



 When λ→0 (extremely spiky data), the estimation

losses due to model mismatching rapidly increase.
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 When λ→∞ the data tend to be Gaussian distributed and

the MSE of the CMMLE, the CMCRB, and the CCRB

tend to coincide.67
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Concluding remarks for Part I

 We summarized the fundamental concepts about lower

bounds and efficient estimators in the presence of model

misspecification.

 The MML estimator is asymptotically MS-unbiased and its

error covariance matrix asymptotically equates the MCRB.

 We showed how to apply these theoretical findings to two

well-known problems:

1. Direction of Arrivals (DOAs) estimation with an

array of antennas;

2. Estimation of the the disturbance scatter matrix in

complex t-distributed data.
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