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Introduction Motivation

Acoustic Source Localization & Tracking

Goal

Locate/track a sound source(s) given a set of microphone signals in
acoustic environment

Environment-aware data-driven
acoustic source localization

Based on fingerprints in acoustic
enclosures

Exploiting the availability of
multiple microphones in ad hoc
networks of low-end devices

Utilizing the power of modern
data-driven paradigms

Acoustic fingerprint=
reflection pattern
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Introduction Motivation

Applications
An Essential component in Speech Processing Applications

1 Hands-free voice communication

2 Human-car communication

3 Camera steering

4 Robot audition

5 Smart homes and smart conference call systems

6 Assistive devices for the elderly (“Aging in Place”)

7 Smart speakers, e.g. Amazon Echo, Google Home and Apple
HomePod

8 Personal assistant, e.g. Apple Siri, Cortana Microsoft and Google
Assistant

9 Hearing aids

10 Hearables (wireless earbuds, augmented hearing)
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Introduction Motivation

Why Localization?

Smart speakers as an example

Construct a direct-path steering vector
for speech enhancement

Determine the speakers in the scene
and their role

Carry out location specific tasks (switch
the lights on, steer a camera, etc.)
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Introduction Motivation

Many Microphones are Available

Devices equipped with
multiple microphones

1 Cellular phones

2 Laptops and tablets

3 Hearing devices

4 Smart watches

5 Smart glasses

6 Smart homes & cars
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking
Basics and Prior Art

The target of localization (or tracking) algorithms can be either the
coordinates of the speaker, or the time difference of arrival (TDOA)
between microphone signals

The mathematical relations between the coordinates of the speakers
(or the respective TDOAs) and the observed signals is nonlinear and
non-injective

Localization approaches can be roughly split into two groups:

Single-step approaches: The location of the source is estimated directly
from the microphone signals
Dual-step approaches: TDOAs between pairs of microphone are first
estimated, and are subsequently merged to obtain the source
coordinates by intersecting geometric surfaces
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking (cont.)
Basics and Prior Art

Dynamic scenarios further complicates the problem, as smoothness of
the speaker trajectory should be kept

Multiple concurrent speakers scenarios are even more challenging, due
to mixing between the reflections of all speakers (in this tutorial,
results of an ongoing research in this domain will not be presented)

Classical localization methods are usually ignoring the richness of the
acoustic propagation path

In this tutorial, we will present a family of localization and tracking
methods that

Directly utilize the properties of the acoustic propagation of sound in a
given environment
Harness data-driven paradigms to extract relevant information from the
large amount of available data
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking (cont.)
Basics and Prior Art

Single-step

MUSIC [Schmidt, 1986]; used as a baseline for LOCATA challenge
[Löllmann et al., 2018]

ESPRIT [Roy and Kailath, 1989]; applied to speech signals (e.g.
[Teutsch and Kellermann, 2005]) or as features for subsequent spatial processing
(e.g. [Thiergart et al., 2014])

Steered-response beamformer phase transform (SRP-PHAT)
[DiBiase et al., 2001, Do et al., 2007]; can also be used as features for subsequent
spatial processing (e.g. [Madhu and Martin, 2018, Hadad and Gannot, 2018])

Maximum-Likelihood (e.g. [Yao et al., 2002])
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking (cont.)
Basics and Prior Art

TDOA estimation and tracking

Generalized cross-correlation
(GCC) [Knapp and Carter, 1976]

Subspace methods
[Benesty, 2000, Doclo and Moonen, 2003]

Relative transfer function
(RTF)-based
[Dvorkind and Gannot, 2005]

Geometric intersections

Linear intersections
[Brandstein et al., 1997]

Spherical intersections
[Schau and Robinson, 1987]

Spherical interpolation
[Smith and Abel, 1987]

One-step least squares
(OSLS) [Huang et al., 2000]

Linear-correction
least-squares [Huang et al., 2001]
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking (cont.)
Basics and Prior Art

Bayesian

Extended, Unscented and Iterated-Extended Kalman filter
[Gannot and Dvorkind, 2006, Faubel et al., 2009, Klee et al., 2006]

Particle filters (PF), Rao-Blackwellised Monte-Carlo
[Ward et al., 2003, Lehmann and Williamson, 2006, Zhong and Hopgood, 2008, Levy et al., 2011]

Variational Bayes [Ban et al., 2019, Soussana and Gannot, 2019]

Probability hypothesis density (PHD) filters [Evers and Naylor, 2017]

Viterbi algorithm for Hidden Markov model (HMM) [Roman et al., 2003]
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking (cont.)
Basics and Prior Art

Non-Bayesian

Mixture of Gaussians (MoG) clustering of SRP outputs with
expectation-maximization (EM) [Madhu et al., 2008]; using binaural cues and
MoG clustering with predefined grid positions as Gaussian centroids
[Mandel et al., 2007, Mandel et al., 2010]; using mixture of von Mises distribution
[Brendel et al., 2018]

RANdom SAmple Consensus (RANSAC) and EM [Traa and Smaragdis, 2014]

Recursive [Schwartz and Gannot, 2013] and distributed
[Dorfan and Gannot, 2015, Dorfan et al., 2018] EM MoG clustering with predefined grid
positions as Gaussian centroids

EM with spectrogram clustering
[Dorfan et al., 2016, Schwartz et al., 2017, Weisberg et al., 2019]
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Introduction Speaker Localization Essentials

Speaker Localization and Tracking (cont.)
Basics and Prior Art

Learning-based methods

Probabilistic piecewise affine mapping based on smooth binaural
manifolds of low dimensions
[Deleforge and Horaud, 2012, Deleforge et al., 2013, Deleforge et al., 2015]

MoG clustering of binaural cues using multi-condition training
[May et al., 2011]

Gaussian processes inference to map coherent-to-diffuse power ratio
and source distance [Brendel and Kellermann, 2019]

Deep learning for classifying feature vectors to candidate positions:
Fully connected [Xiao et al., 2015]; convolutional neural networks (CNN)
[Takeda and Komatani, 2016, Chakrabarty and Habets, 2019], convolutional recurrent neural
network (CRNN) [Adavanne et al., 2018, Perotin et al., 2019]

Deep ranking using triplet loss [Opochinsky et al., 2019]
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Introduction Proposed Methodology

Our Proposed Methodology

Utilizes the reflection pattern of the acoustic propagation

Harnesses the power of machine learning (specifically, manifold
learning) to deal with the complexity of the acoustic propagation

Is suitable for both coordinate localizing and TDOA estimation,
depending on the number of nodes used

Can be also used in dynamic scenarios
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Introduction Proposed Methodology

Room Acoustics Essentials
Acoustic propagation models

When sound propagates in an enclosure
it undergoes reflections from its surfaces

Reflections can be modeled as images
beyond room walls and hence impinging
the microphones from many
directions [Allen and Berkley, 1979, Peterson, 1986]

Statistical models for late
reflections [Polack, 1993, Schroeder, 1996, Jot et al., 1997]

Late reflections tend to be diffused,
hence do not exhibit
directionality [Dal Degan and Prati, 1988,

Habets and Gannot, 2007]

Describing the wave propagation of an audio source in an arbitrary
acoustic environment is a cumbersome task
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Introduction Proposed Methodology

How to Utilize the Intricate Reflection Pattern?

Classical multi-microphone speech processing algorithms, and
specifically acoustic source localization, model the acoustic
propagation as time difference of arrival (TDOA)-only, while ignoring
sound reflections and focusing only on the-direct path

It was shown [Gannot et al., 2001, Markovich et al., 2009] that utilizing the entire
acoustic propagation path, manifested by the acoustic impulse
response (AIR), may significantly improve the performance of speech
processing algorithms

We will show that the intricate acoustic reflection patterns define a
fingerprint, uniquely characterizing the source location in the
enclosure
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Introduction Proposed Methodology

How to Model the Acoustic Environment?

How to 
model the
acoustic 

path?

TDOA-only

Simple to 
describe and 
to implement

Too simplified

Classical speech 
processing
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Introduction Proposed Methodology

How to Harness Manifold Learning to Infer Source
Location from Acoustic Relection Pattern?

As shown above, describing the wave propagation of an audio source
in an arbitrary acoustic environment is, a cumbersome task, since:

No simple mathematical models exist
The estimation of the vast number of parameters used to describe the
wave propagation suffers from large errors

We will show that the collection of acoustic fingerprints pertain to a
low-dimensional acoustic manifold:

The intrinsic degrees of freedom (DoF) in acoustic responses are
limited to a small number of variables (e.g. room dimensions, source
and microphone positions, and refection coefficients)
In a fixed environment and microphone constellation, the acoustic
responses intrinsically differ only by the source position
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Introduction Proposed Methodology

How to Harness Manifold Learning to Infer Source
Location from Acoustic Relection Pattern? (cont.)

Manifold learning: A data-driven approach

→ Extracts the geometrical structure of the acoustic fingerprints

→ Can reveal the controlling DoFs and hence improve localization ability

§ Room dimensions

§ Reverberation time

§ Microphone position

§ …

§ Source position

Controlling ParametersRT60
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Introduction Proposed Methodology

The Data Processing Pipeline
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structure of the data
(manifold learning)

Deriving data-driven
algorithms and inference
methodologies to
perform a certain task
(in our case, localizing
the source)

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 20 / 145



Introduction Talk Outline

Outline

1 Manifold Learning

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds
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Manifold Learning
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Manifold Learning

Data Representation

Measured data often exhibit highly redundant representations

Often controlled by a small set of parameters

Lie on a low dimensional manifold

Consider n high-dimensional features hi ∈ RD extracted from the data

Construct a low-dimensional representation yi ∈ Rd of hi , d < D,
respecting the manifold geometric structure
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Manifold Learning

What is a manifold?

A topological space in which every local region is isomorphic to a
Euclidean space

Differential manifold: a manifold that is locally similar to a linear
space

Riemannian manifold: a differential manifold equipped with an inner
product (metric) defined on the tangent plane to the manifold at
every point
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Manifold Learning

Laplacian

The Laplacian ∆ is an operator defined by the divergence of the
gradient of a function in a Euclidean space: ∆ = ∇ · ∇
The Laplace–Beltrami operator L is the extension to Riemannian
manifolds

It was shown [Bérard et al., 1994] that a local coordinate system can be built
using the Laplacian of the manifold
⇒ The Laplacian contains all the information about the manifold
geometry

The Laplacian describes the evolution in time of a diffusion process
(heat equation)
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Manifold Learning

Discretization of the Manifold

The Laplacian is an infinite-dimension operator defined on continuous
spaces

We are typically given a finite set of observations in discrete spaces
What is the finite-dimension counterpart of the Laplacian?

The manifold can be empirically represented by a graph

The observations are the graph nodes
Define a finite operator (matrix) – the graph Laplacian
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Manifold Learning

Manifold Learning Paradigms

Why learning?

Given high-dimensional point clouds

Recall: assume they lie on a manifold, but no other prior knowledge

The goal is to recover the manifold from the data

Classical methods

The foundations of manifold learning were laid in 2000:

Locally linear embedding (LLE) [Roweis and Saul, 2000]

Isometric feature mapping (ISOMAP) [Tenenbaum et al., 2000]

We will focus on diffusion maps due to the notion of diffusion
distance [Coifman and Lafon, 2006]
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Manifold Learning

Locally-Linear Embedding [Roweis and Saul, 2000]

Determine the neighbours Ni of each point hi

Compute the weights that best reconstruct each point from its
neighbors by minimizing:

E (W) =
∑

i

‖hi −
∑

j∈Ni

Wijhj‖2

such that
∑

j∈Ni
Wij = 1

Compute a low-dimensional embedding yi ∈ Rd of hi ∈ RD , d < D:

argmin
yi

∑

i

‖yi −
∑

j

Wijyj‖2

W is an n × n sparse matrix
The embedding can be obtained by solving a sparse eigenvalue problem
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Manifold Learning

ISOMAP [Tenenbaum et al., 2000]

Determine the neighbours Ni of each point hi

Construct a neighborhood graph:

Each point hi is a graph node (vertex)
Node hi is connected by an edge to each neighbor hj ∈ Ni
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Manifold Learning

ISOMAP [Tenenbaum et al., 2000]

Compute the shortest path between any two nodes dij (number of
edges)

Compute a low-dimensional embedding with multidimensional scaling
(MDS) [Kruskal, 1964] by:

argminy1,...,yn∈Rd

∑
i<j(‖yi − yj‖ − dij)

2

Can be solved by eigenvalue decomposition (EVD) of a matrix
computed from the pairwise distances di ,j
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Manifold Learning

Diffusion Maps [Coifman and Lafon, 2006]

Samples are the graph nodes

The weights of the edges are defined using a kernel function:

Kij = k(hi ,hj) = exp

{
−‖hi − hj‖2

ε

}

Define a Markov process on the graph by the transition matrix:

Pij = p(hi ,hj) = Kij/
∑N

r=1 Kir

which is a discretization of a diffusion process on the manifold
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Manifold Learning
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Manifold Learning

Diffusion Maps [Coifman and Lafon, 2006]

Samples are the graph nodes

The weights of the edges are defined using a kernel function:

Kij = k(hi ,hj) = exp

{
−‖hi − hj‖2

ε

}

Define a Markov process on the graph by the transition matrix:

Pij = p(hi ,hj) = Kij/
∑N

r=1 Kir

which is a discretization of a diffusion process on the manifold

i 

j 

ijPjiP
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Manifold Learning

Diffusion Maps [Coifman and Lafon, 2006]

Samples are the graph nodes

The weights of the edges are defined using a kernel function:

Kij = k(hi ,hj) = exp
{
−‖hi−hj‖2

ε

}

Define a Markov process on the graph by the transition matrix:

Pij = p(hi ,hj) = Kij/
∑N

r=1 Kir

which is a discretization of a diffusion process on the manifold

In matrix form: P = D−1K ∈ Rn×n

where D is diagonal with:

Dii =
∑n

r=1 Kir

P is similar to a symmetric matrix S = D−1/2KD−1/2 by

P = D−1/2SD1/2

so P has a real spectrum
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Manifold Learning

Diffusion Maps [Coifman and Lafon, 2006]

The (normalized) graph Laplacian is defined by

N = I− P

It was shown that N asymptotically (ε→ 0 n→∞) converges to the
Laplacian L
⇒ The normalized graph Laplacian N (and P) contains the
information about the manifold geometry
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Manifold Learning

Diffusion Maps [Coifman and Lafon, 2006]

Apply eigenvalue decomposition (EVD) to the matrix P ∈ Rn×n and
obtain n eigenvalues {λj} and n right eigenvectors {ϕj} in Rn

A nonlinear mapping into a new d-dimensional Euclidean space:

Φd : hi 7→ [λ1ϕ1(i), . . . , λdϕd(i)]T

where d < n is typically set by prior knowledge or according to a
“spectral gap”

Q: In what sense the space is Euclidean?
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Manifold Learning

Diffusion Distance

The distance along the manifold is approximated by the diffusion distance:

D2
Diff(hi ,hj) =

n∑

r=1

(p (hi ,hr )− p (hj ,hr ))2 /φ
(r)
0

Two points are close if they are highly connected in the graph

The diffusion distance can be well approximated by the Euclidean
distance in the embedded domain:

DDiff(hi ,hj) ∼= ‖Φd(hi )−Φd(hj)‖

i 

j 

r 
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Manifold Learning

Toy Example [Lederman and Talmon, 2018]
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Manifold Learning

Building the Embedding

Diffusion maps

Compute P (or equivalently N) from the images hi

Apply EVD to P (or N) and obtain eigenvalues {λj} and eigenvectors
{ϕj}
Build the map:

hi 7→ [λ1ϕ1(i), λ2ϕ2(i)]
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Manifold Learning

Geometry of Data

Figure: Each sample (snapshot) is a point on the circle (the rotation angle)
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Manifold Learning

Geometry of Data

Video: One variable.
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Manifold Learning

Geometry of Data

Video: One variable.

Q: why a circle?

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 38 / 145


x3c125_s1obj_dmap.mp4
Media File (video/mp4)



Manifold Learning

Diffusion

Analogy to the toy example

The manifold M is a 1-dimensional sphere in R
Can be parametrized by xi ∈ [0, 2π] representing the hidden angle
(with periodic boundary conditions)

We have access to the images hi , which can be viewed as functions of
the hidden angle

hi := h(xi )
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Manifold Learning

Diffusion

Diffusion process

The Laplace-Beltrami operator defines a diffusion process on the
manifold:

ut = Lu
for a function u(x , t) defined on the manifold, x ∈M and t ≥ 0

Suppose u(x , 0) = u0(x)
⇒ u(x , t) is the propagation of u0(x) by the application of L
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Manifold Learning

Diffusion

The 1D case

ut = Lu = uxx

u(x , 0) = u0(x),∀x ∈ [0, 1]

u(0, t) = u(1, t), ux(0, t) = ux(1, t),∀t > 0
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Manifold Learning

Diffusion

The 1D case

ut = Lu = uxx

u(x , 0) = u0(x),∀x ∈ [0, 1]

u(0, t) = u(1, t), ux(0, t) = ux(1, t),∀t > 0

Solution I: separation of variables

u(x , t) = X (x)T (t)

Ṫ (t)

T (t)
=

X ′′(x)

X (x)
= −λ

X ′′(x) = −λX (x)
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Manifold Learning

Diffusion

The 1D case

ut = Lu = uxx

u(x , 0) = u0(x),∀x ∈ [0, 1]

u(0, t) = u(1, t), ux(0, t) = ux(1, t),∀t > 0

Solution I: separation of variables

u(x , t) = X (x)T (t)

Ṫ (t)

T (t)
=

X ′′(x)

X (x)
= −λ

X ′′(x) = −λX (x)

Xk(x) = sin(
√
λkx), cos(

√
λkx)

λk = 4k2π2; k = 1, 2, . . .
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Ṫ (t)

T (t)
=

X ′′(x)

X (x)
= −λ

X ′′(x) = −λX (x)

Xk(x) = sin(
√
λkx), cos(

√
λkx)

λk = 4k2π2; k = 1, 2, . . .

Solution II: EVD [Fourier, 1822]

LX (x) = X ′′(x) = −λX (x)

The eigenvalues and
eigenfunctions of L are λk
and Xk(x)

Xk(x) describe diffusion and
are used for embedding

Diffusion interprets the
embedding
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Manifold Learning

Diffusion

The embedding

hi 7→ [4π2 cos(2πxi ), 4π
2 sin(2πxi )]
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Manifold Learning

Smoothness on the Manifold

Measuring smoothness over M:

Let h ∈M and f :M→ R
The gradient ∇f (h) represents amplitude and direction of variation of
f around h

A global measure of smoothness of f on M:

‖f ‖2
M =

∫

M
‖∇f (h)‖2dµ(h)

where µ(h) is the probability measure of h on M
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Manifold Learning

Smoothness on the Manifold

Measuring smoothness on M:

Stokes' theorem links gradient and Laplacian:

∫

M
‖∇f (h)‖2dµ(h) =

∫

M
f (h)Lf (h)dµ(h) = 〈f (h),Lf (h)〉

where L = ∇ · ∇ is the Laplace-Beltrami (“Laplacian”) operator
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Manifold Learning

Smoothness on the Manifold

Measuring smoothness on M:

Stokes' theorem links gradient and Laplacian:

∫

M
‖∇f (h)‖2dµ(h) =

∫

M
f (h)Lf (h)dµ(h) = 〈f (h),Lf (h)〉

where L = ∇ · ∇ is the Laplace-Beltrami (“Laplacian”) operator

Smoothness on the manifold: Discretization

Define the graph Laplacian: L , D−K

P = D−1K and N = D−1L = I− P

Smoothness of f = [f (h1), ..., f (hn)] on the graph: fTLf = 〈f,Lf〉
Small fTLf implies smooth f on the graph
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Manifold Learning

Smoothness on the Manifold: Discretization

Further insight can be obtained by:

fTLf =
n∑

i ,j=1

f (hi )Lij f (hj)

=
n∑

i=1




n∑

j=1

Kij − Kii


 f 2(hi )−

n∑

i ,j=1
i 6=j

Kij f (hi )f (hj)

=
n∑

i ,j=1

Kij f
2(hi )−

n∑

i ,j=1

Kij f (hi )f (hj)

=
1

2

n∑

i ,j=1

Kij (f (hi )− f (hj))2

When Kij is large, the mappings f (hi ) and f (hj) are “encouraged” to
be close
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Manifold Learning

Further Insight

Eigenvalue decomposition of the Laplacian

Recall: L is the symmetric graph Laplacian with eigenvalues
0 = λ1 ≤ λ2 ≤ . . . ≤ λn and corresponding eigenvectors ϕ1, . . . ,ϕn

By the Courant-Fischer Theorem:

λk = min
f⊥ϕ1,...,ϕk−1

fTLf

fTDf

ϕk = argmin
f⊥ϕ1,...,ϕk−1

fTLf

fTDf

Analogy to the Fourier transform:

Small eigenvalues correspond to eigenvectors that change slowly on
the manifold (“low frequencies”)

Large eigenvalues correspond to eigenvectors that change rapidly on
the manifold (“high frequencies”)
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Manifold Learning

Laplacian Eigenmaps [Belkin and Niyogi, 2003]

Building low-dimensional embedding

Similarly to Diffusion Maps:

hi 7→ [ϕ1(i), . . . , ϕd(i)]T

As shown above, the Euclidean distance between embedded points
respects the similarity defined by the kernel

High kernel affinity leads to nearby embedded points
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Manifold Learning

Manifold Learning – Summary

“Tell me who your friends are and I will tell you who you are”

In high-dimensional space only local relations are meaningful

Find a global fit that preserves local relations:

Local relations by kernel function similarity
Global fit by spectral decomposition
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Data Model and Acoustic Features

Outline

1 Manifold Learning

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds
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Data Model and Acoustic Features

The Data Processing Pipeline
Back to Speaker Localization
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Prediction 

Measurements Data pre-processing and
feature extraction

Analyzing the geometric
structure of the data
(manifold learning)

Deriving data-driven
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methodologies to
perform a certain task
(in our case, localizing
the source)
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Data Model and Acoustic Features

Data Model: The Two Microphone Case

Microphone signals:

The measured signals in the two microphones (an extension to multiple
microphone pairs will be discussed later):

y1(n) = a1(n) ∗ s(n) + u1(n)

y2(n) = a2(n) ∗ s(n) + u2(n)

s(n) - the source signal

ai (n), i = {1, 2} - the acoustic impulse responses relating the source
and each of the microphones

ui (n), i = {1, 2} - noise signals, independent of the source
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Data Model and Acoustic Features

Data Model: The Two Microphone Case

Microphone signals:

The measured signals in the two microphones:

y1(n) = a1(n) ∗ s(n) + u1(n)

y2(n) = a2(n) ∗ s(n) + u2(n)

s(n) - the source signal

ai (n), i = {1, 2} - the acoustic impulse responses relating the source
and each of the microphones

ui (n), i = {1, 2} - noise signals, independent of the source

Find a feature vector representing the characteristics of the acoustic path
and independent of the source signal
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Data Model and Acoustic Features

The Features
Alternatives

The relative transfer function (RTF) for pairs of microphones
[Gannot et al., 2001]

Power ratios of directional microphone (using a microphone quartet)
[Laufer-Goldshtein et al., 2018a]

Relative harmonic coefficients (using spherical microphone array)
[Hu et al., 2019]
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Data Model and Acoustic Features The relative transfer function (RTF)

Relative Transfer Function (RTF) [Gannot et al., 2001]

RTF:

Defined as the ratio between the transfer functions of the two mics:

H12(k) =
A2(k)

A1(k)

low-noise' Ŝy2y1(k)

Ŝy1y1(k)

estimated based on PSD and cross-PSD

Define the feature vector: h = [Ĥ12(k1), . . . , Ĥ12(kD)]T
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Data Model and Acoustic Features The RTF

Relative Transfer Function (RTF) [Gannot et al., 2001]

 room dimensions 

 reverberation time 

 microphone position 

 source position 

 … 

 

RTF:

Represents the acoustic paths and is independent of the source signal

Generalizes the TDOA

Depends on a small set of parameters related to the physical
characteristics of the environment

In a static environment the source position is the only varying degree
of freedom
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Data Model and Acoustic Features The RTF

A plethora of methods for RTF Estimation

Utilizing speech non-stationarity and noise stationarity
[Shalvi and Weinstein, 1996]; [Gannot et al., 2001]

Extension to two nonstationary sources in stationary noise
[Reuven et al., 2008]

Subspace tracking for single speaker [Affes and Grenier, 1997]

GEVD analysis for multiple speakers [Markovich et al., 2009]

Subspace tracking for multiple speakers [Markovich-Golan et al., 2010]

Utilizing RIR Sparseness [Koldovký et al., 2015]

Utilizing BSS methods [Reindl et al., 2013]

Applying covariance whitening or covariance subtraction
[Markovich-Golan et al., 2018]

Utilizing speech sparsity in the STFT domain (w-disjoint orthogonality
[Yilmaz and Rickard, 2004]) and Simplex analysis [Laufer-Goldshtein et al., 2018c]
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The Acoustic Manifold

Outline

1 Manifold Learning

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds
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The Acoustic Manifold

The Data Processing Pipeline
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The Acoustic Manifold

How to Measure the Affinity between Two RTF
Samples? [Laufer-Goldshtein et al., 2015]

The RTFs are represented as points in a high dimensional space
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The Acoustic Manifold

How to Measure the Affinity between Two RTF
Samples? [Laufer-Goldshtein et al., 2015]

The RTFs are represented as points in a high dimensional space

Acoustic manifold

They lie on a low dimensional nonlinear manifold M

Linearity is preserved in small neighbourhoods

Distances between RTFs should be measured along the manifold
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples Feature extraction 

Each distance measure relies on a different hidden assumption about the
underlying structure of the RTF samples
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The Acoustic Manifold Affinity measures

Euclidean Distance

The Euclidean distance between
RTFs

DEuc(hi ,hj) = ‖hi − hj‖

Compares two RTFs in their
original space

Does not assume an existence of
a manifold

Respects flat manifolds

A good affinity measure only when the RTFs are uniformly scattered all
over the space, or when they lie on a flat manifold
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The Acoustic Manifold Affinity measures

Principal component analysis (PCA) [Pearson, 1901]

PCA algorithm

Find the vectors that maximize the variance of the data:

argmax
||y||2=1

yT R̂y

where R̂ is the sample covariance matrix of the data

The above maximization problem is solved the EVD of of R̂

Linear vs. nonliner

PCA - smoothness over sample
covariance

Laplacain Eigenmaps -
smoothness over graph Laplacain
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The Acoustic Manifold Affinity measures

PCA-Based Distance

PCA algorithm

The principal components - the d dominant eigenvectors {vi}di=1 of
the covariance matrix of the data
The RTFs are linearly projected onto the principal components:

ν (hi ) = [v1, . . . vd ]T (hi − µ)

PCA-based distance between RTFs

DPCA(hi ,hj) = ‖ν(hi )− ν(hj)‖

A global approach - extracts
principal directions of the entire
set

Linear projections - the manifold
is assumed to be linear/flat
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

RTF samples  

Uniform 
Scattering 

No 
processing 
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 
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Distance 

PCA-based 
Distance 

RTF samples  

Uniform 
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Flat  
Manifold 

No 
processing 

Global 
Processing 
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples  

Nonlinear 
Manifold 

Uniform 
Scattering 

Flat  
Manifold 

No 
processing 

Global 
Processing 

Local & Global 
Processing 
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples  

Nonlinear 
Manifold 

Uniform 
Scattering 

Flat  
Manifold 

No 
processing 

Global 
Processing 

Local & Global 
Processing 

Which of the distance measures is proper?
What is the true underlying structure of the RTFs?
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The Acoustic Manifold Verification

Simulation Results

Room setup

Simulate a reverberant room using the
image method [Allen and Berkley, 1979]:

Room dimension 6× 6.2× 3m

Microphones at: [3, 3, 1] and [3.2, 3, 1]

The source is positioned at 2m from the
mics, the azimuth angle in 10◦ ÷ 60◦

T60 = 150/300/500 ms

SNR= 20 dB

0.2m 

2m 

6m 

6
.2
m

 

10◦ 

60◦ 

Test

Measure the distance between each of the RTFs and the RTF
corresponding to 10◦:

If monotonic with respect to the angle - proper distance

If not monotonic with respect to the angle - improper distance
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The Acoustic Manifold Verification

Euclidean Distance & PCA-based Distance [Laufer-Goldshtein et al., 2015]

(a) Euclidean Distance (b) PCA-based Distance

For both distance measures:

Monotonic with respect to the angle only in a limited region

This region becomes smaller as the reverberation time increases

They are inappropriate for measuring angles’ proximity
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The Acoustic Manifold Verification

Diffusion Maps

(c) Diffusion Distance (d) Diffusion Mapping

The diffusion distance:

Monotonic with respect to the angle for almost the entire range

It is an appropriate distance measure in terms of the source DOA

Mapping corresponds well with angles - recovers the latent parameter
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Data-Driven Source Localization: Microphone Pair

Outline
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Data-Driven Source Localization: Microphone Pair

The Data Processing Pipeline
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Approaches for Localization

Intermediate summary

We have established the existence of an acoustic manifold in a
specific environment

The RTF was shown to be a proper feature vector that can capture
the acoustic variability as a function of the source position
(alternative feature vectors can be used)

We have briefly introduced the manifold learning - a systematic
methodology to infer the low-dimensional intrinsic controlling
parameters of the data
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Approaches for Localization (cont.)

What’s next?

Learning paradigms:
1 Unsupervised localization ⇒ array constellation required (microphones

positions or microphone inter-distance for DOA-only)
2 Supervised localization ⇒ many labels
3 Semi-supervised ⇒ utilizes a small number of labelled data and a large

number of unlabelled data; array constellation not required

Utilize the acoustic manifold to derive two data-driven approaches for
speaker localization:

1 Diffusion Distance Search (DDS) [Talmon et al., 2011, Laufer-Goldshtein et al., 2013]

2 Manifold Regularization for Localization (MRL) [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Approaches for Localization (cont.)

Unlabelled Samples

Recover the Manifold 
Structure

Labelled Samples

Anchor Points – Translate 
RTFs to Positions
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Learning

Mixed of supervised (attached with known locations as anchors) and
unsupervised (unknown locations) learning
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Learning

Mixed of supervised (attached with known locations as anchors) and
unsupervised (unknown locations) learning

Why using unlabeled data?

1 Localization - training should fit the specific environment of interest:

Cannot generate a general database for all possible acoustic scenarios
Generating a large amount of labelled data is cumbersome/impractical
Unlabelled data is freely available - whenever someone is speaking

2 Unlabelled data can be utilize to recover the manifold structure

3 Semi-supervised learning is the natural setting for human learning

1 
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Data-Driven Source Localization: Microphone Pair Motivation

Datasets

Training Set Test Set 

HL = {hi}
nL
i=1 - nL labelled samples

PL = {p̄i}
nL
i=1 - labels/positions

HU = {hi}
nD
i=nL+1 - nU unlabelled samples

HD = HL ∪ HU - entire training set

HT = {hi}ni=nD+1 - nT test samples
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Data-Driven Source Localization: Microphone Pair Diffusion Distance Search

Diffusion Distance Search (DDS) [Talmon et al., 2011, Laufer-Goldshtein et al., 2013]

Diffusion mapping: Reminder

Construct K, and normalize to obtain P

Employ EVD to obtain {λj ,ϕj}
Construct the map Φd :

Φd : hi 7→
[
λ1ϕ

(i)
1 , . . . , λdϕ

(i)
d

]T

Define diffusion distance: DDiff (hl,hi ) = ‖Φd(hl)−Φd(hi )‖2

What is the diffusion map of a new test point ht?

Either recompute the EVD of an (nD + 1)× (nD + 1) matrix P

Or apply the Nyström extension
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Data-Driven Source Localization: Microphone Pair Diffusion Distance Search

Diffusion Distance Search (DDS)

Nyström extension [Press et al., 2007]

λjϕj = Pϕj , j ∈ {1, . . . , d}
For i = 1, . . . , nD :

ϕ
(i)
j =

1

λj

nD∑

l=1

p(hi ,hl)ϕ
(l)
j

For a new test point ht:

ϕt
j =

1

λj

nD∑

l=1

p(ht,hl)ϕ
(l)
j

Extension of the model for new ht (summary):

Construct a nonsymmetric affinity vector b: b(l) = p(ht ,hl)

Apply Nyström extension:

ϕt
j =

1

λj
bTϕj j ∈ {1, . . . , d}
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Data-Driven Source Localization: Microphone Pair Diffusion Distance Search

Diffusion Distance Search (DDS)

Localization:

Heuristic estimation: a linear combination of the labelled set positions
according to kernelized diffusion distances:

p̂(ht) =

nL∑

i=1

γ (hi ) pi

where the weights γ (hi ) are given by:

γ (hi ) =
exp {−DDiff (ht,hi ) /εγ}∑l
j=1 exp {−DDiff (ht,hj) /εγ}

𝐩1 

𝐩2 

𝐩3 

𝐩4 𝐩5 

𝐩6 
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Data-Driven Source Localization: Microphone Pair Diffusion Distance Search

Diffusion Distance Search (DDS)
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position

h 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position

Complex nonlinear relation  
between  RTFs and positions  

Infinite search space 

How to prevent overfitting? 

How to utilize unlabelled data? 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position

Complex nonlinear relation  
between  RTFs and positions  

• Learn a data-driven model from training data  

Infinite search space 

• Work in a reproducing kernel Hilbert space (RKHS) 

How to prevent overfitting? 

• Add regularizations to control smoothness 

How to utilize unlabelled data? 

• Use manifold regularization 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Reproducing Kernel Hilbert Space
(RKHS) [Berlinet and Thomas-Agnan, 2011]

Moore-Aronszajn theorem: [Aronszajn, 1950]

For a positive definite kernel k on M, there is a Hilbert space Hk

(reproducing kernel Hilbert space, (RKHS)) that consists of functions on
M, satisfying:

k(h, ·) ∈ Hk , ∀h ∈M;

span{k(h, ·); h ∈M} is dense in Hk ;

The reproducing property: 〈f (·), k(h, ·)〉 = f (h), ∀f ∈ Hk ,h ∈M.

Banach Space 

Hilbert Space 

Reproducing 
Kernel Hilbert 
Space (RKHS) 

* A Hilbert space is a complete inner product spaceB. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 78 / 145



Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

Optimization in a reproducing kernel Hilbert space (RKHS) [Belkin et al., 2006]:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 79 / 145



Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

Optimization in a reproducing kernel Hilbert space (RKHS) [Belkin et al., 2006]:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M

correspondence 
between  

function values 
and labels 

Cost function 

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 79 / 145



Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

Optimization in a reproducing kernel Hilbert space (RKHS) [Belkin et al., 2006]:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M

correspondence 
between  

function values 
and labels 

smoothness 
condition in 

the RKHS 

Tikhonov 
Regularization 

Cost function 

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 79 / 145



Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

Optimization in a reproducing kernel Hilbert space (RKHS) [Belkin et al., 2006]:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M

correspondence 
between  

function values 
and labels 

smoothness 
condition in 

the RKHS 

smoothness 
penalty with 

respect to the 
manifold 

Manifold 
Regularization 

Tikhonov 
Regularization 

Cost function 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization

Smoothness on the manifold: A reminder

The graph Laplacian:
L = D−K

Define the manifold regularization by:

‖f ‖2
M = fTD LfD =

1

2

nD∑

i ,j=1

Kij (f (hi )− f (hj))2

fTD = [f1, f2, . . . , fnD ] comprising labelled and unlabelled training data

Kij
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD LfD
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD LfD

The Representer theorem: [Schölkopf et al., 2001]

The minimizer over Hk of the regularized optimization is represented by:

f ∗(h) =

nD∑

i=1

aik(hi ,h)

where k :M×M→ R is the reproducing kernel of Hk

with Kij = k(hi ,hj) = exp
{
−‖hi−hj‖2

ε

}
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑

i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD LfD

The Representer theorem:

The minimizer over Hk of the regularized optimization is represented by:

f ∗(h) =

nD∑

i=1

aik(hi ,h) ⇒ closed-form solution for a∗

where k :M×M→ R is the reproducing kernel of Hk

Mapping 
from h 
 to p 

Search in 
RKHS 

Add 
Regularizations 

to Control 
Smoothness 

Optimization 
over a finite 

set of 
parameters 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization (MRL)
[Laufer-Goldshtein et al., 2017]
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Simulation Results

Setup:

Source positions: angles between 10◦ ÷ 60◦

Training: 6 labelled, 400 unlabelled (SNR=10 dB)

Figure: RMSEs of GCC, DDS and MRL as a function of reverberation time (left), SNR (right)

MRL achieves 2◦ accuracy in typical noisy and reverberant environments
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Simulation Results - MRL

Iterative simulation:

Source positions: angles between
0◦ ÷ 180◦

Start with 19 labelled samples

Each iteration add 80 unlabelled
samples

T60 = 500 ms and SNR=20 dB

Sensitivity to reverberation level:

Train with a fixed reverberation
time of 500 ms.

→ for small mismatch - small increase
in error level

→ for large mismatch - large increase
in error level
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Recordings setup

Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)

Region of interest: a 4m long line at 2.5m distance from the mics

Microphones 

Loudspeaker 

Air-conditioner 

Andiamo.mc 

Room panels 
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Recordings setup

Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)

Region of interest: a 4m long line at 2.5m distance from the mics
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Experimental Results
[Laufer-Goldshtein et al., 2016b]

Setup:

Training: 5 labelled samples (1m resolution), 75 unlabelled samples

Test: 30 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Nearest-neighbour (NN)

Generalized
cross-correlation (GCC)
method [Knapp and Carter, 1976]
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Experimental Results
[Laufer-Goldshtein et al., 2016b]

Setup:

Training: 5 labelled samples (1m resolution), 75 unlabelled samples

Test: 30 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Nearest-neighbour (NN)

Generalized
cross-correlation (GCC)
method [Knapp and Carter, 1976]
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The MRL algorithm outperforms the two other methods
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Effect of Labelled & Unlabelled Samples
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Effect of increasing the amount of labelled/unlabelled samples

→ As the size of the labelled set is reduced - performance gap increases

→ Locate the source even with few labelled samples, using unlabelled
information

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 87 / 145



Data-Driven Source Localization: Microphone Pair Comparative experimental study

Why does Nearest-Neighbour Fail?

Compare distances before and after mapping
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Before mapping -
monotonic/ordered only in a
limited region

After mapping -
monotonic/ordered for
almost the entire range
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Why does Nearest-Neighbour Fail?

Compare distances before and after mapping
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‖hi − h1‖
2

(f(hi)− f(h1))
2

Monotony/Order

Before mapping -
monotonic/ordered only in a
limited region

After mapping -
monotonic/ordered for
almost the entire range

We conclude:

→ RTFs lie on a nonlinear manifold - linear only for small patches

→ NN ignores the manifold, MRL exploits the manifold structure
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Data-Driven Source Localization: Microphone Pair Summary

Localization on Manifolds

Diffusion Distance Search 
(DDS) 

Diffusion Embedding

Neighbors Search in the 
Embedded Space

Manifold Regularization 
for Localization (MRL)

Manifold Regularization

Regularized 
Optimization

Diffusion 
Maps

Optimization 
in RKHS

Two Data-Driven Localization Algorithms

1. One stage
2. Best      

performance

1. Two stage
2. Better than 

GCC
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Bayesian Perspective

Outline

1 Manifold Learning

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds
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Bayesian Perspective Statistical Model

Manifold-Based Bayesian Inference [Laufer-Goldshtein et al., 2016a]

Estimate the function f which transforms an RTF to position using a
Bayesian approach with a data-driven geometric model

Posterior Likelihood Prior 

Update Belief 

Correspondence 
between the 

function values 
and the labels 

A priori belief 
on the behavior 
of       - control 

smoothness 
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Bayesian Perspective Statistical Model

Manifold-Based Bayesian Inference [Laufer-Goldshtein et al., 2016a]

Estimate the function f which transforms an RTF to position using a
Bayesian approach with a data-driven geometric model

Posterior Likelihood Manifold-Based Prior 

Update Belief 

Correspondence 
between the 

function values 
and the labels 

a priori belief on 
the properties 

of   - smoothness 
 with respect to 

the manifold 
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Bayesian Perspective The Likelihood

The Likelihood Function

1 An RTF is sampled from the
manifold M

2 The function f follows a
stochastic process

3 The function receives an
RTF sample and returns the
position

4 Measure a noisy position
due to imperfect calibration

1 

2 

3 

4 
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Bayesian Perspective The Likelihood

The Likelihood Function

1 An RTF is sampled from the
manifold M

2 The function f follows a
stochastic process

3 The function receives an
RTF sample and returns the
position

4 Measure a noisy position
due to imperfect calibration

1 

2 

3 

4 

→ Likelihood function: p(PL|f ,HL) = 1√
2πσ2

exp
{
− 1

2σ2

∑nL
i=1(p̄i − f (hi ))2

}
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Bayesian Perspective Prior Probability

Standard Prior Probability

Standard Gaussian process [Rasmussen and Williams, 2006]:

The function f follows a Gaussian process:

f (h) ∼ GP (ν(h), k(h,hi ))

ν is the mean function (choose ν ≡ 0)

k is the covariance function.

The r.v. fH = [f (h1), . . . , f (hn)] has a joint Gaussian distribution:

fH ∼ N (0n,ΣHH)

where ΣHH is the covariance matrix with elements k(hi ,hj)

Common choice: a Gaussian kernel k(hi ,hj) = exp{−‖hi − hj‖2/εk}

7 The correlation for intermediate distances may be incorrectly assessed

7 Does not exploit the available set of unlabelled data HU
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Bayesian Perspective Prior Probability

Manifold-Based Prior Probability [Sindhwani et al., 2007]

Discretization of the manifold

The manifold is empirically represented by a graph G , with weights:

Wij =

{
exp

{
−‖hi−hj‖2

εw

}
if hj ∈ Ni or hi ∈ Nj

0 otherwise

The graph Laplacian of G : L = D−W, where Dii =
∑n

j=1 Wij .

Statistical formulation

Geometry variables G – represent
the manifold structure

The likelihood of G:

P(G|fD) ∝ exp

{
− γM

2

(
fTD LfD

)}

We showed (based on all nD training
samples):

fTD LfD =
1

2

nD∑

i,j=1

Wij (f (hi )− f (hj))2
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The manifold is empirically represented by a graph G , with weights:

Wij =

{
exp

{
−‖hi−hj‖2

εw

}
if hj ∈ Ni or hi ∈ Nj

0 otherwise

The graph Laplacian of G : L = D−W, where Dii =
∑n

j=1 Wij .

Statistical formulation

Geometry variables G – represent
the manifold structure

The likelihood of G:

P(G|fD) ∝ exp

{
− γM

2

(
fTD LfD

)}

We showed (based on all nD training
samples):

fTD LfD =
1

2

nD∑

i,j=1

Wij (f (hi )− f (hj))2
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Bayesian Perspective Prior Probability

Manifold-Based Prior Probability [Sindhwani et al., 2007]

correspondence 
between the 

function values 
and the manifold 

structure

The covariance is 
formed by a 

standard kernel

The covariance is 
formed by a 

manifold-based 
kernel

Manifold-Based 
GP Prior

Likelihood of 
Geometry Variables

Standard GP 
Prior

Assume:

p(G|fD) / exp
n
��M

2

�
fTDLfD

�o
<latexit sha1_base64="onUblJAG0gkCkuvIcpULKlRfZjU="></latexit>

Σ̃HH ⇔ k̃(hi ,hj)
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Bayesian Perspective RKHS vs. GP

Manifold-Based Bayesian Inference [Laufer-Goldshtein et al., 2016a]

Cost Function Manifold 
Regularization 

Search in RKHS defined 
by the kernel  

norm 
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Bayesian Perspective RKHS vs. GP

Manifold-Based Bayesian Inference [Laufer-Goldshtein et al., 2016a]

Cost Function Manifold 
Regularization 

Manifold-Based Prior 

Search in RKHS defined 
by the kernel  

f  is a Gaussian Process 
with Covariance   

Cost Function Search in RKHS defined 
by the kernel  

norm 

norm 

Posterior Likelihood Function 
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Bayesian Perspective Bayesian Localization

Bayesian Localization

Joint probability:

Goal: estimate the function value at some test sample ht ∈M
The training positions p̄L = vec{PL} and f (ht) are jointly Gaussian:

[
p̄L

f (ht)

] ∣∣∣∣HL,HU ∼ N
(

0nL+1,

[
Σ̃LL + σ2InL Σ̃Lt

Σ̃T
Lt Σ̃tt

])

The elements of Σ̃LL, Σ̃Lt and Σ̃tt are calculated by the
manifold-regularized kernel

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl)

Note that the unlabelled points are implicitly considered in the
covariance terms
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Bayesian Perspective Bayesian Localization

Bayesian Localization (cont.)

MAP/MMSE estimator:

The posterior

p(f (ht)|PL,HL,HU) ∼ N (f̂ (ht), var(f̂ (ht)))

is a multivariate Gaussian, where:

The MAP/MMSE estimator of f (ht) is given by:

f̂ (ht) = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

p̄L

The estimation confidence:

var(f̂ (ht)) = Σ̃tt − Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

Σ̃Lt
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Bayesian Perspective Hyperparameters

Learning the Hyperparameters: [Laufer-Goldshtein et al., 2017]

The hyperparameters:

Kernel scales ε
Weights γ (Gaussian process variance)

can be inferred from the data by optimizing the likelihood function of
the labelled samples
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Data-Driven Source Localization: Ad Hoc Array

Outline

1 Manifold Learning

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Source Localization with Ad Hoc Array [Laufer-Goldshtein et al., 2017]

Each node

Represents a different view point on the same acoustic event

Induces relations between RTFs according to the associated manifold
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Source Localization with Ad Hoc Array [Laufer-Goldshtein et al., 2017]

How to fuse the different views in a unified mapping f : ∪Mm=1Mm 7→ R ?
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Inta-Manifold Relations

The mapping follows a Gaussian process f m(hm) ∼ GP(0, k̃m (hm,hm
i ))

m-th node 

m

rh

m

ih

m

lh

Covariance function

Defined by a new manifold-based covariance function:

cov (f m(hm
r ), f m(hm

l )) ≡ k̃m(hm
r ,h

m
l ) =

nD∑

i=1

km(hm
r ,h

m
i )km(hm

l ,h
m
i )

= 2km(hm
r ,h

m
l ) +

nD∑

i=1
i 6=l,r

km(hm
r ,h

m
i )km(hm

l ,h
m
i )
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Inter-Manifold Relations

How to measure relations between RTFs from different nodes?

q-th node 

w-th node 

Multi-node covariance

The covariance between f q(hq
r ) and f w (hw

r ):

cov (f q(hq
r ), f w (hw

r )) =

nD∑

i=1

kq(hq
r ,h

q
i )kw (hw

l ,h
w
i )
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Multiple Manifold Gaussian Process (MMGP)

Define the average process f = 1
M (f 1 + f 2 + . . .+ f M) ∼ GP(0, k̃)

+ 

+ 

+ 
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Bayesian Multi-View Localization

Joint probability

Goal: estimate the function value at some test sample ht

The training positions p̄L = vec{PL} and f (ht) are jointly Gaussian:

[
p̄L

f (ht)

] ∣∣∣∣HL,HU ∼ N
(

0nL+1,

[
Σ̃LL + σ2InL Σ̃Lt

Σ̃T
Lt Σ̃tt

])

The elements of Σ̃LL, Σ̃Lt and Σ̃tt are calculated by the multiple
manifold kernel

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl)

Note that the unlabelled points are implicitly considered in the
covariance terms
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Bayesian Multi-View Localization (cont.)

MAP/MMSE estimator:

The posterior

p(f (ht)|PL,HL,HU) ∼ N (f̂ (ht), var(f̂ (ht)))

is a multivariate Gaussian, where:

The MAP/MMSE estimator of f (ht) is given by:

f̂ (ht) = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

p̄L

The estimation confidence

var(f̂ (ht)) = Σ̃tt − Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

Σ̃Lt
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Data-Driven Source Localization: Ad Hoc Array Block Diagram

Multiple-Manifold Gaussian Process (MMGP)

RTF 
Estimation

Kernel 
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Kernel 
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Kernel 
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Data-Driven Source Localization: Ad Hoc Array Experimental Study

Recordings Setup

Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)

Region of interest: Source position is confined to a 2.8× 2.1m area

3 microphone pairs with inter-distance of 0.2m

Microphones 

Loudspeaker 

Air-conditioner 

Andiamo.mc 

Room panels 
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Data-Driven Source Localization: Ad Hoc Array Experimental Study

Experimental Results [Laufer-Goldshtein et al., 2017]

Setup:

Training: 20 labelled samples (0.7m resolution), 50 unlabelled samples

Test: 25 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Concatenated independent
measurements
(Kernel-mult)

Average of single-node
estimates (Mean)

Beamformer scanning
(SRP-PHAT [DiBiase et al., 2001])

5 10 15 20 25
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0.5

0.55

0.6

0.65

0.7
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0.9

SNR [dB]
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S
E

 [m
]

SRP−PHAT (aircond.)
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Mean (aircond.)
Mean (babble)
Kernel−mult (aircond.)
Kernel−mult (babble)
MMGP (aircond.)
MMGP (babble)
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Speaker Tracking on Manifolds

Outline

1 Manifold Learning

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds
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Speaker Tracking on Manifolds

Speaker Tracking

Scenario:

A source is moving in a reverberant enclosure

Measured by an ad-hoc network with distributed microphones

Microphones are arranged in M pairs - “nodes”

m-th node 
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Speaker Tracking on Manifolds Nonlinear State-Space

Bayesian Inference for Source Tracking

Standard state-space model

p(t) = b(p(t − 1)) + ξ(t)

q(t) = c(p(t)) + ζ(t)

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 112 / 145
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Bayesian Inference for Source Tracking

Standard state-space model

p(t)= b(p(t − 1)) + ξ(t)

q(t) = c(p(t)) + ζ(t)

Propagation model

Relates current and previous
positions using random walk
model or Langevin model

Independent of measurements

Noise statistic is unknown
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Bayesian Inference for Source Tracking

Standard state-space model

p(t) = b(p(t − 1)) + ξ(t)

q(t)= c(p(t)) + ζ(t)

Propagation model

Relates current and previous
positions using random walk
model or Langevin model

Independent of measurements

Noise statistic is unknown

Observation model

Relates current position to
measurements

Examples: TDOA readings or
SRP output

Noise statistic is unknown

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 112 / 145



Speaker Tracking on Manifolds Measurements

Data Model

Microphone signals:

The signal measured by the jth microphone in the mth node:

ymj(t) =
∑

τ

amj
t (τ)s(t − τ) + umj(t), 1 ≤ m ≤ M, j = 1, 2

t - time index

s(t) - source signal

amj
t - time-varying acoustic impulse response (AIR)

umj(t) - noise signal

Feature extraction:

Use the RTF:

Hm(t, f ) =
Am2(t, f )

Am1(t, f )
Represents the acoustic paths and is independent of the source signal
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Speaker Tracking on Manifolds Feature Extraction

Time-Varying Relative Transfer Function (RTF)

Instantaneous RTFs are estimated using the PSD and cross-PSD of
the microphone signals at node m (low-noise):

Ĥm
0 (t, f ) ' Φ̂m

21(t, f )

Φ̂m
11(t, f )

=

∑t+L/2
n=t−L/2 Y

m2(n, f )Ym1∗(n, f )
∑t+L/2

n=t−L/2 Y
m1(n, f )Ym1∗(n, f )

Time-varying RTFs are estimated by recursive smoothing:

Ĥm(t, f ) = γĤm
0 (t, f ) + (1− γ)Ĥm(t − 1, f )

Feature vectors are obtained by concatenating all relevant frequencies
and all nodes:

hm(t) =
[
Ĥm(t, f1), . . . , Ĥm(t, fF )

]

h(t) =
[
h1T (t), . . . ,hMT (t)

]T
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Speaker Tracking on Manifolds Feature Extraction

Time-Varying Relative Transfer Function (RTF) (cont.)

m-th node

We assume the availability of nL labelled RTFs with known positions:

{h}nLi=1 ⇔ {p}
nL
i=1

These training RTFs can be estimated with static sources, hence a
long observation interval L can be used and the recursive smoothing
is not required
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Speaker Tracking on Manifolds Hybrid Tracking Model

Hybrid Tracking [Laufer-Goldshtein et al., 2018b]

Combine TDOA-based approach with manifold-based approach:

Manifold-based propagation model (non-arbitrary)

TDOA-based observation model

Combines Classical TDOA-based localization with the entire acoustic
fingerprint

Low-
Dimensional 

Features 
(TDOAs)

Hybrid 
AlgorithmData-Driven 

Mapping

Known 
Mapping

High-
Dimensional 

Features (RTFs)

Estimate

Robustness 
to adverse 
conditions

Accuracy 
in optimal 
conditions
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Speaker Tracking on Manifolds State-Space Representation

Derivation of the Manifold-Based Propagation Model

Let h(t) be a test sample with unknown position p(t)

Define a subset of N ≤ nL neighboring training samples {hti}Ni=1:

{hti |‖h(t)− hti‖ < η(N), i = 1, . . . ,N, ti ∈ {1, . . . , nL}}

with η(N) the neighborhood radius

Let ft,c = [fc(h(t)), fc(ht1), . . . , fc(htN )]T denote their positions, with
c ∈ {x , y , z}
Joint normal distribution for ft,c and ft−1,c :

[
ft,c

ft−1,c

]
∼ N

(
02(N+1),

[
Σt,t Σt,t−1

ΣT
t,t−1 Σt−1,t−1

])
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Speaker Tracking on Manifolds State-Space Representation

Derivation of the Manifold-Based Propagation Model
(cont.)

The elements of Σt,τ are given by the multiple manifold kernel:

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl) =
1

M2

M∑

q,w=1

nL∑

i=1

kq(hq
r ,h

q
i )kw (hw

l ,h
w
i )

The conditional probability is then given by:

Pr
(
ft,c |ft−1,c

)
= N

(
Atft−1,c ,Qt

)

where
At = Σt,t−1Σ−1

t−1,t−1

Qt = Σt,t −Σt,t−1Σ−1
t−1,t−1ΣT

t,t−1
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Speaker Tracking on Manifolds State-Space Representation

Derivation of the Manifold-Based Propagation Model
(cont.)

The conditional probability induces a linear propagation equation:

ft,c = Atft−1,c + ξt

where ξt ∼ N (0N+1,Qt)

The propagation matrix At and the covariance of the innovation noise
Qt are time-varying and inferred from the manifold based on the
previous and current RTFs and their associated neighbors:

h(t − 1), {h(t−1)i}Ni=1,h(t), {hti}Ni=1

The position estimate of the test sample fc(h(t)) is propagated from
the previous position estimate, as well as the set of previous
neighborhood of the training samples, using the matrices At and Qt
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Speaker Tracking on Manifolds State-Space Representation

Derivation of the Manifold-Based Propagation Model
(cont.)

The full propagation model for the 3-D position

Let ft =
[
fTt,x , f

T
t,y , f

T
t,z

]T
:

ft = A3tft−1 + ξ3t

where A3t = At ⊗ I3 and ξ3t ∼ N
(
03(N+1),Q3t

)
with Q3t = Qt ⊗ I3
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Speaker Tracking on Manifolds State-Space Representation

TDOA-based observation Model

TDOA-based observations:

Define observations as range differences:

r =
[
r1, . . . , rM

]T

Known nonlinear relation to the source position
(requires microphones’ positions):

rm = g (p) =
∥∥p− qm2

∥∥
2
−
∥∥p− qm1

∥∥
2

The range differences can be extracted from
the estimated RTFs [Dvorkind and Gannot, 2005]:

r̂m(t) =
1

c
argmax

τ
ĥm(t, τ) ≡ IDFT

{
Ĥm(t, k)

}
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Speaker Tracking on Manifolds State-Space Representation

TDOA-Based Observation Model

A nonlinear observation model is formed by:

r̂t = g(ft) + ζt

where g(ft) = [gT (p(t)), gT (pt1), . . . , gT (ptN )]T and

g(p) =




∥∥p− q12
∥∥

2
−
∥∥p− q11

∥∥
2

...∥∥p− qM2
∥∥

2
−
∥∥p− qM1

∥∥
2




and ζt ∼ N
(
0M(N+1),Rt

)
is the observation error

Linearization of the observation model (Extended Kalman filter - EKF
[Smith et al., 1962]):

∇fg(ft) = blkdiag
{
∇pg(p(t)),∇pg(pt1), . . . ,∇pg(ptN )

}
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Speaker Tracking on Manifolds State-Space Representation

Tracking Algorithm

Space-state representation:

ft = A3tft−1 + ξ3t

r̂t = g(ft) + ζt

EKF: Additional notations

f̂(t|t) - The estimate of ft based on measurements up to time t

Π(t|t) - The associated error covariance matrix

Gt = ∇fg(f̂(t|t − 1)) - linearized measurement matrix

Rt - Measurement noise (diagonal) covariance matrix, which is
significantly lower for the training samples, since their position is
known

Γ(t) - Kalman gain
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Speaker Tracking on Manifolds State-Space Representation

Tracking Algorithm (cont.)

Time Update 

• Predicted Position: 

• Predicted Covariance: 

Measurement Update

• Kalman Gain:

• Updated position estimate:

• Updated Covariance:

Extended Kalman Filter
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Speaker Tracking on Manifolds Experimental Results

Experimental Results

Setup:

A 5.2× 6.2× 3m room with T60 = 300ms

M = 4 nodes with 0.2m distance between microphones

Region of interest: a 2× 2m square region

Training: 36 samples (0.4m resolution)

0.2m

Training 

samples

Mics

0.4m

5
.2

m
6.2m
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Speaker Tracking on Manifolds Experimental Results

Results

Test I:

Trajectory: straight line (for 3s)

Velocity: approximately 1m/s
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Speaker Tracking on Manifolds Experimental Results

Results

Test II:

Trajectory: sinusoid (for 5s)

Velocity: approximately 1m/s
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Speaker Tracking on Manifolds Experimental Results

Results

Compare with:

TDOA-based tracker (‘TDOA-EKF’) [Gannot and Dvorkind, 2006]: random walk
propagation model

Learning-based approach (‘KNN-KF’) [Wang and Chaib-Draa, 2013]: linear
observation model of labelled positions

200 300 400 500 600
0.2

0.25

0.3

0.35

0.4

0.45

Reverberation Time [msec]

R
M

S
E

 [m
]

 

 

KNN−KF
TDOA−EKF
Hybrid

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

SNR [dB]

R
M

S
E

 [m
]

 

 

KNN−KF 
TDOA−EKF 
Hybrid

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 128 / 145



Speaker Tracking on Manifolds Summary

Combining Data Modalities

Combine two data modalities of different types:

High-dimensional features - data-driven model with acoustic
fingerprints

Low dimensional features - known physical model (TDOA-based)

High-

Dimensional 

Features 

(RTFs)

Low-

Dimensional 

Features 

(TDOAs)

State 

Transition 

Model

Data-Driven Mapping

Training Information

Observation

Model

Bayesian 

Filtering

Known Mapping

Update

Predict

State-Space 

Model
Features Mappings

Estimate
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Speaker Tracking on Manifolds Summary

Kalman Filter
Gaussian Process 

Regression

Classical Modern

Known Analytic 
Model Data-Driven 

Model

TDOA
Acoustic 

Fingerprint

B. Laufer-Goldshtein, R. Talmon, S. Gannot Speaker Localization on Manifolds A Coruña, Spain, 2.9.2019 130 / 145



Conclusions

Conclusions

Summary

Manifold learning approach for source localization

Data-driven manifold inference

Location is the controlling variable of the RTF manifold

Devise algorithms for source localization and tracking using either
regularized optimization or Bayesian inference

Presents data fusion of several manifolds
Dynamics of the source are learned from the variations of the
corresponding RTFs on the manifold

Data-driven, training-based approach, was successfully applied to
real-life recordings

The dynamics on the manifold can be transformed to linear
propagation for the source moving in tracking scenarios
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Conclusions

Challenges and Perspectives

Challenges

Robustness to environmental changes:

Mismatch between train and test
Movements

Can we apply the approach to multiple concurrent speakers?

Beamforming is more complicated as it targets enhanced speech
rather than its location. Can we extend the approach?

A first attempt using projections to the inferred manifold
[Talmon and Gannot, 2013]
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