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ABSTRACT
The design of operators (e.g. filters) for Signal or Image
Processing requires an algebraic decomposition structure, to
represent the family of operators considered, and statistical
optimization techniques, defined over the space of operator
decompositions or over another isomorphic structure.   This
paper surveys a technique for designing set operators based on
Mathematical Morphology decompositions and optimization
algorithms over Boolean lattices. This technique has an
intrinsic discrete nature and  usually depends on combinatorial
optimization algorithms.  Its most remarkable quality is the
conjunction of formality and pragmatism. In fact, it is both a
strong Mathematical theory and a powerful computational
tool.

1. INTRODUCTION

A central problem in Binary Image Analysis is the design of
efficient image processing procedures to perform desired
tasks.  Recent research has addressed the construction of
computational systems to design automatically image
procedures. These systems require suitable knowledge
representation formalisms, for high level of abstraction
description of the desired procedure, and computational tools,
for translating the formal description into a computational
realization. In this paper, we survey a theory for the
construction of a family of such systems, that uses examples
(i.e., collections of input-output image pairs) as the knowledge
representation formalism [2][9][14].

A natural model for a procedure used in binary image analysis
is a set mapping (operator) applied to a discrete random set.
Procedure design from examples can be modeled by statistical
estimation of set operators from observations of input-output
image pairs. Formulation of this statistical approach can be
decomposed  in two basic steps: (1) estimation of the operator
input S and ideal output I  random sets; (2) design  of  a set
operator Ψ such that Ψ(S) is statistically close to I . The
second step can be formulated as an  optimization problem:
given a family  ℑ of set operators, where the distance between
the ideal I  and estimator Ψ(S) random sets is measured by a
probabilistic error measure. An operator Ψopt  is called optimal

in ℑ if it posses minimum error. If all elements of ℑ can be
characterized by some algebraic representation, then
optimization can be viewed as finding an efficient
representation defining an optimal operator.

Mathematical Morphology is a general framework to study set
operators. A central paradigm in Mathematical Morphology is
the representation of set operators by concatenations of
erosions and dilations via the operations of composition,
intersection, union and complementation. This paradigm can
be stated by the use of a formal language: the morphological
language, whose vocabulary are erosions, dilations,
intersection, union and complementation. Using the
morphological  language to represent set operators,
optimization consists of finding a phrase structure and
estimating the parameters, called structuring elements, that
characterize an optimal operator.

The set operators that are translation invariant and locally
defined in a window W are called W-operators. Any W-
operator can be represented by a single phrase structure, called
the standard morphological representation [10].  Therefore,
optimization in the space of W-operators consists in estimating
the structuring elements of the standard morphological
representation.

This paper reviews techniques for designing W-operators and
sub-families of W-operators. Following this Introduction,
Section 2 presents the system modeling adopted. Section 3
recalls the standard morphological representation of  W-
operators. Section 4 presents the statistical optimization
formulation. Section 5 studies the estimation of optimal
operators.  Section 6 gives a detailed computational  procedure
for estimating operators. Section 7 presents an application
example. Finally, Section 8 discusses the state of the art in the
field.

2. SYSTEM MODELING

We call S, I  and Ψ(S) the observation, ideal and estimator
random processes, respectively. If S is a realization of S, then
Ψ(S) is the corresponding realization of Ψ(S). The distance of
I  and Ψ(S) is measured by a probabilistic error ε[ I  ,Ψ(S)].



Assuming that operators belong to an operator family ℑ, an
optimal operator relative to ℑ is an operator Ψopt ∈ ℑ such
that ε[ I  ,Ψopt(S)] ≤  ε[ I  ,Ψ(S)], for all Ψ ∈ ℑ.

Operationally, the optimization model includes a system
transformation Ξ such that S = Ξ(I ), that is, the observation
process is assumed to be the output of some system operating
on the ideal process. Optimization  involves   minimizing the
error ε[ I  ,Ψ( Ξ(I )]. In general,  Ξ is a multi-valued image
operator, meaning that given a realization I of the ideal image,
there are many possible output realizations Ξ(I). Essentially,
there is an inverse problem:  we wish to design Ψ  to recover
information observed through  Ξ.

A much studied application occurs when Ξ is a degradation
transformation: the ideal image is obscured by noise. Ξ can
take many forms, depending on the physical system causing
the degradation. For instance, if N is a binary process, then the
signal-union noise model is defined by the transformation S =
Ξ(I ) = I  ∪N. Rather than union noise, the noise might be
subtractive, so Ξ(I ) = I  -N. There can be two noise processes
N1 and N2, with the degradation process both adjoining and
deleting pixels, so that Ξ(I ) = (I  ∪ N1) - N2.

3. STANDARD REPRESENTATION OF
W-OPERATORS

Let E denote the integer plane Z2. A binary image  X  is a
function from E to {0,1). Let P(E) be the power set of E. An
equivalent representation of the binary image X  is the element
X of P(E)., defined by, for any x∈X ⇔ X(x)=1. In this paper,
we will use both representations for binary images, denoting
the function and the set representation by the same upper case
letter.

The set E is an Abelian group with respect to the vector
addition, denoted by +. The zero element of (E,+) is the origin
of E and is denoted by o. Let X ∈ P(E) and u∈E. The
translation of X by u is the element of P(E) defined by Xu  =
{ x∈E: x-u ∈ X}.

A mapping from P(E) to P(E) is called a binary image
operator or, for simplicity, just operator. We denote set
operators by upper case Greek letters Λ, Ψ, ...  A set operator
Ψ is called translation invariant iff, for any u∈E and X ∈
P(E), Ψ ( Xu)= Ψ ( X)u. Let W  be a finite subset of E. A set
operator is called locally defined in the window W  iff, for any
x∈E and X∈ P(E),   u∈Ψ(X ) ⇔  u∈Ψ (X∩Wu). A set operator
that is both translation invariant and locally defined in W is
called a W-operator. The family of  W-operators is denoted
ΨW. The W-operators have a standard morphological
representation [1],[10].

The next definitions are necessary for presenting this
representation. The kernel of an operator   Ψ∈ΨW is the
subcollection of P(W) defined by K(Ψ)={X∈ P(W): o∈Ψ (X)}.

Let A,B ∈ P(W) such that A ⊂ B. The sup-generating operator
characterized by the structuring elements A and B is the set
operator defined by, for any X∈ P(E),

ΛA,B(X)={x∈ E: A ⊂  X-x∩W ⊂ B}.

The subcollection [A,B] of P(W) defined by
[A,B]={ X∈ P(W): A ⊂  X  ⊂ B } is called an interval. Any W-
operator Ψ can be represented by an union of sup-generating
operators characterized by structuring elements in K(Ψ), that
is, for any X ∈ P(E),

Ψ (X) = ∪{ ΛA,B(X):[A,B] ⊂ K(Ψ)}.

Therefore, in order to characterize a W-operator it is enough to
have its kernel. This representation can also be simplified by
the introduction of the notion of basis of a W-operator.

Any W-operator Ψ can also be represented by, for any X ∈
P(E),

Ψ (X) = {x∈ E: ψ(X-x ∩ W) = 1},

where ψ is a Boolean function from P(W) to {0,1} such that,
for any Y ∈ P(W),

 ψ (Y) = 1 ⇔ Y ∈ K(Ψ).

ψ is called the window function of Ψ.

4. STATISTICAL OPTIMIZATION
FORMULATION

Estimation of I from Ξ(I ) by a W-operator Ψ requires finding a
Boolean function ψ to minimize error [2].  Since Ψ is
translation-invariant, we make the modeling assumption that I
and Ξ(I ) are jointly strict-sense stationary.  This means that, if
X is the random vector of binary values in Wz and Y = I (z),
then the joint probability distribution for X and Y is
independent of z, so that estimating Y from X yields a
translation-invariant operator.

For operator optimization, we require a loss function l: {0,1} 2

→ [0, ∞), where l(a, b) measures the cost of the difference
between a and b, with l(0, 0) = l(1, 1) = 0.  Relative to the
loss function (and owing to stationarity), operator error,
Er〈Ψ〉, is given by the expected loss from estimating I (z) by
Ψ(Ξ(I ))(z)),

Er〈Ψ〉 = Er[I ,Ψ(Ξ(I ))] = E[l(I (z), Ψ(Ξ(I ))(z))],

where z is an arbitrary pixel.

An optimal image operator is one whose Boolean function ψ
minimizes Er〈Ψ〉. Although there can be more than one
operator achieving minimal error, we shall denote "the"



optimal operator and its window function by Ψopt and ψopt,
respectively, the convention being that, from the standpoint of
operator optimization, all operators possessing minimal error
are equivalent.
     The mean-absolute-error (MAE) loss function is defined by

l(y, ψ(x)) = |y − ψ(x)|

Since y and ψ(x) are binary valued, the loss function is
numerically defined by l(1, 0) = l(0, 1) = 1 and l(0, 0) = l(1, 1)
= 0.  The associated error is the mean absolute error (MAE)
and is denoted by MAE〈Ψ〉.  Because l(1, 0) = l(0, 1), it
follows that the optimal Boolean function and the error of the
corresponding optimal set operator are given, respectively, by
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5. ESTIMATION OF OPTIMAL
OPERATORS

In practice, the optimal operator is statistically estimated from
image realizations by estimating the conditional expectations
composing the decision criterion [2].  This is accomplished by
taking image-pair realizations (I1, S1), (I2, S2),.., (Im, Sm) of I
and S = Ξ(I ), and forming estimators

)0(ˆ ,xle  = Ê  [l(Y, 0) | x]

)1(ˆ ,xle  = Ê [l(Y, 1) | x],

where Ê  is the estimation of the expectation.  

The designed estimate of the optimal operator, optΨ̂  (with

window function optψ̂ ),  is determined by the set K[ optψ̂ ] of

observation vectors x for which )1(ˆ ,xle  < )0(ˆ ,xle

There are two types of estimation error: x ∈ K[Ψopt] but x ∉

K[ optΨ̂ ]; and x ∉ K[[Ψopt] but x ∈ K[ optΨ̂ ].  Therefore,

optΨ̂  is the suboptimal operator being used in place of Ψopt.

For the MAE loss function, we use the estimator
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for k = 0, 1, where Card denotes set cardinality and the
numerator and denominator give the number of times the
sample ideal images are k-valued given x and the number
times x is observed across the sample, respectively. x ∈
K[ MAEΨ̂ ] if and only if )|0(ˆ)|1(ˆ xx kPkP =>= .

     The error increase is the error for taking the suboptimal

operator optΨ̂  in place of the optimal operator Ψopt, that is, the

difference Er〈 optΨ̂ 〉 − Er〈Ψopt〉]. In fact, K[ optΨ̂ ] is a random

collection depending on the realizations selected.  Thus,

Er〈 optΨ̂ 〉 − Er〈Ψopt〉 is a random variable and we measure the

precision with which optΨ̂  estimates Ψopt by the expected

error increase, ρopt = E[Er〈 optΨ̂ 〉 − Er〈Ψopt〉].

6. DETAILED DESIGN PROCEDURE

Design procedure of set operators for binary image analysis is
composed of two main steps [2]:  (1) estimation of conditional
probabilities; (2) computation of an operator of minimal cost
in accordance with a given loss function and the estimated
conditional probabilities.  The detailed design procedure may
be outlined as follows:

1. Shift the window to all pixel locations within the
observation image;
2. At each location, record the observed shape;
3. At each location, record the value of the pixel in the ideal
image that is colocated with the window origin in the
observation image;
4. For each shape, tally the number of times a one is observed
in the ideal image and the number of times a zero is observed;
5. For the operator representation select, for each shape
observed, the value (0 or 1) of minimal cost;
6. To reduce the representation cost, perform logic
minimization assuming that the unobserved templates are
don’t cares;

Except for the fact that a large sample may be required, the
computational cost of the first five steps is low; however, the
computational cost of the sixth step may be high. Step 5
creates a truth table defining a family of statistically
equivalent Boolean functions.  Each function in the family
possesses a large number of representations.  An ideal
procedure for logical reduction would give the best
representation (i.e., the one using a minimal number of logic
gates) among all possible representations of all equivalent
functions.  In practical applications, such a procedure is
usually not available.  Typically, the best canonical
representation of the equivalent Boolean functions (or,
equivalently, the basis of the corresponding set operator) is



found. The Incremental Splitting of Intervals (ISI) algorithm
was created to perform that efficiently on functions with a
large number of variables [2][9].

7. AN APPLICATION EXAMPLE

In this section, we apply the theory presented to design a W-
operator that detects a texture in the binary image of a map.
The training example is a pair of images, where the input (Fig.
1) is a rectangular region of the map and the output (Fig. 2) is
the  desired texture  found in this region.

The application of the designed operator on the test image
(i.e., the complete image of the map - Fig. 3) detects, with
small error, the desired texture (Fig. 4).

The window used is the 5x5 square centered at the origin. The
training sample is of size 90,126. There are 5,098 distinct
observed examples, 5,024 negatives and 74 positives.
Learning time is 1s. The resulting basis is composed by 12
intervals.

Figure 1.  Observed image.

8. DISCUSSION

The theory presented gives a structure to the problem of
designing set operators over discrete Boolean lattices, but it is
far from being complete.

The main subjects under research nowadays are the design of
operators that depend on large windows, the search of optimal
morphological  language  structures  to  represent W-operators

Figure 2.  ideal image.

Figure 3. Test image.

and the generalization of the design approach to Signal and
Gray-Scale Image Processing.

Figure 4. Resulting image.

The problem of designing operators that depend on large
windows is classifying correctly a very large number of "don't
cares" that appear by the relatively small number of training
data available. The solution for this is adding external
knowledge about the family of W-operators considered.  This
is done technically by introducing algebraic constraints on the
family of W-operators [8][9]. Results in this direction have
been obtained for increasing operators [4][19][15], envelope
constraint [13] and iterative operators [5]. Particularly, the



increasing and iterative constraints can lead to hard
combinatorial problems.  Besides algebraic constraint, one can
also employ prior information for either the operator [20] or
the probability structure [21].

Optimizing the representation structure of Boolean functions,
in general, is not the best that can be done for optimizing the
representation of W-operators. These operators have local and
translation invariant properties that can not be explored when
looking just to Boolean functions.  The proper view of the
problem is looking for efficient structures for phrases of the
morphological language from syntactical transformations of
the standard representation. However, this formulation leads
to extremely hard combinatorial problems. Some preliminary
results on this subject are the automatic approach for
computing the equivalence between morphological
representations [10], the compact representation [12] and the
generic algorithm for finding equivalent compositions of
dilations and erosions [11].

The generalization of the standard morphological
representation to operators defined between complete lattices
[3] gives the algebraic framework to the generalization of the
statistical design technique to discrete function (i.e., signals or
images) operators. In this more general case,  we do not have a
Boolean lattice, but we still have a finite complete lattice well
suited for statistical estimation and combinatorial optimization
techniques. Some preliminary results on representation [6] and
design of discrete functions operators [7 ][16][17][18][22]
show the potential of the approach and give a new dimension
to non linear operator design.
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