
Passive Attack Against the M2AP Mutual Authentication
Protocol for RFID Tags ∗

Mihály Bárász
ELTECRYPT Research Group,

Eötvös University
Budapest, Hungary

klao@cs.elte.hu

Balázs Boros
ELTECRYPT Research Group,

Eötvös University
Budapest, Hungary
borbal@cs.elte.hu

Péter Ligeti
ELTECRYPT Research Group,

Eötvös University;
Alfréd Rényi Institute of Mathematics

Budapest, Hungary
turul@cs.elte.hu

Krisztina Lója
ELTECRYPT Research Group,

Eötvös University;
University of Technology and Economics

Budapest, Hungary
loja@math.bme.hu

Dániel A. Nagy
ELTECRYPT Research Group,

Eötvös University
Budapest, Hungary

nagydani@epointsystem.org

Abstract - In this paper, we present a passive attack for finding
out the secrets used in M2AP (Minimalist Mutual Authentication
Protocol), which is an authentication protocol between RFID tags
and RFID readers. We describe an algorithm that breaks the pro-
tocol after eavesdropping a few consecutive rounds of communica-
tion. After two eavesdropped runs of the protocol, the attacker can
learn the identification number of the tag and some of the common
secrets shared by the tag and the reader. For finding out all of the
secrets, the attacker needs to eavesdrop some more rounds of the
protocol. This means that in the subsequent rounds the attacker
can successfully impersonate both the targeted tag and the reader.

Keywords - RFID, Tag, Reader, Mutual Authentication, M2AP,
Passive Attack

I. INTRODUCTION
In a mutual authentication protocol for RFID applications, the goal is
to prevent unauthorized readers from reading some or all information
stored in the RFID tags, while providing authorized readers with the
capability of distinguishing between authorized and unauthorized tags.
The security of such a protocol depends on the costs that it imposes
on potential attackers who might want to impersonate the either tags
or the readers without being authorized to do so.

In the particular case of M2AP, Peris-Lopez et al. [1] propose a
protocol in which authorization is provided by a common secret shared
by authorized readers and tags. The goal of reader authentication is to
prevent unauthorized readers from reading the identification number
of authorized tags. Note that for some applications this is not suf-
ficient: in military applications, authorized tags must not respond to
unauthorized readers at all.

M2AP sets forth the very attractive, but also very challenging goal
of low complexity in tags while maintaining adequate levels of secu-
rity. It refrains from using traditional cryptographic primitives, doing
just elementary arithmetics in tags. While we do not claim that this
ambitious goal cannot be achieved, in this paper we demonstrate that
M2AP certainly falls short of achieving it.

M2AP is a slight improvement over LMAP (Lightweight Mutual
Authentication Protocol) proposed by Peris-Lopez et al. [2], which
similarly uses elementary bitwise operations. LMAP can be broken
slightly easier than M2AP. For a passive attack against LMAP see
Bárász et al. [3].

Recently, Li and Wang [4] have pointed out some weaknesses of
M2AP and LMAP as well. The authors show two kinds of active at-
∗This research was partially supported by Jedlik Ányos Program NKFP2-00027/2005,

and MIK Grant

tacks against the protocol. The first one is able to de-synchronize the
communication between the tag and the reader, the second one is a
man-in-the-middle attack which is able to get the whole secret key of
the tag after a de-synchronization phase. The authors detail their at-
tack against LMAP and go on to claim that the attack can be adapted
for M2AP easily. We will see that this is not at all trivial to find out
two of the four secret keys used in the protocol. It requires more work
than in the case of LMAP.

Our passive attack is passive in the sense that it uses only eaves-
dropping, so we do not have to take any technical assumption about the
protocol, carrying out the attack is possible under the correct working
of the protocol. A MATLAB implementation of our attack can be
found at the homepage of ELTECRYPT Research Group [5].

In this paper, we show a fully passive attack against the protocol,
which is able to get every secret information stored in the tag only by
eavesdropping a few consecutive rounds of the communication. The
rest of this paper is organized as follows. In Section II., we introduce
the M2AP protocol of Peris-Lopez et al [1]. In Section III., we point
out the main weaknesses of the protocol. In Section IV., we present
our passive attack step by step. In Section V., we review the possible
attacks and finally, in Section VI., we give some general remarks on
security of protocols.

II. THE M2AP PROTOCOL
We give a brief introduction to M2AP. For more details please refer
to [1]. Each tag has a unique identification number (ID) that never
changes. Also, each tag has an index-pseudonym (IDS) and four
secret keys (K1, K2, K3 and K4) that must be updated after every
authentication round. Before each authentication, the reader generates
two random numbers (n1 and n2). We will consider only the case of
one tag. The protocol uses bitwise XOR (⊕), bitwise OR (∨), bitwise
AND (∧) and addition modulo 296 (+).

K1, K2, K3, K4, ID, IDS, n1, n2 are vectors of 96 bits. The nth
round of the protocol consists of the following four steps (the upper in-
dex between the parentheses denotes the number of the present round):

1. Tag Identification

Reader → hello→ Tag

Reader ← IDS(n) ← Tag

After receiving a hello message from the reader, the tag sends its
actual IDS to the reader. By means of IDS, the reader will be able to

1

access the tag’s secret keys (K1, K2, K3 and K4). Furthermore, the
reader is also able to access the tag’s ID.

2. Reader Authentication

Reader → A(n) := IDS(n) ⊕K
(n)
1 ⊕ n

(n)
1 → Tag

Reader → B(n) := (IDS(n) ∧K
(n)
2) ∨ n

(n)
1 → Tag

Reader → C(n) := IDS(n) + K
(n)
3 + n

(n)
2 → Tag

From message A, the tag can calculate the random value denoted
by n1. Knowing n1, the tag can also calculate message B and if it is
the same as message B received from the reader, the tag establishes
that the reader knows K1 and K2. Thus, the authentication of the
reader is ready. From message C, the tag can calculate the random
number n2.

3. Tag Authentication

Reader ← D(n) := (IDS(n) ∨K
(n)
4) ∧ n

(n)
2 ← Tag

Reader ← E(n) := (IDS(n) + ID)⊕ n
(n)
1 ← Tag

Once these verifications are performed, the tag will generate the
answer message D and E to authenticate and transmit its static iden-
tifier in a secure way.

4. Updating the Values of IDS, K1, K2, K3 and K4

IDS(n+1) :=
`
IDS(n) + (n

(n)
1 ⊕ n

(n)
2)
´⊕ ID,

K
(n+1)
1 := K

(n)
1 ⊕ n

(n)
2 ⊕ (K

(n)
3 + ID),

K
(n+1)
2 := K

(n)
2 ⊕ n

(n)
2 ⊕ (K

(n)
4 + ID),

K
(n+1)
3 := (K

(n)
3 ⊕ n

(n)
1) + (K

(n)
1 ⊕ ID),

K
(n+1)
4 := (K

(n)
4 ⊕ n

(n)
1) + (K

(n)
2 ⊕ ID).

After a successful mutual authentication, the tag and the reader
also update the index-pseudonym and the four secret keys.

III. WEAKNESSES
Every bit affects only the bits which are to the left from that given
bit. Hence, each bit depends only on bits with the same or bigger
indices. In particular, the least significant bits are independent of every
other bit. This is so because M2AP uses only bitwise operations and
addition modulo 296.

Taking into account only the least significant bits, XOR operation
and addition modulo 296 are the same. We can use this observation
to deduce the least significant bits. In 4.1.1 and 4.2.1 we do not take
difference between ⊕ and + (and we use the notation ⊕).

The bitwise OR and AND operations in messages B and D are the
other weak points of the protocol. From messages B and D, one can
easily gain information about the random numbers n1 and n2 with the
help of the set and reset bits of IDS, respectively.

The addition modulo 296 poses no difficulty if we know every bit
on the right hand side.

IV. STEPS OF FINDING OUT SECRETS
In this section, we present our solution for finding out the secret iden-
tification number and the secret keys.

Let us denote the kth bit of M in round n by [M (n)]k for M
∈ {A, B, C, D, E, K1, K2, K3, K4, IDS, n1, n2 }. For example,
[K

(n)
1]96 is the least significant bit of key K1 in round n. [ID]k will

mean the kth bit of ID in any of the rounds, since this is a constant
sequence of bits.

Since every information is communicated via an insecure
public radio channel, after round n, IDS(n) and messages

A(n), B(n), C(n), D(n), E(n) are known to the attacker eavesdrop-
ping the communication between the tag and the reader. We will de-
note the bits just obtained by underlining them (e.g. [n

(n)
1]k).

An attacker can get the secrets stored in the tag in two steps: the
identification number ID of the tag , two of the secret keys K1 and K3

and the random numbers n1 and n2 can be find out by case-by-case
analysis and simple arithmetic operations on the eavesdropped data,
to get the remaining two secret keys K2 and K4 we need some other
techniques.

4.1 Finding out K1, K3, n1, n2 and ID

In this subsection we show the following: if the attacker can eaves-
drop two consecutive rounds of the protocol of the same tag, i.e. she
knows IDS(n), A(n), B(n), C(n), D(n), E(n), IDS(n+1), A(n+1),
B(n+1), C(n+1), D(n+1) and E(n+1), then she can calculate easily
n

(n)
1 , n

(n)
2 , K

(n)
1 , K

(n)
3 , n

(n+1)
1 , n

(n+1)
2 , K

(n+1)
1 , K

(n+1)
3 , K

(n+2)
1 ,

K
(n+2)
3 , IDS(n+2) and ID.

4.1.1 The Least Significant Bits of K1, K3, n1, n2 and ID

The attack will use only two consecutive authentications for finding
out the least significant bits of K1, K3, n1, n2 and ID, so let us
suppose that the attacker knows the following bits only: [IDS(n)]96,
[A(n)]96, [B(n)]96, [C(n)]96, [D(n)]96, [E(n)]96, [IDS(n+1)]96,
[A(n+1)]96, [B(n+1)]96, [C(n+1)]96, [D(n+1)]96 and [E(n+1)]96.
First, the attacker can calculate [n

(n)
2]96:

[n
(n)
2]96 = [E(n)]96 ⊕ [IDS(n+1)]96.

Then she can obtain [K
(n)
3]96 from message C:

[K
(n)
3]96 = [C(n)]96 ⊕ [IDS(n)]96 ⊕ [n

(n)
2]96.

The next bit what she can calculate is [ID]96:

[ID]96 =

= ([K
(n)
1]96 ⊕ [ID]96)⊕ ([K

(n+1)
1]96 ⊕ [ID]96)⊕

⊕[K
(n)
3]96 ⊕ [n

(n)
2]96 =

= ([A(n)]96 ⊕ [E(n)]96)⊕ ([A(n+1)]96 ⊕ [E(n+1)]96)⊕

⊕[K
(n)
3]96 ⊕ [n

(n)
2]96,

where the first equality follows from the updating formula of K
(n+1)
1 .

After the attacker has found out ID, she can obtain [n
(n)
1]96 and

[K
(n)
1]96 similarly as above.
First, the attacker can calculate [n

(n)
1]96 with the help of the defi-

nition of E(n):

[n
(n)
1]96 = [E(n)]96 ⊕ [IDS(n)]96 ⊕ [ID]96.

Finally, she can get [K
(n)
1]96 from the definition of A(n):

[K
(n)
1]96 = [A(n)]96 ⊕ [IDS(n)]96 ⊕ [n

(n)
1]96.

So far we have shown how the attacker can find out [n
(n)
1]96,

[n
(n)
2]96, [K

(n)
1]96, [K

(n)
3]96 and [ID]96. After that she can calcu-

late easily [K
(n+1)
1]96 and [K

(n+1)
3]96 with the help of their updating

formulas, [n(n+1)
1]96 from [E(n+1)]96, and with these bits, she can get

[n
(n+1)
2]96 also on an easy way. After the attacker has computed these

bits, she can get [IDS(n+2)]96, [K(n+2)
1]96 and [K

(n+2)
3]96 also from

the updating formulas.

2

4.1.2 The Bits Immediately Before the Least Significant Ones in
K1, K3, n1, n2 and ID

The only thing an attacker needs to do is setting up the adequate equa-
tions applied in 4.1.1. The main point is that the attacker can handle
addition modulo 296 for the 95th bits if she knows the 96th bits of
the addends. For example, if [K

(n)
3]96 ∧ [ID]96 = 1 then updating

formula of [K
(n+1)
1]95 gets the following form:

[K
(n+1)
1]95 = [K

(n)
1]95 ⊕ [n

(n)
2]95 ⊕ [K

(n)
3]95 ⊕ [ID]95 ⊕ 1.

4.1.3 The More Significant Bits of K1, K3, n1, n2 and ID

It is clear that the attacker can derive all the bits of K1, K3, n1, n2 and
ID using the methods described in 4.1.1 and 4.1.2. Here we can see
the main weakness of M2AP, i.e. we can get the only static secret iden-
tification number ID after eavesdropping only two consecutive rounds
of communications.

4.2 Finding out K2 and K4

So far the attacker has not used messages B and D. These are contain-
ing information about K2 and K4. Namely, the following implications
are hold for n ≤ i and 1 ≤ k ≤ 96:

([IDS(i)]k = 1) ∧ ([n
(i)
1]k = 0)⇒ [B(i)]k = [K

(i)
2]k,

([IDS(i)]k = 0) ∧ ([n
(i)
2]k = 1)⇒ [D(i)]k = [K

(i)
4]k.

This means that the attacker learns about one fourth of keys K2

and K4 in each round of the protocol. With this information she can
derive the whole of K2 and K4 after eavesdropping a few consecutive
rounds of the protocol. This can be done in three different ways.

4.2.1 First Way

First, we show how the attacker can obtain K
(n+192)
2 and K

(n+192)
4

after 192 protocol runs. She can calculate [K
(n+2)
2]96:

[K
(n+2)
2]96 = [K

(n+1)
2]96 ⊕ [n

(n+1)
2]96 ⊕ [K

(n+1)
4]96 ⊕ [ID]96 =

= ([K
(n)
2]96 ⊕ [n

(n)
2]96 ⊕ [K

(n)
4]96 ⊕ [ID]96)⊕ [n

(n+1)
2]96⊕

⊕([K
(n)
4]96 ⊕ [n

(n)
1]96 ⊕ [K

(n)
2]96 ⊕ [ID]96)⊕ [ID]96 =

= [n
(n)
1]96 ⊕ [n

(n)
2]96 ⊕ [n

(n+1)
2]96 ⊕ [ID]96.

Clearly, she can calculate [K
(n+2)
4]96 on a similar way, and can

get the following:

[K
(n+2)
4]96 = [n

(n)
1]96 ⊕ [n

(n)
2]96 ⊕ [n

(n+1)
1]96 ⊕ [ID]96.

If the attacker has eavesdropped more rounds of the protocol (thus
she has obtained random numbers n

(n+2)
1 , n

(n+2)
2 , n

(n+3)
1 , n

(n+3)
2 ,

etc. by the way described in 4.1), then she can calculate [K
(n+3)
2]96,

[K
(n+3)
4]96, [K

(n+4)
2]96, [K

(n+4)
4]96, etc. by the help of the updating

formulas. With this knowledge she can handle the addition modulo
296 for the 95th bits in the updating formulas for K

(n+3)
2 , K

(n+3)
4 ,

K
(n+4)
2 , K(n+4)

4 , etc. This means that she can repeat a similar method
like the above for finding out [K

(n+4)
2]95 and [K

(n+4)
4]95. If the at-

tacker continues this procedure with the 94th, 93rd, etc. bits, then she
can learn one more bit of K2 and K4 if she has eavesdropped two
more rounds. It follows that after 192 runs of the protocol, she will
know K

(n+192)
2 and K

(n+192)
4 .

4.2.2 Second Way

The attacker can use the above described method for learning K2 and
K4, but she can accelerate it if she takes into account the information
contained in B and D. In the previous part we have shown how an
attacker can learn a new bit of K2 and K4 after two protocol runs. To
show how one can improve on that procedure we just give an example.
Let us suppose that one has calculated [K

(n+2)
2]96 and [K

(n+2)
4]96.

If she is lucky then she knows [K
(n+1)
2]96 or [K

(n+1)
4]96 with the

help of B(n+1) or D(n+1), as described at the beginning of 4.2. In
this fortunate case, she can obtain the other one with the help of the
updating formulas. For instance, if she knows [K

(n+1)
2]96, then she

can calculate [K
(n+1)
4]96 from the updating formula of K

(n+1)
4 . If she

is more lucky, then she also knows [K
(n)
2]96 or [K

(n)
4]96 with the help

of B(n) or D(n). In this case, she also can calculate the other one on
a similar way to the above mentioned case. We do not go into details,
but it is easily shown that these fortunate cases have the following
probabilities: the attacker has no gain from this improvement with
probability 1

2
, gains one round with probability 1

4
and gains 2 rounds

with probability 1
4

. This means that the expected value of the possible
gain is 3

4
rounds. It means that the expected value of the needed rounds

for fully break the protocol is decreasing from 192 to 120 (=192- 3
4
·96).

4.2.3 Third Way

The attacker has another possible way of determining K2 and K4. In
this attack, she needs to divide the 96-bit long vectors into twelve 8-
bit long blocks and first to take into account only the 8 least significant
bits. All she needs to do is testing all the 216 possible K

(n)
2 − K

(n)
4

pairs. After she has fixed such a pair then she can generate K
(n+1)
2 ,

K
(n+1)
4 , K

(n+2)
2 , K

(n+2)
4 , K

(n+3)
2 , K

(n+3)
4 , etc. with the help of up-

dating formulas and random numbers obtained by the above described
method. Of course there are restrictions hidden in message B and D.
Namely, as mentioned previously, about one fourth of K2 and K4 is
given in each round. Another observation is that one can get only one
pair from different initial K2 −K4 pairs after some updating. For ex-
ample, if the last 7 bits of K2 and K4 are the same, and only the first
bits differ then after updating one gets the same pairs from the previ-
ously different ones. One can observe that after a few rounds from the
216 originally possible K

(n)
2 - K

(n)
4 pairs there will be only a few left.

Table 1 shows that how many different pairs of K
(i+1)
2 - K

(i+1)
4 are

possible in round i + 1, after an attacker has eavesdropped i rounds of
the protocol (we tested with a MATLAB-implementation 1000 times
and counted the different pairs). The table shows that after 6 eaves-
dropped rounds of the protocol there is only one possible K

(n+6)
2 -

K
(n+6)
4 pair with probability approx 0.9. The expected value of the

needed rounds for having a unique K2 - K4 pair is less than 4.5 ac-
cording to our simulations.

different pairs 1 2 3 4 5 6 > 6
after 3 rounds 90 144 103 123 44 91 405
after 4 rounds 426 308 101 59 29 31 46
after 5 rounds 714 220 39 13 7 4 3
after 6 rounds 904 88 6 1 1 0 0

TABLE 1 - NUMBERS OF POSSIBLE K2 - K4 PAIRS ACCORDING TO

THE TEST-SIMULATION

If the attacker knows the least significant 8 bits of K
(i)
2 and K

(i)
4

then she can handle the modulo 296 addition for the 88th bits in the
updating formulas of K

(i+1)
2 and K

(i+1)
4 . Hence, she can repeat the

whole procedure for bits produce indices between 81 and 88, and so
on. There are twelve 8-bit blocks, so the attacker is able to get K2 and
K4 after eavesdropped about 54 rounds of the protocol (=12 · 4.5).

3

V. ATTACKS
In this section we summarize the possible attacks based on our method.

1. Tracking After eavesdropping two consecutive rounds of the
protocol, the attacker learns the unique identification number ID of
the tag, as described in Section 4.1.3. Thus the tags can be tracked by
unauthorized parties.

Remember that M2AP is a mutual authentication protocol. Next we
point out that one can attack the authentication of both directions.

2. Impersonating the Reader The attacker can successfully im-
personate the reader and authenticate itself to a legitimate tag in the ith
round without knowing K

(i)
2 and K

(i)
4 . It works, because in this case

she can choose random numbers n
(i)
1 and n

(i)
2 appropriately. Only

those bits of K
(i)
2 are relevant in message B(i), which have an index

from the following set:

B(i) := {1 ≤ k ≤ 96 | ([IDS(i)]k = 1) ∧ ([n
(i)
1]k = 0)}.

For the sake of simplicity we introduce the following sets:

I(i)
0 := {1 ≤ k ≤ 96 | [IDS(i)]k = 0},

I(i)
1 := {1 ≤ k ≤ 96 | [IDS(i)]k = 1},

K(i)
2 := {1 ≤ k ≤ 96 | the attacker knows [K

(i)
2]k}.

When generating n
(i)
1 , the attacker needs to set [n

(i)
1]k to a set bit for

all k ∈ I(i)
1 \K(i)

2 . Other bits of n
(i)
1 and the whole n

(i)
2 can be chosen

arbitrarily.

3. Impersonating the Tag The attacker can impersonate the tag
and authenticate herself to a legitimate reader in the ith round without
knowing the whole K

(i)
2 and K

(i)
4 . She does not need to know any-

thing about K
(i)
2 . Furthermore, only those bits of K

(i)
4 are relevant in

message D(i), which has an index from the following set:

D(i) := {1 ≤ k ≤ 96 | ([IDS(i)]k = 0) ∧ ([n
(i)
2]k = 1)}.

We also introduce the following set:

K(i)
4 := {1 ≤ k ≤ 96 | the attacker knows [K

(i)
4]k}.

With this notation, the attacker can be successful in the ith round if and
only if D(i) ⊆ K(i)

4 . It offers a relatively good chance, if the attacker
knows more than 80 bits of K

(i)
4 .

At last we present an active attack.

4. Active Attack The attacker has a good chance to obtain the bits
of K4, if she applies active attack. She needs to choose the bits of
n2 appropriately. Namely, [n

(i)
2]k should be a set bit for all k ∈ I(i)

0 .
With this manipulation she can obtain about half of K

(i)
4 in one round.

It results that she can reveal the secrets faster than in the case when
she is fully passive.

VI. CONCLUSIONS
We have given a constructive proof that M2AP is weak and can be bro-
ken. From a broader perspective, our paper once again demonstrates
that various “proofs of security” based on statistical pseudo-random
properties of the messages available for eavesdropping are meaning-
less. Such properties are neither sufficient nor necessary for the secu-
rity of a communication system in any meaningful sense.

When demonstrating the (computational) security of a system, re-
searchers should show that the ability to breach it implies the ability
to solve a computational problem that is believed to be unfeasible,
which is of course a condition upon which the security assumption de-
pends. In some cases, it is possible to prove security unconditionally
by demonstrating that the mutual information between the observable
and the secret parameters equals zero.

REFERENCES
[1] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan Estevez-

Tapiador, and Arturo Ribagorda. M2AP: A minimalist mutual-
authentication protocol for low-cost RFID tags. In International
Conference on Ubiquitous Intelligence and Computing – UIC’06,
volume 4159 of Lecture Notes in Computer Science, pages 912–
923. Springer-Verlag, September 2006.

[2] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan Estevez-
Tapiador, and Arturo Ribagorda. LMAP: A real lightweight mu-
tual authentication protocol for low-cost RFID tags. Printed hand-
out of Workshop on RFID Security – RFIDSec 06, July 2006.

[3] Mihály Bárász, Balázs Boros, Péter Ligeti, Krisztina Lója, and
Dániel A. Nagy. Breaking LMAP. Printed handout of Workshop
on RFID Security – RFIDSec 07, July 2007.

[4] Tieyan Li and Guilin Wang. Security analysis of two ultra-
lightweight RFID authentication protocols. In IFIP SEC 2007,
Sandton, Gauteng, South Africa, May 2007. IFIP.

[5] ELTECRYPT Research Group homepage.
http://www.cs.elte.hu/eltecrypt/.

4

