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Large vocabulary automatic speech recognition relies usually on Hidden Markov Models (HMM) 
which make little use of phonetic or extra-linguistic knowledge. As an alternative landmark based 
speech recognition relies on precise signal landmarks and exploits distinctive features. Different types 
of landmarks can be used: phonetic, speaker, speech type, video, etc. In this paper we will focus on 
two kinds of landmarks: speaker and phonetic. We propose a theoretical framework to combine both 
approaches by introducing prior knowledge in a non-stationary HMM based decoder. As a case study 
we investigate how speaker landmarks issued out of speaker segmentation can be used for speech 
recognition and also how broad phonetic landmarks can be integrated in a HMM based decoder in 
order to focus on the best search path. We will show that in this case every phonetic class brings a 
small improvement, the best improvement being obtained with glides. Using all broad phonetic 
classes brings a significant improvement by reducing the error rate from 23% to 14% on a broadcast 
news transcription task. We also experimentally demonstrate that landmarks do not need to be 
detected with precise boundaries and can be used to fasten the beam search algorithm. 
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1. INTRODUCTION 

In state of the art speaker recognition systems based on hidden Markov models the decoding part 
usually consists of building a unidirectional graph which includes all the information sources available 
(language model, dictionary, acoustic models) and search for the best path in this graph in order to find the 
sequence of words that maximises the probability: 

 
( ) ( )ˆ arg max /

w
w p y w p w=  (1)

 
using the Viterbi algorithm. The approach based on hidden Markov models is based at the acoustic level on 
training data and does not permit to take into consideration external phonetic or other type of landmarks. The 
opposite of this approach is represented by certain scientific works that try to explicitly use phonetic 
landmarks in order to characterize the speech signal for automatic speech recognition [1]-[6]. Those 
approaches rely on the detection of specific features like the onsets and the offsets of the fricatives and the 
voiced consonants. However, in real-life applications, the automatic detection of those kinds of features is 
rather difficult, especially for noisy signals and spontaneous speech. 

In this paper we will try to use external a priori information represented by speaker related landmarks 
and phonetic landmarks. In the first case the speaker related information will be generated automatically 
using a speaker segmentation system. The speaker related information will be used for adaptation of the 
acoustic models. This way we should obtain specific acoustic speaker models. For the phonetic related 
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landmarks we propose an approach that will allow us to use them in order to guide the search for best path in 
the decoding graph. This way the a priori information is used as anchor points for the graph decoding 
algorithm. In this paper we try to validate our approach and to investigate the impact on the performance of a 
large vocabulary continuous speech recognition system. In order to correctly evaluate the performance 
impact, the phonetic landmarks are manually detected. However, in the proposed experimental framework 
the detection error can still be taken into account. 

At first we will present the speaker segmentation system followed by the large vocabulary continuous 
speech recognition baseline system. The next two sections will concern the use of speaker and phonetic 
landmarks, namely the speaker adaptation approach and the use of phonetic landmarks for graph decoding 
algorithm. The paper will end with experiments, results and conclusions. 

2. A FAST SPEAKER SEGMENTATION SYSTEM 

In this section we present the IRISA speaker segmentation system. A variant of this system was 
successfully used during the ESTER French evaluation campaign. 

The IRISA system [7] is based on a BIC (Bayesian Information Criterion) speaker change detector 
followed by an hierarchical clustering. The clustering stop condition is the estimation of the number of 
speakers using a penalized BIC criterion. 
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Figure 1. Audio Speaker Segmentation System. 

There is a speech detection phase carried out with a 4 state ergodic hidden Markov model where the 
states represent speech, speech with background music, music and silence. State conditional probabilities are 
modeled by a 256 component mixture of Gaussians with diagonal covariance. The feature vector is a 36 
component vector with 12 cepstral coefficients plus the first and second order derivatives with a mean and 
variance normalization. After Viterbi decoding, all segments containing speech, whether with background 
music or not, are tagged as speech and adjacent speech segments are merged. The miss and inserted speech 
rates are respectively 1.25% and 5.7% on the development set, and 1.9% and 14% on the test set of the 
ESTER corpus [12]. 

Speaker change detection is carried out independently in each of the detected speech segments with a 
three pass variant of the BIC change detection algorithm with 24-channel Mel filter-bank features and a full 
covariance matrix. The average segment length at the output of the speaker change detection algorithm is 
around 10 seconds, with a purity of about 9%. At the end of this phase we should obtain segments containing 
speech from only one speaker. Speaker must cluster those segments and the number of speakers must be 
estimated. 

The speaker segmentation system implements a bottom-up clustering with a global BIC stop criterion, 
where clusters are modeled using 32 component Gaussian mixture model (GMM). Feature vectors consist of 
16 mel frequency cepstral coefficients plus energy. 

For a given broadcast show, clusters are first initialized from the segments by adapting the mean 
vectors of a generic document speech background model (DSBM) according to a MAP criterion. The DSBM 
parameters are estimated using the speech data from the entire show. A model-space based approximation of 
the Kullback-Leibler divergence between two GMMs whose mean vectors were adapted from the same 
model [8], is used as a distance measure between two clusters: 
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where kw  is the weight of Gaussian k , dkm ,  is the element d  of the mean vector of Gaussian k  and dk ,σ  

is the element d  of the diagonal covariance matrix of Gaussian k . 
The main advantage of this distance based solely on the parameters of two GMMs is its low 

computation time compared to a generalized likelihood ratio. The two closest clusters are merged until a stop 
criterion is reached. The clustering stop criterion is based on the detection of a global maximum of the global 
BIC criterion, with: 

( ) ( )log / log
2
mBIC M L X M NSp Nx= − λ ⋅ ⋅  (3)

where ( )MXL /  is the likelihood of the entire data given the current cluster models. The global BIC 
criterion has the advantage that the number of speakers NSp  appears explicitly in the penalization term. The 
coefficient λ  is tuned on the tuning database and applied as is on the test speech corpus. 

The results for this baseline system will be presented in section 6. 

3. THE SPEECH RECOGNITION SYSTEM 

This speech recognition system was developed for French radio broadcast news transcription. The 
system is capable of recognising over 60000 word including different pronunciations of the same word. It 
also performs well in case of noisy conditions and bandwidth variations. 

The same speech detection phase is applied as for the speaker segmentation system. Then instead of 
speaker change detection there is a sentence boundaries detection applied. The sentence boundaries detection 
consists of bandwidth segmentation followed by in-breath and out-breath group detection. 
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Figure 2. The Speech Recognition System 

The speech recognition system is based on Hidden Markov Models decoding of speech. The speech 
decoding is done in two phases. On phase 1 (TRS1) we use mono-phone acoustic models characterized by 
128 component GMMs. The result of this phase is a reduced word graph. On phase 2 (TRS2) this word graph 
is rescored using tri-phones acoustic models characterized by 32 component GMMs. In both cases the 
language models are tri-gram models. The whole system is based on Sirocco (local code) and HTK  
ToolKit [9]. 

The system uses beam search decoding in order to look for the most likely path in the decoding graph. 
This technique is based on Viterbi decoding. This algorithm is an incremental technique that looks for the 
partial optimal path that ends in a certain state at a certain moment ( )tj,  using the formula: 

( ) ( ) ( ), max , 1 ln ln /ij ti
S j t S i t a p y j= − + +  (4)

where ija  is the transition probability between the states i  and j  and ( )jyp t /  is the likelihood of emitting 

ty  in the state j . In this case ( )tjS ,  is the score of the best partial path leading to the state j  at the 
moment t . 
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During the beam search decoding each moment t  only the path with the score above a certain path are 
recorded and developed: 
 

( ) ( ), max ,
i

S i t S j t≥ −α  (5)

 
where α  is a selection tuning parameter which controls the beam size. We usually fix a certain number of 
maximum paths that will be kept. 

The phonetic anchors will be used in order to limit the graph size generated by the first phase of the 
transcription system in order to produce smaller graphs without eliminating the true transcription path. The 
speaker related anchors generated by the speaker segmentation system will be used in order to adapt the 
acoustic models of phase 2 to every speaker detected. 

4. SPEAKER ADAPTATION 

In classical speaker adaptation for speech recognition we usually assume that we have extra tuning data 
for a certain speaker. In this case the generic acoustic models are adapted to the target speaker. Two 
adaptation techniques are generally used: Maximum Likelihood Linear Regression (MLLR) [10] and 
Maximum A Posteriori (MAP) [11]. 

In the case of MLLR adaptation the goal is to reduce the mismatch between an initial model set and the 
adaptation data. The goal is to estimate a set of linear transforms W  for mean and variance using the EM 
(Expectation Maximisation) algorithm. In the case of linear transforms for the mean vector the adapted mean 
vector is obtained from the initial mean vector using: 

[ ]ˆ 1Wµ = µ  (6)

Depending on the amount of adaptation data available this type of adaptation can be applied in a very 
flexible manner. If a small amount of data is available then a global transform matrix can be generated. This 
global transform is applied to every Gaussian component in the model set. However if more adaptation data 
is available improved adaptation is possible by increasing the number of matrix transforms. For instance the 
Gaussian components could be grouped into the broad phone classes: silence, vowels, stops, glides, nasals, 
fricatives, etc. The adaptation data could now be used to construct more specific broad class transforms to 
apply to these groupings. 

In HTK rather than specifying static component groupings or classes, a robust and dynamic method is 
used for the construction of further transformations as more adaptation data becomes available. MLLR 
makes use of a regression class tree to group the Gaussians in the model set, so that the set of transformations 
to be estimated can be chosen according to the amount and type of adaptation data that is available. The 
tying of each transformation across a number of mixture components makes it possible to adapt distributions 
for which there were no observations at all. With this process all models can be adapted and the adaptation 
process is dynamically refined when more adaptation data becomes available. 

Model adaptation can also be accomplished using a maximum a posteriori (MAP) approach. This 
adaptation process is sometimes referred to as Bayesian adaptation. MAP adaptation involves the use of prior 
knowledge about the model parameter distribution. If we know what the parameters of the model are likely 
to be (before observing any adaptation data) using the prior knowledge, we might well be able to make good 
use of the limited adaptation data. 

For MAP adaptation purposes, the informative priors that are generally used are the speaker 
independent model parameters. The adaptation formula for state j  and mixture component m  is: 

ˆ jm
jm jm jm

jm jm

N
N N

τµ = µ + µ
+ τ + τ

 (7)

where τ  is the weighting of the prior knowledge of the adaptation speech data and N  is the occupation 
likelihood of the adaptation data. Also, µ  is the estimated mean of the observed adaptation data. As can be 
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seen, if the occupation likelihood of a Gaussian component is small, then the MAP estimate will remain 
close to the speaker independent component mean. 

In our experiments the adaptation data is obtained from the result of the speaker segmentation system. 
As a result the acoustic models used to transcribe the current sentence are adapted with the same speaker 
data obtained from different sentences. All possible transform were used and results will be presented in 
section 6. 

5. PHONETIC LANDMARKS 

We will extend the formalism of the algorithm of Viterbi in order to introduce in the process of 
searching the best path in the decoding graph certain constraints related to the a priori knowledge we have. 
For instance if we know a priori that a certain part of speech corresponds to a vowel it is possible to penalize 
even to suppress the paths from the decoding graph that do not respect this constraint. 

A possible approach of this idea is to consider the decoding graph as being non-stationary. If a certain 
transition puts us in the state ( )ti,  which is incompatible with our constraint the cost of this transition should 
be increased. 

In order to take into account the a priori knowledge as a constraint on the possible paths in the 
decoding graph, the transition probabilities ija  from equation 4 should be replaced by: 

( ) ( )ln lnij ij ja t a I t= − λ  (8)

where ( )tI j  is the constraint factor whose value is 0 if the state ( )tj,  of the decoding graph does not 
contradict the constraint. The penalty factor 0≥λ  that is applied to a transition that is incompatible with our 
constraint depends on how confident are we in the a priori information we dispose. For instance, if ∞=λ , 
we consider our a priori information as being as reliable as possible giving them a complete confidence. In 
this case the search for the best path in the graph is limited to the path that respect the a priori knowledge. 
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Figure 3. Graph decoding when the constraint is a vowel and ∞=λ . 

If 0=λ  then we are actually doing a classical graph decoding without any constraints. For our 
experiments we will consider ∞=λ  as our a priori information is manually obtained and could be 
considered in this case as highly reliable. In our approach the a priori information is used as anchor points to 
guide the research of the most likely path. 

In our experiments presented in section 6 we will consider 5 broad phonetic classes: vowels, plosives, 
fricatives, nasals and glides. The idea is to segment the signal according to those classes and keep as valid 
paths in the decoding graph only those that respect those constraints. Since we assume it is not possible to 
detect precisely the boundaries during the segmentation process, we will consider only the central part of 
every landmark. Since the goal of this paper is only to study if the landmark information is useful or not the 
landmarks will be obtain directly from manual transcription and not detected automatically. Results will be 
presented for every phonetic class separately and for the case where we assume that the presence of all 
classes is known a priori. 
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6. EXPERIMENTS AND RESULTS 

In this section we will present the results concerning the speaker adaptation and also the landmark 
based speech recognition from the previous two sections. We will start however by presenting the speech 
corpus used for our experiments. 

Our experiments were preformed on a subset of 4 files extracted from the French radio broadcast news 
ESTER corpus [12]. However due to the lack of time the experiments concerning the landmark based speech 
recognition results will be presented only on one of the files. The speech from this corpus is mostly non-
spontaneous speech recorded from real radio broadcast news shows. It is usually high quality speech, 
sampled at 16 kHz, 16 bits. There are however some interviews with more spontaneous speech or degraded 
quality speech (e.g. telephone speech). 

The landmarks were obtained using a forced alignment of the manual transcription of the speech 
corpus. For a certain phonetic class the landmarks are obtained directly from the reference phonetical 
alignment. For every phone the anchor is centred on it and the width of the anchor is 50 % of the phone 
reference duration. 

The speaker landmarks were obtained using the speaker segmentation system previously presented in 
[7]. The speaker segmentation error for our corpus was 18.9 %. The adaptation techniques used for our 
experiments were MAP with different adaptation weightings and MLLR with one global transform and also 
MLLR with regression class tree transforms using different number of classes. The results for these 
experiments for MLLR with one global transform are presented in Table 1. 

Table 1. Speaker adaptation results WER (%) for ESTER corpus. Speaker error for speaker segmentation system is 18.9 % 

Baseline TRS1 Baseline TRS2 TRS2 MLLR 
30.8 % 24.8 % 23.8 % 

The reason for which only those results are presented is that the WER improvement is the same no 
matter which adaptation technique is used. The speaker segmentation only provides a few sentences as 
adaptation data for most of the speakers. The other adaptation techniques require usually more data and also 
more precise transcription than this obtained automatically. 

The results obtained for the phonetic landmark based speech recognition are presented in Table 2 and 
Table 3. Table 2 presents the results in term of Word Error Rate (WER) for one of the files from the ESTER 
corpus. Even the results are presented only on one file the conclusions can be considered valid for the whole 
corpus since the files are very similar and also the results of the baseline system confirm our hypothesis. 

Table 2. Phonetical landmarks results WER (%) for 20030418_0700_0800_inter_dga file only 

 Baseline All Vowels Plosives Fricatives Nasals Glides 
TRS1 29.8 % 15.1 % 27.1 % 27.0 % 28.3 % 28.2 % 26.0 % 
TRS2 23.2 % 14.4 % 21.6 % 21.2 % 21.5 % 22.2 % 20.8 % 

As we expected there is a lot improvement if all phonetic landmarks are used. However this 
improvement is equally distributed between different type of landmarks. Basically there is no class that 
provides a significant word error rate reduction. The most error rate reduction among the phonetic classes is 
provided by the glides. The improvement is visible for both speech transcription phases. 

Another advantage of using the phonetic landmarks is the speed gain. The word graph produced by the 
first phase of the transcription is significantly reduced. In this case the graph decoding of the second phase 
will perform faster. Also since during the first phase not all the paths are investigated the graph construction 
will also be faster. Results are presented in Table 3 in terms of number of nodes and number of arcs per 
graph. 

As expected the size of the word graph is significantly reduced if all constraints are used. In this case 
the size of the graph is about one third of the baseline graph. Every phonetic class helps reducing the graph 
without increasing the word error rate. The a priori knowledge of the glides landmarks leads as expected to 
the smallest graph among the individual constraints. 
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Table 3. Phonetical landmarks results for 20030418_0700_0800_inter_dga file only. Graph size after TRS1 
expressed in number of arcs and number of nodes 

 Baseline All Vowels Plosives Fricatives Nasals Glides 
Arcs 18110 2870 13216 14499 14882 16159 12521 

Nodes 2553 618 2031 2138 2182 2324 1890 

7. CONCLUSIONS 

In this paper we have investigated the use of external a priori information represented by speaker 
related landmarks and phonetic landmarks. In the case of speaker related landmarks the information was 
generated automatically using a speaker segmentation system and was used to adapt the speaker independent 
acoustic models. 

The phonetic related landmarks were manually obtained since the goal of this study was only to 
investigate if this kind of information is useful for a speaker recognition system. The phonetic related 
landmarks were used to guide the search for best path in the decoding graph. 

The results concerning the speaker related landmarks showed only a slight improvement (about 1% 
absolute WER) in the case were a global MLLR transform was used. This result is normal since there is not 
enough speaker information obtained from speaker segmentation. This makes difficult to use a more 
elaborated speaker related adaptation like MAP or Regression Class MLLR. Since only the central part of 
each phoneme was used we also showed that it is not necessary be very precise when detecting the 
landmarks. 

The perspectives of our work concerns mainly the phonetic landmarks based speech recognition. Our 
first perspective would be to study the proposed approach using a real landmark detector instead of manually 
annotated landmarks. This would allow us to investigate the robustness of our approach with regard to the 
landmark time precision detection. 

A second perspective would consist in trying to use an adaptive penalty value λ  from equation 8 with 
respect to our confidence in our landmark detection system. 

And finally we should consider that our approach is applicable to any problem that can be formulated 
as the research of the optimal path in a decoding graph and it is applicable to many domains other than 
speech recognition. For example this type of approach can be used for multimedia stream analysis since a 
certain media can provide information on other media. Those information can provide landmarks for this 
other media. 
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