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MIMO Detection: context

Multiple Input Multiple Output Radar with widely spaced 
Antennae.
Linear Space-Time Coding helps us shed light on the 
achievable detection performance.
STC allows shaping the transmit waveform to achieve 

Diversity (through different aspect angles);
Energy Integration (i.e., power 
multiplexing);
A compromise between the two.



RADAR Basic Operation

Pulse (duration τp, bandwidth B, energy E)

Range cell “k”

Delay τ

c=3×108 m/s

Last cell: 
Rmax=cT/2

t=0 t=T

Size=c/2B[m]
Distance=cτ/2



Pulsed Radars

· · · · · ·

T

τp

Pulse #1 Pulse #N

N echoes from a target in cell k+
N “clutter” echoes, exhibiting time correlation

Energy E



Basic Receiver
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vectors



Matched Filter
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Performance

If α is complex Normal with variance σa
2 (Swerling-I):
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Integration Gain



Angle Diversity 

V: “target extension”;
λ: carrier wavelength;

Different aspects at distance 
R:

d> λR/V (full decorrelation)



Pulsed MIMO Radar: Scheme

Pulsed Waveforms



Scheme #2



Underlying Assumption

“Narrow-band” assumption on the transmitted 
pulses: The target is seen in the same range-cell 
by all of the antennae.
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TX #1

TX #2

TX #3

TX #s

dmax ·
·
·

RX #1

RX #r

hmax

dmax+hmax<<c/B

Ex: B=1MHz we have:

dmax+hmax<<300m



Degrees of Freedom

The number of degrees of freedom is
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Why? Because the transmitted signal space has at most 
dimension N, whereby a “fat” code matrix means that the 
codewords are not linearly independent! 



MIMO Radar: The Model 
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Parameters



Designing the test
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GLR Test Statistics
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Remark

The maximum number of degrees of freedom 
(maximum diversity order, under full-rank space-
time coding) is r min (N,s)= rδ. In fact:
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Special cases
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Performances
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Under rank-θ coding the performance of the GLRT 
admits the general expression:



Code Selection

No uniformly optimum (i.e., for any signal-to-
clutter ratio and for any backscattering pdf) 
strategy exists; 
First Step: Assume Gaussian Scattering, and 
study the impact of diverse design strategies 
aimed at optimizing some figures of merit under 
some constraint.



Figures of merit (to be maximized)

Lower Chernoff Bound (LCB) to the detection probability:

Average received SCR per pulse 
per receive antenna

Mutual Information (MI):
I(r1,..,rr;α1,…,αr)
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LCB-Optimal codes

Chose the space-time code A so as to maximize the LCB 
subject to constraints on:

1) Average Received Signal-to-Clutter Ratio per pulse and 
per receive antenna, SCR;

2) Rank of the code matrix (θ);

Solution: generate as many independent and identically 
distributed paths as possible.



MI-Optimal codes

Chose the space-time code A so as to maximize the MI 
subject to constraints on:

1) Average Received Signal-to-Clutter Ratio per pulse and 
per receive antenna, SCR;

2) The Maximum Rank of the code matrix (i.e., rank(A)≤θ)

Solution: generate as many (i.e., θr) independent and 
identically distributed paths as possible. Thus with a 
definite constraint on the rank MI and LCB are 
equivalent.



SCR-Optimal codes

Chose the space-time code A so as to maximize 
the average received SCR subject to a constraint 
on the transmitted energy

Solution: Use rank-1 coding (i.e., transmit all 
of the energy along the least interfered direction 
of the signal space): note the consistency with 
the results concerning capacity (Boche et alii, 
2005).



Other possible strategies

Both LCB and MI could be maximized under a 
constraint on the transmitted power.
The corresponding solution (“waterfilling”) 
leads to a performance improvement on the 
previous strategies, but is useless (in that it 
requires knowledge of the average power of a 
target whose presence we are trying to 
ascertain).



Semi-definite vs Definite rank constraints

With a definite rank constraint we are left free only of 
allocating the power on a pre-determined number of 
modes;
With a semi-definite constraint we determine the optimum 
transmit policy, i.e. we can decide between diversity and 
beam-forming.
Diversity maximization is not uniformly optimal for either 
Pd or LCB,  an indirect evidence that the uncertainty as to 
the target presence plays a fundamental role.
Conclusion: MI is not a good figure of merit for waveform 
design in MIMO radar with surveillance functions. 



Which Strategy is the best?

N=r=s=2; white noise; LCB-optimal; 
Un-coded+coherent; Un-coded+incoherent



Diversity order and Energy Integration
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Here the trade-off is apparent: increasing the number of 
diversity paths (i.e., θ, the code-matrix rank) results in a 
larger number of paths with lower average SCR. 



Performance

Optimal rank of the code 
matrix (i.e., requiring 
minimum SCR to 
achieve the miss 
probability on the 
abscissas).
Pfa=10-4;
N=s=4;



Some conclusions

Unlike LCB, MI does not appear very suitable a figure of 
merit (oblivious as to the uncertainty as to the target 
presence);
Mathematically, we need a figure of merit which is neither 
Schur-Concave nor Schur-convex, in order to study the 
trade-offs between diversity and integration, and the 
corresponding interplay with the policy transmission.
Unfortunately, a semi-definite optimization problem 
involving the LCB is not very credible, nor feasible (the 
LCB is not tight at low SNR’s).



Alternative: Kullback-Leibler Distance

Define the short-hand notation fi(rk)=f(rk|Hi) and recall the
Kullback-Leibler distance (or divergence):
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A new figure of merit
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Design strategy: chose λ and design A according to

( ) max
subject to a constraint on Average received/Transmitted SCR
d =A



General Comments

For λ=0 the criterion admits a nice interpretation 
in the light of Stein’s lemma, and represents the 
asymptotically optimum criterion for fixed 
sample size multi-frame MIMO radars;
For non-zero λ the criterion can be nicely 
interpreted as an optimality criterion for 
sequential multi-frame MIMO radars.



Other interpretations

Maximizing D01 distances has a nice 
interpretation in the light of Stein’s lemma for 
fixed-sample size tests;
Maximizing D10 and D01 corresponds to some 
form of optimization (in terms of Average Sample 
Number) in a sequential MIMO-radar procedure 
(see Wald’s theory).



Sequential MIMO?

Defer detection until the returns from several frames (i.e., 
pulse trains) each with different carrier have been received 
and solve
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The decision process proceeds until a given pair (Pd, Pfa) is 
reached, by using a random number of samples and two 
detection thresholds. The Average Sample Number 
corresponds to the expected observation number under the two 
alternatives.



An example of performance



Problem

Everything hinges upon uncorrelated Gaussian 
scattering;
Notice that target scattering correlation is not 
under the control of the designer, since it depends 
on the antennas spacing, the target distance and its 
extension (the distance is in particular variable);
The Gaussian assumption looks less dramatic.



Schur-Convexity
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Robust Coding (Unpublished, HWC)
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Robust Space-Time Coding

Mini-Max Design
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Robust codes

A must be full-rank (i.e., s);
The amount of power to be poured in each mode 
should ensure equal powers of the modes at the 
receiver, i.e. we have to equalize all the modes, 
which means that the most interfered modes 
require more power (dramatically different from 
water-filling).



What cost functions satisfy the conditions 
stated above?

Any decreasing function of the SCR, defined as 
SCR=Trace(ARαAHM-1);
Any increasing function of the MMSE of a linear 
estimator of the scattering;
Under Gaussian scattering, any decreasing 
function of the MI between received signal and 
target scattering.



Non-Gaussian Target Scattering

Why shouldn’t αi be circularly symmetric Gauss?
The target RCS fluctuation might be more 
constrained than exponential;
The target scattering might be similar to 
“composite surface scattering”, wherein a “slowly 
varying” texture is modulated by a rapidly 
decorrelating speckle.



How to select the Code under NG?

Set AHM-1A=CDCH with C unitary s×s, D diagonal with θ≤s 
positive entries, and define

βi=CHαi,   i=1,…,r
The βi are defined exchangeable (a la de Finetti) if

fβ1, …,βr(x1,..,xr)= fβ1, …,βr(π(x1,…,xr))
If the r.v.’s αi are independent unitarily invariant (i.e., their 

pdf is invariant under unitary transformations), then define
β=vec(β1, …,βr)



LCB-optimal codes

If the αi are independent unitarily invariant and the 
βi are exchangeable, then:

The LCB is strictly concave for given θ=rank(A) 
and is maximized as we generate θr independent 
paths (i.e., as we maximize diversity, which can 
be done through equalization under no power 
limitation).



MI-optimal codes

Under the same invariance condition, the solution to the 
constrained (semi-definite) problem:
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is solved by equalizing θr paths, i.e. by maximizing the 
diversity order. 



On Unitary Invariance

Is this condition restrictive? Yes, but a very important family of 
non-Gaussian processes, the Spherically Invariant Random 
Processes (SIRP), used to model composite scattering, are UI. 
Remark that x is an SIRP iff (Yao, 1973):

x=sg
with g a complex white circularly symmetric Gaussian vector and 

s a non-negative random variable, whereby:
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Performance under K-distributed 
scattering: “power unlimited”



Performance under K-distributed 
scattering: “power limited”



Next…

Optimized STC with constraints on the accuracy (e.g., in the range-
doppler plane);
What happens for non-colocated antennas (i.e., the delays vary for 
loose synchronization)?
For highly mobile targets, the doppler frequencies vary across the 
antennas, leading to a frequency-dispersive MIMO channel. What’s 
the model and the coding strategy?
Can non linear codes help in any of the previous situations?
What happens to these trade-offs if we use a (random) number of 
frames to make decisions, i.e. if we merge the concepts of Space-
Time Coding and Sequential decision making?



Next….

Conditioned to the previous results, is it possible 
to interleave several space-time codes (i.e., for 
detection of far-away and nearby objects)?
Is MIMO radar useful as a diversity generator or 
we realistically have to use it just as a “power 
multiplexer”?


	Space-Time Coding in Statistical MIMO Radar
	MIMO Detection: context
	RADAR Basic Operation
	Pulsed Radars
	Basic Receiver
	Matched Filter
	Performance
	Angle Diversity 
	Pulsed MIMO Radar: Scheme
	Scheme #2
	Underlying Assumption
	Degrees of Freedom
	MIMO Radar: The Model 
	Parameters
	Designing the test
	GLR Test Statistics
	Remark
	Special cases
	Performances
	Code Selection
	Figures of merit (to be maximized)
	LCB-Optimal codes
	MI-Optimal codes
	SCR-Optimal codes
	Other possible strategies
	Semi-definite vs Definite rank constraints
	Which Strategy is the best?
	Diversity order and Energy Integration
	Performance
	Some conclusions
	Alternative: Kullback-Leibler Distance
	A new figure of merit
	General Comments
	Other interpretations
	Sequential MIMO?
	An example of performance
	Problem
	Schur-Convexity
	Robust Coding (Unpublished, HWC)
	Robust Space-Time Coding
	Robust codes
	What cost functions satisfy the conditions stated above?
	Non-Gaussian Target Scattering
	How to select the Code under NG?
	LCB-optimal codes
	MI-optimal codes
	On Unitary Invariance
	Performance under K-distributed scattering: “power unlimited”
	Performance under K-distributed scattering: “power limited”
	Next…
	Next….

