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Engineering o Typically a multi-stage process with two key stages

=g
= e Choose a configuration and identify free parameters
e Choose values for the free parameters

o Example: digital filter design

e Choose a configuration;
FIR or IIR? fixed order? discrete coefficients?
e Choose values for the filter coefficients

e Parameter choice
e Typically requires judicious trade-offs, or
showing no suitable parameters exist for current config.
e Design experience is often distilled into guidelines

e This tutorial: enriching process of parameter design
by harnessing the perspective of optimization theory;
and in particular, that of convex optimization
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ggg:gﬁemg e Help you to harness the perspective of optimization to enrich

the common sense of good design practice

e This is not an introduction to convex optimization; more a
taste of how optimization can be leveraged for design

e Many of you know convexity opens door to reliable algo’s
Emphasis here is on other doors that convexity opens
and impact on the design process

e Rigor is important in practice, but | will be sloppy; e.g.,

e Affine functions a™x + b described as being linear
e Implicit assumptions of full column rank in linear eq'ns

e Associated literature can fill technical gaps;
List of ‘entry points’ at the end
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P ¢ Given configuration, how to choose free parameters?
e Consider taking a structured approach
¢ |dentify the design variables: x ¢ X C R"
« identify req'd characteristics: fn(X) < &m; 9q(X) = (q
Note: fn(X) > &n «— —fm(X) < —&m
e Identify cost function: fo(x);
locally decreases with increasing merit
e Find the best of the satisficing parameter vectors

Formulation

min fo(x)

subjectto  fn(X) < &m
9q(X) = Cq
or show that no satisficing parameter vector exists.
In latter case need to revisit configuration

e This process often enlightening in and of itself
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FIR low pass filter with L discrete coefficients

Formulation

C
©

-
°

Magnitude

C
@

¢ |dentify variables:

e the L filter coefficients; can take on only discrete values
e Identify required characteristics:

e magnitude response lies within mask
e Identify objective:

e stop band energy
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Write the design problem at hand as

Formulation ;2'2 fO(X)
subjectto  fn(x) < ém
9q(X) = (g

or show that there is no feasible x

Does this help?

Maybe not! Problem may be fundamentally difficult

This tutorial will help you identify how it can help

and for cases where it initially appears that it does not

o we will provide some suggestions for things to try, and
¢ help you manage expectations of impact on design
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e Model accuracy:
Formulation e |s global optimum really the best design?
e |s it even good?

Knowledge of application is important

¢ Reliable solution method:
e no tweaking of parameters of algorithm
e unsupervised; perhaps even embeddable
¢ detection of infeasibility
e easy to program

e Computational efficiency:
Assessment depends on application; might want
e ‘real time’, or
e graceful (polynomial) increase with problem size
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Formulation

Desirable Properties Il

e Insight:

e Structure of the solution
¢ Inherent trade-offs between competing design criteria

¢ Robustness/sensitivity of solution:
e Extent of neighbouring x’s that are feasible? good?
e Design: enables secondary objective
e Estimation: evaluates specificity of criterion
¢ Sensitivity of solution to changes in f(X) or gq(x)
e What if these functions are only partially known?
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e Typically, on your first try, the problem will have few of
Formulasion these desirable properties, if any

e What to do? grid search? random search?

e Key steps in proposed approach

e Study application and optimization problem to identify
an underlying problem with better properties

o still want reasonable model accuracy, but
reliability, comp. efficiency, insight given greater weight
e this ‘nicer’ problem may have different variables,
or even different dimensions
e Solve the ‘nicer’ problem
e Use that solution to generate good sol'n to orig. prob.
or to obtain insight into the original problem

e lterate, if necessary
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Formulation

e Proposed approach is a “problem first” approach

e Describe the actual design problem first, then
e try to approximate with a ‘nice’ optimization problem

¢ An alternative approach: “optimization first”
e Consider all the ‘nice’ opt. problems that you know
e Pick the one that best suits the problem
e Add on ‘features’ while retaining ‘nicety’
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Formulation

‘Nice’ problems
So which problems are ‘nice’?

Some that have been known for some time:
o Least-squares problems: miny ||Ax — b||3
closed-form solution: x* = (ATA)~1ATh; A fcr
¢ least-squares with linear equality constraints;
also closed-form solution

e problems with linear objective and linear constrs;
computationally efficient algo’s; optimality conditions

For much of that time, “approx. by nice problem” meant
approx. by one of these, or a few others

Clearly that could incur large “modelling error”

Good news: the list of ‘nice’ problems has been
substantially expanded over last 15-20 years;
an enabling step
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Engineering
Design
Formulation To help be more specific about ‘nice’, let's look at convexity
Convexity
Examples Convex set: contains all line segments between any pair of
IS points in the set
Convexity
Quasi-convex Convex Non-convex
Beyond algos
Non-convex
Oracles
Robust Opt.
Summary

Literature

Further
Reading
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e Convex function: for any two points in the domain,
function lies below the line segment joining the
functional values

Formulation

e Epigraph: set (t,x) such thatt > f(x)

e A function is convex iff its epigraph is a convex set

e A function f(x) is concave if —f(x) is convex
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Formulation

Convex problems

Recall generic problem

min fo(x)

subjectto  fn(x) < ém
gq(x) = (q

If fo(x) and all f(x) are convex and all gq(x) are linear
then problem is convex

Least-squares and linear programs are convex
For symmetric matrix Q with non-negative eigenvalues
f(x) =xTQx +2pTx +r is convex

Note: Maximizing a concave function fo(x) equiv. to
minimizing —fy(x), which is a convex function
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Engineering
Design . .
) A coarse categorization
Formulation
Convexity

Examples

Break
Convexity
Quasi-convex .
Convex Nice
Beyond algos
Non-convex
Oracles
Robust Opt.

Summary

Literature

Further
Reading
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Convexity

Convex problems

Reliable algo. for global optimum; most v. efficient

Easily implementable general purpose tools that can
handle many cases; e.g., CVX

but there’s more than just a good algorithm

Enable efficient/reliable computation of trade-offs
Optimality conditions; insight into structure

Bounds obtained using duality can reliably determine
when no suitable set of parameters exists for the
current configuration

Also, Lagrange multipliers may give some insight into
how to modify configuration

Sometimes convexity is obscured,
but when discovered, it is well worth it
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Convexity

Non-convex problems

Often “what you see is all you've got” (apologies to
Brians Reid and Kernighan, and Leslie Lamport)

In a few cases careful analysis yields specialized
algorithms that have desirable features

For smooth problems, reasonable general purpose
software, e.g., fmincon (matlab), lancelot.
Driving force: sequence of local convex approximations

However, typically, for anything other than truly small
problems all we can expect to do in a reasonable
amount of time is find a locally optimal solution

Therefore, even when you can't find a sol'n, hard to
decide if problem is infeasible for current config.
Insight from convex approx’s can sometimes

¢ help you understand some features of problem

¢ guide you to good local solutions

¢ help you evaluate local solutions
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Convexity

Your consulting company gets a call from a ski operator

They installed light towers for night skiing

Customers complaining about illumination;
insufficient and uneven

They ask: Do we need to move towers or install more?
What do you tell them?
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Examples

An example (Boyd)

Construct a model: n small flat patches

Configuration: m towers in fixed positions
Free parameters: power used in each lamp, p; € [0, Pmax]
Quantity of interest: Intensity on each patch
o Easy. Free space propagation: lx(p) = ij:l ap;,
ay = r—%COS(ij) ? No! ay = max{% cos(Gk,-),O}
¢ Note that Iy (p) is linear in p
Obj: Make intensity on each surface close to lges

Let’s begin with the “optimization first” approach
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“Optimization first” approach

Try uniform allocation p; = p, and
try to find a better p than currently used

Try least squares
. 2
MiNpegrm 22:1 (Ik(p) - Ides)
closed-form solution; round solution to [0, Pmax]
Try regularizing
MiNpeRrm EE:l(lk(p) - |des) + erll Wi (pj — pmaX/Z)
closed-form; iteratively adjust w; until opt. p; € [0, Pmax]
Try linear programming

MiNpecrm scr  §
SUbjeCtto _5§|k(p)_|des§5 k:1,2,...,n
0<p <pPmax j=12,...,m

convex; efficiently solvable; no tweaking
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e Response of eye to intensity is approx. logarithmic
e Suggests:
G MiNpern  MaXkeqy,n [109(Ik(P)) — 109 (ldes) |

subjectto 0 < pj <Pmax j=1,2,....m

Looks intimidating

Analyze: |log(a) — log(b)| < 7 «—— max{2&, 2} <e”

Equivalent problem:

minpeRm ma-Xke[l,n] h(lk(p)/ldes)
subjectto 0 < pj <Pmax j=1,2,....m

where h(u) = max{u,1/u}.
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min, maxi h(lk(p)/ldes) b

S.t. 0 < pj < Pmax *
Examples JZ

1

0.5

05 1 15 2 25 3 35 4
u

e h(u) is convex; max of convex functions is convex

e Equivalent problem is convex; can write as linear obj.
with linear and second order cone constrs

e Reliably solvable for global opt. with modest effort

e So what do you tell the ski operator?

e Since we can reliably obtain global optimum, we can
confidently say that if that solution is not good enough,
must change configuration (move/more towers)
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e Previous problem was reformulated as a convex one

¢ In this case we won't be so lucky

e However, we will show that convex opt. still has an
important role to play

Examples

Consider the previous FIR filter design problem:

- C
< o

Magnitude

C
”

wp ws T W

e Identify variables: L discrete-valued filter coefficients
e Constraints: magnitude response lies within mask
¢ Objective: stop band energy
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£

&

Magnitude

£

Examples “p s e

o Letv(w) =[1,elv e .  el-DT: X(elv) = v(w)x
e Formulation:
. 1 /"
min Es = —/ ‘v(w)Hx\zdw =x"Qx
71' ws
subjectto  |v(w)"'x| < U, Vw € [0,ws)
V(@)X > Lp Vw € [0, wp]
V(w)?x| < Us Vw € [ws, 7]
e Design question:

e What is the inherent trade-off between Eg and Ug?
e i.e., What is the region of all achievable (Us, Es) pairs?



Enriching
design
25/66

Davidson

Examples

Analysis of init. formulation
Initial formulation
)r(relig xTQx
subjectto  |v(w)"'x| < U, Vw € [0,ws)
Iv(w)" x| > Ly, Vw € [0,wp]
V(w)?x| < Us Vw € [ws, 7]
Coefficients are discrete: non-convex
Relax that constraint to allow real coefficients
Will give outer bound on set of achievable (Us, Es) pairs
Relaxed formulation, with squared constraints:
min h"Qh
heRt
subjectto  |v(w)"h[> <UZ VYw € [0,ws)
V(w)'h|? > L5 Yw € [0,wp]

V(w)'h]2 < U2 Vw € [ws, 7]
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Analyze relaxed formulation

Relaxed formulation, return to integral objective:
. 1 /7
min —/ v(w)h|* dw
heRt T /0
subjectto  |v(w)'h[> <UZ Vw € [0,ws)
V(w)*h|? > L,Z) Vw € [0, wp]
)H

(
V(w)?h|> < U2 Vw € [ws, 7]

Second constraint: lower bound on convex quadratic;
non-convex; what to do?
Observation: Everything is a function of |H(e/*)|?

Observation: [H(el“)[? = Ry(el“), where

Rn(e!*) is the Fourier Transform of the autocorrelation of h[k]
Observation: Ry (€1*) = ¥(w) Fh;

V(w) =[1,2cos(w),...,2cos((L — L)w)];

i, contains “right half” of autocorrelation; linear
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R T
min = [ Rp(e*)dw=p Ty
FhERL ™ ws
subjectto  V(w)'fh <UJ Vw € [0, ws)
(w)TFp > Lg Vw € [0, wp]
(w) ' < U2 Yw € [ws, ]
V(w)'fh >0 VYwel0,n]

Examples

<t

<t

e Linear program! but
e How many constraints? oo
e Options:
o Discretize and tighten: e.g., V(wj)fn < U3 —
for relevant w; = =i /N, plus band edges
typically N = KL, K € [8, 16] allows ey to be small

e Represent exactly using linear matrix inequalities
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Examples

Comparisons

Original formulation Transformed relaxed
@Qx TQx ,’J;'{QL p'h
s.t. [v(w)™x| < Up Yw € [0, ws) St V(W) < US Yw € [0, ws)
V(w)"*X| = Lp Vw € [0, wp] (W) > L2 Vo € [0, wp]
V(w)"'x| < Us Yw € [ws, ] (w) T < U2 Yw € [ws, 7]
V(w)"fh > 0 Vw € [0, 7]

Non-convex Convex

Using transformed relaxed problem:

o Efficiently gen. outer bound on achievable (Us, Es) region
by solving problem for different values of Us

e Gen. an optimal h € R" by spectral factorization

e Gen. good x € X by (randomized) rounding and/or local
search

e When should we stop?
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Es |

Examples

/Outer bound

Us

e Quter bound: solve transformed relaxed problem for different
values of Ug; convex, global optimum reliably obtained

e |f your current best discrete coeff. filter achieves +,
you might be satisfied; you might stop your search

e If your current best discrete coeff. filter achieves x,
if you are not yet exhausted, probably keep looking
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Break

Applics in SPAWC areas

Recommended entry points to literature:

Luo, Mathematical Programming, ser. B, 97:177-207, 2003

IEEE J. Select. Areas Communications, Aug. 2006,
especially tutorial by Luo and Yu

IEEE J. Select. Topics Signal Processing, Dec. 2007

Palomar and Eldar (Eds), Convex Optimization in Signal
Processing and Communications, Cambridge, 2010

IEEE Signal Processing Magazine, May 2010
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A sampling of the family of convex functions

Quasi-convexity

Break

Beyond reliable algorithms, what does convexity offer?

Using convexity in problems that remain non-convex

Other tools for certain non-convex problems

What about problems where only an oracle is
available?

What about functions that are uncertain?
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Convexity

Generic formulation

Generic parameter design problem

min fo(x)

subjectto  fm(X) < &m
Jq(X) = (g
or show that there is no feasible x
Convexity (almost always) yields reliable algo for a global opt

For convexity:

e X must be convex
* gq(x) must be linear (affine)
o for f(x)’s convexity suffices

Quite a rich family of sets and functions

These are the “target” functions when you try to find a
convex problem related to the original

Too many to list; see Boyd & Vandenberghe, CVX docs
Some “art” in how to use the list
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Polyhedron: {x |a]x < b;}

Second order cone: {(x,t)|[[x|> <t}
ice cream cone

Convexity

Semidefinite cone: {X|X = XT, Xi(X) > 0}

Intersection preserves convexity
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Linear (affine): a'™x + b

Convex quadratic: xTQx + 2pTx 4 r, with Q = 0

Abs. value: |x|; exp: e®; neglog: —log(x)

Sizes:
e Norm: ||X|lp, p > 1; 1,00: linear; 2: convex quad.

Convexity

x?2 for x| <M

Hubery (x) =
’ m(x) {2M|x|—M2 for [x| > M
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e Simple relationships that preserve convexity:
Convexity e X«— AX+Db
e 2ifix)
e max; fj(x)

e Also composition of certain classes of functions
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Convexity

Application: Sparsity
Even with these simple cases, we can take this on

Given a set of m linear equations in n variables, m < n,
find the most sparse ¢ solution

“Problem first” approach:
Minyecrn |[X|lo Subject to |Ax — bl < e
where ||x||o is number of non-zero elements; not convex

The 0-quasi-norm penalizes all non-zero elements equally;
Norms: penalty increases with mag. of element

Challenge: find convex f'n that behaves somewhat like || - ||o

p-norms, p > 1, are convex;

which imposes smallest penalty on large elements? p = 1

Hence, approximate original problem by following convex one
Minyern ||X|l1  subjectto ||AX —blj> <€

Much can be said about probability that solutions coincide.
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e log Y~ exp(a’x + bj): convex
e Consider the problem
Minkern, fo(X) subjectto fm(x) <1
where, with an € R, functions take the form
fn(X) = S k_y Conke X2m xGmez | xmio

Convexity

e This is called a geometric program

e Also arises in power allocation in wireless
e Not convex. However, let y; = log(x;).

e GP can be precisely transformed to

Mminycgrn  log (25:1 exp(ady + bOk))
subjectto  log (Z,'le exp(al,y + bmk)) <0

where bnk = log(cmk). Convex



Enriching
design

38166 Some matrix functions

Davidson
o trace(AT X): convex
e Schur complement: If A > 0, then

=0

 RpTa-1 A B
C-B'A B;O@»[BT C

Convexity

If A,B, C are linear in the variables, then
LHS is not convex, in general, but RHS is convex

e A consequence

Omax(X) <7 <= 721 = XTX =0

—71-X"X/T =0

<:>TIX>0
Xt 7|~
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Quasi-convex

Quasi-convexity

A function is quasi-convex if its sublevel sets are convex

For convex constrs and quasi-convex obj., given ~ consider
find x
subjectto  fo(X) < ;' fm(X) <&mi 9q(X) < ¢q
A convex feasibility problem
There is a single threshold for feasibility
Use bisection on ~ to find that thresh.; hence efficient algo
Unfort. sum of quasi convex is not necess. quasi-convex

A direct application: joint power and resource allocation in
half-duplex cooperative communications
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e If T, is a nested family of convex sets,
with To, C Tq, for az < ap, then
infaw suchthatdx e T,

X,

can be handled in the same way
Quasi-convex
e Eng. interp: T, represents design spec’s;
tighter for smaller a

e Applic’s in filter design (when all other constr's convex):

e minimum length filter that satisfies specifications
e with previous mask and f: min. stop-band edge
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e Reasonably widely known that convexity (almost
always) yields reliable algorithm for a global optimum

e What else does convexity offer?
o Efficiently computable inherent trade-offs between
competing criteria (first half)
e Can assess the size of suboptimal set

e Can gain considerable insight using duality
and optimality conditions
e Duality: lower bound on optimal value; often tight
e Insight into structure of opt. sol'n (more efficient algos)
e Some insight into how to modify configuration

Beyond algos
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Set of feasible points with objective within ¢ of optimal

For convex problems, this set can be approximated
using straightforward convex opt. problems

Impact on design problems
e if e-suboptimal set is large

e |ots of nearly optimal solutions
might exploit this by optimizing a secondary obj.

Beyond algos

Impact on estimation problems
e if e-suboptimal set is large

e many plausible solutions
suggests low confidence in estimate
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Beyond algos

Duality

For simplicity, consider ineq. constrs only, {m = 0.
Primal prob:  p* = miny fo(x) subjectto fn(x) <0

Define Lagrangian:  L(x,A) = fo(X) + >, Amfm(X)

Define Lagrangian dual function: g(\) = inf, L(x, \)
Concave, even if fj(x) not convex

For any A 3= 0 and any feasible x: g(A) < fo(x)
Hence, g(\) <p*

What is best lower bound? d* = maxxyo g(A)

In general, d* < p*.
For convex problems with a strictly feasible point,
equality! (strong duality)

Some consequences:

e can develop algo’s with rigorous stopping criteria
e can verify infeasibility
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Beyond algos

Optimality conditions

Again for simplified problem: miny fo(x) s.t. fn(x) < 0.
Consider case of differentiable f;(x)

For a “regular” point, necessary conditions for optimality:

Vio(X*) + > A Vin(x*) =0

For convex problems, under certain constraint qualifications
(including strong duality), these are also sufficient

Analysis of this set of non-linear equations can yield insight
into optimal solution; e.g., structure
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Beyond algos

Sensitivities of config.

Perturb the simplified prob: miny fo(x) s.t. f(X) < 0m
Do we have to re-solve the problem?

Under strong duality, some insight is already available:
e Tightening:
if A\, is large, dm < O greatly increases p*
e Loosening:
if A is small, 6, > 0 does not greatly decrease p*

In design setting, tells us what not to do to the
configuration to reduce p*

If, in addition, objective changes smoothly with ép’s
e )\ is local sensitivity
¢ so for small changes we get symmetric insight
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Beyond reliable algorithms for a globally optimal solution

We have highlighted the fact that you can
o Efficiently compute inherent trade-offs between
competing criteria
Non-convex o Assess the size of suboptimal set

¢ Gain considerable insight using duality
and optimality conditions
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¢ In the general case, what you see is all you've got
e How can convexity help?

e We will investigate a few ways
e Restriction and relaxation

e bounds on inherent trade-offs
e generating (provably) ‘good’ solutions
e generating ‘good’ starting points for further search

Non-convex e Global optimization:
e using (convex) relaxation in branch-and-bound algorithm

e Local optimization:
e using sequential convex approximation

¢ We will also look at one other approach that is useful in
some non-convex problems
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Consider a simple problem: miny fo(x) s.t. f1(x) < &

Consider the trade-off between opt. value and &3;
i.e., p*(&)

If fo(x) and f1(x) convex, can efficiently find trade-off by
solving problem for different values of &;.

General non-convex case:
e Even for one value of &, problem is hard to solve
e \ery hard to obtain inherent trade-off

e Typically, all you have is best trade-off that has been
found so far

e What to do? How can convexity help?

Non-convex
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Relaxation:
¢ loosen, or remove, constraints
o feasible set expands;
e generates lower bound on solution of original prob

Restriction:
e tighten, or add, constraints
o feasible set shrinks;
Non-convex e generates upper bound on solution of original prob

If you can find a convex relaxation;
get outer bound on trade-off region

If you can find a convex restriction;
get inner bound on trade-off region
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Engineering
Design
Formulation
Convexity
Examples
Break
Convexity
Quasi-convex
Beyond algos
Non-convex
Oracles
Robust Opt.
Summary
Literature

Further
Reading

A conceptual figure

Known
Achlevable

From restrict.

Known r
Unach|evable
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Raicsel Recall filter design problem, relaxed for real coefficients:
min h"Qh
heR-
subjectto  |v(w)"h|> <UZ Vw € [0,ws)
Non-convex |V(w)Hh|2 > Ls Yw € [O,Wp]

V(w)'h]2 < U2 Vw € [ws, 7]

Second constraint non-convex

If you restrict to linear phase filter and constrain the sign,
this constraint becomes linear, and hence convex

Other constr’s also become linear; obj. remains conv. quad.
Hence, in this case, phase lin. generates convex restriction
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Non-convex

Another ex. of relaxation
This time, focus is on generating ‘good’ soln,
although lower bounds are generated along the way

ML MIMO/MU detection for binary inputs, known channel, AWGN

min — Hx||2
Xe{_'m}n lly — Hx]|3

Convex quadratic objective; non-convex constraints

e “Full” relaxation: minyegn ||y — Hx||3

e Least-squares; closed-form solution

e Once solved, (randomly) round to binary vector
e Box relaxation: minye_1 10 [ly — HX|3

e Convex problem, of the same dimension
o Clearly tighter relaxation
e Once solved, (randomly) round to binary vector

e Semidefinite relaxation

¢ A different relaxation; generates a matrix variable
e Bounds on accuracy (worst-case)
e Tends to be significantly tighter in practice
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Non-convex

Semidefinite relaxation

 Rewrite minyg_1 1 |ly — Hx]|3 as
MmaXge[—1,10+1 XTQX st Xy =1

e Using X" QX = trace(QXX"), rewrite as
MaXge[—1,10+1 xesn+ trace(QX) s.t. Kny1 =1, X =XXT

e Rewrite again

max trace(QX)

Xesnr

subjectto  [X] =1
X=0
rank(X) =1

Now “hardness” manifests as rank constraint
Drop rank constraint to get semidefinite relaxation

e Generate candidate X using Lu, where L is Cholesky factor
of Xopt, U is & normalized Gaussian rv
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e In prev. ex’s we obtained global lower bounds by relax.
e Can (local) relaxation help us find globally optimal solutions?

e Branch-and-bound: Basic principles
e Partition the feasible set, and on each partition
e Determine a lower bound on min. value of fo(x) on the
partition, possibly by solving a convex relaxation
e Determine an upper bound on the min. value of fo(x) on
the partition, possibly by (coarse) local optimization or
by solving a convex restriction
e Compare lowest of lower bounds with lowest of upper
e If not within desired accuracy, partition (one of) the
existing partitions, and repeat

Non-convex

Note recursive partitioning gives rise to a tree structure

If the lower bound at one node of tree exceeds the upper
bound at another; subtree below can be pruned

Wide variety of tree searches available, incl. “best first”
based on lower bounds

SPAWC application: sphere decoder
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Non-convex

Convexity and local opt.

Although it will find an optimal solution,
branch-and-bound is typically rather time consuming

Alternative: accept suboptimality;
run a local optimization algorithm from a number of starting
points and pick the best

Convexity plays a role in a large number of local optimization
algorithms

Emphasis here is on local approximation,
rather than relaxation or restriction

However, (global) relaxations and restrictions,
as well as (global) convex approximations,
may provide useful starting points.
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e Let's look at a naive algorithm. At each iterate

e Construct a quadratic approximation of objective and
linearize the constraints

e Take a step in direction that minimizes this approx.

e Repeat until a measure of convergence satisfied

e Observations:

e When the Hessian is positive definite,

the approximate problem is convex:
Non-convex convex quadratic obj. with linear constr’s

e However, curvature info. of constraints is lost

e Can be recovered by replacing obj. by Lagrangian and
jointly optimizing over variables and multipliers

e This is the basic principle that underlies sequential
quadratic programming

e Other approximations can be used at each iterate.
Convexity often plays a guiding role in the choice of approx.
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Non-convex

Opt. on manifolds

Although we have talked a lot about the use of
convexity in non-convex problems, it is important to be
aware of other potentially useful techniques

As an example, we consider optimization on manifolds

In some non-convex problems, feasible set has a
perceptible structure

In some cases feasible set forms a manifold

In some cases, can construct optimization algorithms
such that iterates remain on the manifold
Some examples in SPAWC areas:
e minfy(X) over tall X s.t. XTX = |
Stiefel manifold

o if fo(XQ) = fo(X) for orthogonal Q, it is the subspaces
that matter; Grassmannian manifold
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Oracles

Opt. with oracles
Generic problem

min fo(x)

subjectto  fin(X) < ém
9q(X) = (q

What if we don’t have a formula for fo(x)?
perhaps just a numerical code (outcome of a PDE solver);
might take several days to evaluate one point

Could try pattern search, but we would like to try to use
some of our insight into the problem

Try to construct a surrogate optimization problem to guide
where to evaluate the objective

Key current applic’s in aerospace (wing tips, rotor blades),
microwave filter design, etc
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Robust Opt.

Robust optimization

min  fo(x)
xeXx
subjectto  fm(x) < &m
9q(X) = (q

What if we don’t know these functions precisely?
e.g., imperfect CSI

Let’s just look at a linear constraint, a' x < b, with a uncertain
Possible models

e Distribution for a, ask for E;{a™x} < b
Constraint satisfied on average

e ain a convex bounded set A, ask fora'x < b foralla e A
Constraint always satisfied

e Distribution for a, ask for Pr(a’™x <b) > 1 —¢
Chance constrained; reminiscent of outage
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¢ In some cases, the requirement specified via an
uncertain convex constraints can be precisely
characterized using deterministic convex constraints
(of possibly different type)

¢ In some other cases, one can obtain a set of
deterministic convex constraints that are conservative,
in sense that they guarantee that the requirement is
satisfied

Robust Opt.

¢ In the case in which the underlying constraints are not
convex, things are much more difficult
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e This has been a whirlwind tour!

o Take home messages

e “Problem first” methodology
e Convexity buys you more than just a nice algorithm

e Convex opt. still has much to offer when problem is not
convex

¢ Additional information:
e List of recommended entry points to the literature

Sy e Some references on the topics discussed

e Further reading on some other aspects of (convex)
optimization that have been applied SPAWC areas
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e Convex optimization

e Boyd & Vandenberghe, Convex Optimization, Cambridge, 2004
e Bertsekas, Convex Optimization Theory, Athena Scientific, 2009

e Grant, CVX software, http://cvxr.com

Continuous optimization

e Nocedal & Wright, Numerical Optimization, 2nd ed, Springer, 2006
e Bertsekas, Nonlinear Programming, 2nd ed, Athena Scientific, 1999

e Antoniou & Lu, Practical Optimization: Algorithms and Engineering
Applications, Springer, 2007

Global optimization

e Lawler & Wood, “Branch-and-bound methods: A survey”, Operations
Research, Jul.—Aug. 1966
e Horst et al, Intro. to Global Optimization, 2nd ed, Springer, 2001

Literature e Neumaier, “Complete search in continuous global optimization ...",
Acta Numerica, May 2004

Robust optimization

e Ben-Tal et al, Robust Optimization, Princeton, 2009
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Literature

Recommended entry points

e Applications in SPAWC areas

Luo, Mathematical Programming, ser. B, 97:177-207, 2003

IEEE J. Select. Areas Communications, Aug. 2006
especially tutorial of Luo and Yu

IEEE J. Select. Topics Signal Processing, Dec. 2007

Palomar and Eldar (Eds), Convex Optimization in Signal
Processing and Communications, Cambridge, 2010

IEEE Signal Processing Magazine, May 2010
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Literature

References

A somewhat biased list

FIR filter design
e Davidson, IEEE Signal Processing Mag., May 2010,
and references therein
Sparsity
e |EEE Signal Processing Mag., Mar. 2008
e Proceedings of the IEEE, June 2010

Geometric programs and applic’s in SPAWC areas

e Boyd et al, Optimization and Engineering, 2007
e Chiang, Found. & Trends Commun. Info. Theory, Aug. 2005

e Gohary & Davidson, EURASIP JWCN, 2009
Quasi-convexity in cooperative communications

e Mesbah and Davidson, in Proc. ICASSP, 2010, and refs therein
e-suboptimal set

e Skaf & Boyd, Optimization and Engineering, June 2010
Semidefinite relaxation

e |uo et al, IEEE Signal Processing Mag., May 2010
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Branch-and-bound interpretation of sphere decoder

e Murugan et al, IEEE Trans. Info. Theory, Mar. 2006

Optimization on manifolds and applic's

e Edelman et al, SIAM J. Matrix Anal. Applic, 1998
e Manton, IEEE Trans. Signal Processing, Mar. 2002

® Gohary & Davidson, IEEE Trans. Info. Theory, Mar. 2009

Optimization with oracles

® Booker et al, Structural and Multidisciplinary Optimization, Feb. 1999
e Koziel et al, IEEE Microwave Mag., Dec. 2008

Some applic’s of robust optimization in SPAWC areas

e Vorobyov et al, IEEE Trans. Signal Processing, Feb. 2003
Literature e Gershman et al, IEEE Signal Processing Mag., May 2010
® Vucic & Boche, and Shenouda & Davidson,
IEEE Trans. Signal Processing, Feb./May 2009
e Rong et al, IEEE J. Select. Areas Commun., Aug. 2006

e Shenouda and Davidson, in Proc. Asilomar Conf., 2008
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related topics that have applications in SPAWC areas

e Majorization and Schur convexity

e Palomar & Jiang, Found. & Trends Commun. Info. Theory, 2006

e Shenouda & Davidson, IEEE J. Select. Areas Commun., Feb. 2008
Decomposition

e Palomar & Chiang, Lin et al, and Johansson et al,
IEEE J. Select. Areas Commun., Aug. 2006

e Chiang et al, Proceedings of the IEEE, Jan. 2007

Gossip algorithms and consensus

e Olfati-Saber et al, Proceedings of the IEEE, Jan. 2007

e Dimakis et al, http://arxiv.org/abs/1003.5309, Mar. 2010
Game theory

e |EEE Signal Processing Mag., Sep. 2009
Dynamic programming

e Bertsekas, Dynamic Programming and Optimal Control, 3rd ed,

Athena Scientific, 2005/2007

Further
Reading
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