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Engineering Design

• Typically a multi-stage process with two key stages
• Choose a configuration and identify free parameters
• Choose values for the free parameters

• Example: digital filter design
• Choose a configuration:

FIR or IIR? fixed order? discrete coefficients?
• Choose values for the filter coefficients

• Parameter choice
• Typically requires judicious trade-offs, or

showing no suitable parameters exist for current config.

• Design experience is often distilled into guidelines

• This tutorial: enriching process of parameter design
by harnessing the perspective of optimization theory;
and in particular, that of convex optimization
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Goals (and caveats)

• Help you to harness the perspective of optimization to enrich
the common sense of good design practice

• This is not an introduction to convex optimization; more a
taste of how optimization can be leveraged for design

• Many of you know convexity opens door to reliable algo’s
Emphasis here is on other doors that convexity opens
and impact on the design process

• Rigor is important in practice, but I will be sloppy; e.g.,

• Affine functions aT x + b described as being linear
• Implicit assumptions of full column rank in linear eq’ns

• Associated literature can fill technical gaps;
List of ‘entry points’ at the end
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Parameter Optimization
• Given configuration, how to choose free parameters?

• Consider taking a structured approach
• Identify the design variables: x ∈ X ⊆ R

n

• identify req’d characteristics: fm(x) ≤ ξm; gq(x) = ζq

Note: fm(x) ≥ ξm ←→ −fm(x) ≤ −ξm

• Identify cost function: f0(x);
locally decreases with increasing merit

• Find the best of the satisficing parameter vectors

min
x∈X

f0(x)

subject to fm(x) ≤ ξm

gq(x) = ζq

or show that no satisficing parameter vector exists.
In latter case need to revisit configuration

• This process often enlightening in and of itself
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Simple example

FIR low pass filter with L discrete coefficients

Up

Lp

Us

ωp ωs π ω

M
ag

ni
tu

de

• Identify variables:
• the L filter coefficients; can take on only discrete values

• Identify required characteristics:
• magnitude response lies within mask

• Identify objective:
• stop band energy
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Formal Optimization

• Write the design problem at hand as

min
x∈X

f0(x)

subject to fm(x) ≤ ξm

gq(x) = ζq

or show that there is no feasible x

• Does this help?

• Maybe not! Problem may be fundamentally difficult

• This tutorial will help you identify how it can help

• and for cases where it initially appears that it does not
• we will provide some suggestions for things to try, and
• help you manage expectations of impact on design
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Desirable Properties I

• Model accuracy:
• Is global optimum really the best design?
• Is it even good?

Knowledge of application is important

• Reliable solution method:
• no tweaking of parameters of algorithm
• unsupervised; perhaps even embeddable
• detection of infeasibility
• easy to program

• Computational efficiency:
Assessment depends on application; might want

• ‘real time’, or
• graceful (polynomial) increase with problem size
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Desirable Properties II

• Insight:
• Structure of the solution
• Inherent trade-offs between competing design criteria

• Robustness/sensitivity of solution:
• Extent of neighbouring x’s that are feasible? good?

• Design: enables secondary objective
• Estimation: evaluates specificity of criterion

• Sensitivity of solution to changes in fm(x) or gq(x)

• What if these functions are only partially known?
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In practice?

• Typically, on your first try, the problem will have few of
these desirable properties, if any

• What to do? grid search? random search?

• Key steps in proposed approach
• Study application and optimization problem to identify

an underlying problem with better properties

• still want reasonable model accuracy, but
reliability, comp. efficiency, insight given greater weight

• this ‘nicer’ problem may have different variables,
or even different dimensions

• Solve the ‘nicer’ problem
• Use that solution to generate good sol’n to orig. prob.

or to obtain insight into the original problem

• Iterate, if necessary
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An alternative approach

• Proposed approach is a “problem first” approach
• Describe the actual design problem first, then
• try to approximate with a ‘nice’ optimization problem

• An alternative approach: “optimization first”
• Consider all the ‘nice’ opt. problems that you know
• Pick the one that best suits the problem
• Add on ‘features’ while retaining ‘nicety’
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‘Nice’ problems

• So which problems are ‘nice’?

• Some that have been known for some time:
• Least-squares problems: minx ‖Ax − b‖2

2
closed-form solution: x⋆ = (AT A)−1AT b; A fcr

• least-squares with linear equality constraints;
also closed-form solution

• problems with linear objective and linear constrs;
computationally efficient algo’s; optimality conditions

• For much of that time, “approx. by nice problem” meant
approx. by one of these, or a few others

• Clearly that could incur large “modelling error”

• Good news: the list of ‘nice’ problems has been
substantially expanded over last 15–20 years;
an enabling step
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Convexity

To help be more specific about ‘nice’, let’s look at convexity

Convex set: contains all line segments between any pair of
points in the set

Convex Non-convex
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Convex functions

• Convex function: for any two points in the domain,
function lies below the line segment joining the
functional values

• Epigraph: set (t , x) such that t ≥ f (x)

• A function is convex iff its epigraph is a convex set

• A function f (x) is concave if −f (x) is convex
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Convex problems
• Recall generic problem

min
x∈X

f0(x)

subject to fm(x) ≤ ξm

gq(x) = ζq

• If f0(x) and all fm(x) are convex and all gq(x) are linear
then problem is convex

• Least-squares and linear programs are convex

• For symmetric matrix Q with non-negative eigenvalues
f (x) = xT Qx + 2pT x + r is convex

• Note: Maximizing a concave function f̃0(x) equiv. to
minimizing −f̃0(x), which is a convex function
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Convex and ‘nice’ problems

A coarse categorization
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Convex problems

• Reliable algo. for global optimum; most v. efficient

• Easily implementable general purpose tools that can
handle many cases; e.g., CVX

• but there’s more than just a good algorithm

• Enable efficient/reliable computation of trade-offs

• Optimality conditions; insight into structure

• Bounds obtained using duality can reliably determine
when no suitable set of parameters exists for the
current configuration

• Also, Lagrange multipliers may give some insight into
how to modify configuration

• Sometimes convexity is obscured,
but when discovered, it is well worth it
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Non-convex problems
• Often “what you see is all you’ve got” (apologies to

Brians Reid and Kernighan, and Leslie Lamport)

• In a few cases careful analysis yields specialized
algorithms that have desirable features

• For smooth problems, reasonable general purpose
software, e.g., fmincon (matlab), lancelot.
Driving force: sequence of local convex approximations

• However, typically, for anything other than truly small
problems all we can expect to do in a reasonable
amount of time is find a locally optimal solution

• Therefore, even when you can’t find a sol’n, hard to
decide if problem is infeasible for current config.

• Insight from convex approx’s can sometimes
• help you understand some features of problem
• guide you to good local solutions
• help you evaluate local solutions
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An example (Boyd)

• Your consulting company gets a call from a ski operator

• They installed light towers for night skiing

• Customers complaining about illumination;
insufficient and uneven

• They ask: Do we need to move towers or install more?

• What do you tell them?
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An example (Boyd)
• Construct a model: n small flat patches

θkj
rkj

• Configuration: m towers in fixed positions

• Free parameters: power used in each lamp, pj ∈ [0, pmax]

• Quantity of interest: Intensity on each patch

• Easy. Free space propagation: Ik (p) =
∑m

j=1 akjpj ,

akj = 1
r2
kj

cos(θkj ) ? No! akj = max
{

1
r2
kj

cos(θkj ), 0
}

• Note that Ik (p) is linear in p

• Obj: Make intensity on each surface close to Ides

• Let’s begin with the “optimization first” approach



Enriching
design
20 / 66

Davidson

Engineering
Design

Formulation

Convexity

Examples

Break

Convexity

Quasi-convex

Beyond algos

Non-convex

Oracles

Robust Opt.

Summary

Literature

Further
Reading

“Optimization first” approach
• Try uniform allocation pj = p, and

try to find a better p than currently used

• Try least squares

minp∈Rm
∑n

k=1

(

Ik (p)− Ides
)2

closed-form solution; round solution to [0, pmax]

• Try regularizing

minp∈Rm
∑n

k=1

(

Ik (p)− Ides
)2

+
∑m

j=1 wj
(

pj − pmax/2
)2

closed-form; iteratively adjust wj until opt. pj ∈ [0, pmax]

• Try linear programming

minp∈Rm, δ∈R δ

subject to − δ ≤ Ik (p)− Ides ≤ δ k = 1, 2, . . . , n

0 ≤ pj ≤ pmax j = 1, 2, . . . , m

convex; efficiently solvable; no tweaking
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“Problem first” approach

• Response of eye to intensity is approx. logarithmic

• Suggests:

minp∈Rm maxk∈[1,n]

∣

∣log
(

Ik (p)
)

− log
(

Ides
)∣

∣

subject to 0 ≤ pj ≤ pmax j = 1, 2, . . . , m

• Looks intimidating

• Analyze:
∣

∣log(a)− log(b)
∣

∣ ≤ τ ←→ max
{

a
b , b

a

}

≤ eτ

• Equivalent problem:

minp∈Rm maxk∈[1,n] h
(

Ik (p)/Ides
)

subject to 0 ≤ pj ≤ pmax j = 1, 2, . . . , m

where h(u) = max{u, 1/u}.
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Problem first approach
Equivalent problem:

minp maxk h
(

Ik (p)/Ides
)

s.t. 0 ≤ pj ≤ pmax

h(u) = max{u, 1/u}

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u

h(
u)

• h(u) is convex; max of convex functions is convex

• Equivalent problem is convex; can write as linear obj.
with linear and second order cone constrs

• Reliably solvable for global opt. with modest effort

• So what do you tell the ski operator?

• Since we can reliably obtain global optimum, we can
confidently say that if that solution is not good enough,
must change configuration (move/more towers)
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Another example
• Previous problem was reformulated as a convex one
• In this case we won’t be so lucky
• However, we will show that convex opt. still has an

important role to play

Consider the previous FIR filter design problem:

Up

Lp

Us

ωp ωs π ω

M
ag

ni
tu

de

• Identify variables: L discrete-valued filter coefficients
• Constraints: magnitude response lies within mask
• Objective: stop band energy
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Initial formulation

Up

Lp

Us

ωp ωs π ω

M
ag

ni
tu

de

• Let v(ω) = [1, ejω, ej2ω, . . . , ej(L−1)ω]T ; X(ejω) = v(ω)Hx

• Formulation:

min
x∈X

Es =
1
π

∫ π

ωs

∣

∣v(ω)Hx
∣

∣

2
dω = xT Qx

subject to |v(ω)Hx| ≤ Up ∀ω ∈ [0, ωs)

|v(ω)Hx| ≥ Lp ∀ω ∈ [0, ωp]

|v(ω)Hx| ≤ Us ∀ω ∈ [ωs, π]

• Design question:
• What is the inherent trade-off between Es and Us?
• i.e., What is the region of all achievable (Us, Es) pairs?
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Analysis of init. formulation
• Initial formulation

min
x∈X

xT Qx

subject to |v(ω)Hx| ≤ Up ∀ω ∈ [0, ωs)

|v(ω)Hx| ≥ Lp ∀ω ∈ [0, ωp]

|v(ω)Hx| ≤ Us ∀ω ∈ [ωs, π]

• Coefficients are discrete: non-convex

• Relax that constraint to allow real coefficients

• Will give outer bound on set of achievable (Us, Es) pairs

• Relaxed formulation, with squared constraints:

min
h∈RL

hT Qh

subject to |v(ω)Hh|2 ≤ U2
p ∀ω ∈ [0, ωs)

|v(ω)Hh|2 ≥ L2
p ∀ω ∈ [0, ωp]

|v(ω)Hh|2 ≤ U2
s ∀ω ∈ [ωs, π]
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Analyze relaxed formulation
• Relaxed formulation, return to integral objective:

min
h∈RL

1
π

∫ π

ωs

∣

∣v(ω)Hh
∣

∣

2
dω

subject to |v(ω)Hh|2 ≤ U2
p ∀ω ∈ [0, ωs)

|v(ω)Hh|2 ≥ L2
p ∀ω ∈ [0, ωp]

|v(ω)Hh|2 ≤ U2
s ∀ω ∈ [ωs, π]

• Second constraint: lower bound on convex quadratic;
non-convex; what to do?

• Observation: Everything is a function of |H(ejω)|2

• Observation: |H(ejω)|2 = Rh(ejω), where
Rh(ejω) is the Fourier Transform of the autocorrelation of h[k ]

• Observation: Rh(ejω) = ṽ(ω)T r̃h;
ṽ(ω) = [1, 2 cos(ω), . . . , 2 cos((L− 1)ω)];
r̃h contains “right half” of autocorrelation; linear
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Transformed relaxed formulation

min
r̃h∈RL

1
π

∫

π

ωs

Rh(e
jω) dω = pT r̃h

subject to ṽ(ω)T r̃h ≤ U2
p ∀ω ∈ [0, ωs)

ṽ(ω)T r̃h ≥ L2
p ∀ω ∈ [0, ωp]

ṽ(ω)T r̃h ≤ U2
s ∀ω ∈ [ωs, π]

ṽ(ω)T r̃h ≥ 0 ∀ω ∈ [0, π]

• Linear program! but
• How many constraints? ∞
• Options:

• Discretize and tighten: e.g., ṽ(ωi )̃rh ≤ U2
P − ǫN

for relevant ωi = πi/N, plus band edges
typically N = KL, K ∈ [8, 16] allows ǫN to be small

• Represent exactly using linear matrix inequalities
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Comparisons
Original formulation

min
x∈X

xT Qx

s.t. |v(ω)Hx| ≤ Up ∀ω ∈ [0, ωs)

|v(ω)Hx| ≥ Lp ∀ω ∈ [0, ωp]

|v(ω)Hx| ≤ Us ∀ω ∈ [ωs, π]

Non-convex

Transformed relaxed

min
r̃h∈RL

pT r̃h

s.t. ṽ(ω)T r̃h ≤ U2
p ∀ω ∈ [0, ωs)

ṽ(ω)T r̃h ≥ L2
p ∀ω ∈ [0, ωp]

ṽ(ω)T r̃h ≤ U2
s ∀ω ∈ [ωs, π]

ṽ(ω)T r̃h ≥ 0 ∀ω ∈ [0, π]

Convex

Using transformed relaxed problem:

• Efficiently gen. outer bound on achievable (Us, Es) region
by solving problem for different values of Us

• Gen. an optimal h ∈ R
L by spectral factorization

• Gen. good x ∈ X by (randomized) rounding and/or local
search

• When should we stop?



Enriching
design
29 / 66

Davidson

Engineering
Design

Formulation

Convexity

Examples

Break

Convexity

Quasi-convex

Beyond algos

Non-convex

Oracles

Robust Opt.

Summary

Literature

Further
Reading

A conceptual figure

PSfrag

Us

Es

+

×

Outer bound

• Outer bound: solve transformed relaxed problem for different
values of Us; convex, global optimum reliably obtained

• If your current best discrete coeff. filter achieves +,
you might be satisfied; you might stop your search

• If your current best discrete coeff. filter achieves ×,
if you are not yet exhausted, probably keep looking
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Applics in SPAWC areas

Recommended entry points to literature:

• Luo, Mathematical Programming, ser. B, 97:177–207, 2003

• IEEE J. Select. Areas Communications, Aug. 2006,
especially tutorial by Luo and Yu

• IEEE J. Select. Topics Signal Processing, Dec. 2007

• Palomar and Eldar (Eds), Convex Optimization in Signal
Processing and Communications, Cambridge, 2010

• IEEE Signal Processing Magazine, May 2010
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Outline of rest of the session

• A sampling of the family of convex functions

• Quasi-convexity

• Beyond reliable algorithms, what does convexity offer?

• Using convexity in problems that remain non-convex

• Other tools for certain non-convex problems

• What about problems where only an oracle is
available?

• What about functions that are uncertain?
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Generic formulation
• Generic parameter design problem

min
x∈X

f0(x)

subject to fm(x) ≤ ξm

gq(x) = ζq

or show that there is no feasible x

• Convexity (almost always) yields reliable algo for a global opt

• For convexity:
• X must be convex
• gq(x) must be linear (affine)
• for f (x)’s convexity suffices

• Quite a rich family of sets and functions

• These are the “target” functions when you try to find a
convex problem related to the original

• Too many to list; see Boyd & Vandenberghe, CVX docs

• Some “art” in how to use the list
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Some simple convex sets X

• Polyhedron:
{

x |aT
i x ≤ bi

}

• Second order cone:
{

(x, t) | ‖x‖2 ≤ t
}

ice cream cone

• Semidefinite cone:
{

X |X = XT , λi(X) ≥ 0
}

• Intersection preserves convexity
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Some simple convex functions
• Linear (affine): aT x + b

• Convex quadratic: xT Qx + 2pT x + r , with Q < 0

• Abs. value: |x |; exp: eax ; neg log: − log(x)

• Sizes:
• Norm: ‖x‖p, p ≥ 1; 1,∞: linear; 2: convex quad.

• HuberM(x) =

{

x2 for |x | ≤ M
2M|x | −M2 for |x | > M

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

x

hu
be

r(
x)

, M
=

1
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Simple relationships

• Simple relationships that preserve convexity:
• x ← Ax + b
•

∑

i fi(x)
• maxi fi(x)

• Also composition of certain classes of functions
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Application: Sparsity
• Even with these simple cases, we can take this on

• Given a set of m linear equations in n variables, m < n,
find the most sparse ǫ solution

• “Problem first” approach:

minx∈Rn ‖x‖0 subject to ‖Ax − b‖2 ≤ ǫ

where ‖x‖0 is number of non-zero elements; not convex

• The 0-quasi-norm penalizes all non-zero elements equally;
Norms: penalty increases with mag. of element

• Challenge: find convex f’n that behaves somewhat like ‖ · ‖0

• p-norms, p ≥ 1, are convex;
which imposes smallest penalty on large elements? p = 1

• Hence, approximate original problem by following convex one

minx∈Rn ‖x‖1 subject to ‖Ax − b‖2 ≤ ǫ

Much can be said about probability that solutions coincide.
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Geometric programs
• log

∑

i exp
(

aT
i x + bi

)

: convex

• Consider the problem

minx∈Rn
++

f0(x) subject to fm(x) ≤ 1

where, with amki ∈ R, functions take the form

fm(x) =
∑K

k=1 cmk xamk1
1 xamk2

2 . . . xamkn
n

• This is called a geometric program

• Also arises in power allocation in wireless

• Not convex. However, let yi = log(xi).

• GP can be precisely transformed to

miny∈Rn log
(

∑K
k=1 exp

(

aT
0k y + b0k

)

)

subject to log
(

∑K
k=1 exp

(

aT
mk y + bmk

)

)

≤ 0

where bmk = log(cmk ). Convex



Enriching
design
38 / 66

Davidson

Engineering
Design

Formulation

Convexity

Examples

Break

Convexity

Quasi-convex

Beyond algos

Non-convex

Oracles

Robust Opt.

Summary

Literature

Further
Reading

Some matrix functions
• trace(AT X): convex

• Schur complement: If A ≻ 0, then

C− BT A−1B < 0 ⇐⇒
[

A B
BT C

]

< 0

If A, B, C are linear in the variables, then
LHS is not convex, in general, but RHS is convex

• A consequence

σmax(X) ≤ τ ⇐⇒ τ2I− XT X < 0

⇐⇒ τ I− XT X/τ < 0

⇐⇒

[

τ I X
XT τ I

]

< 0
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Quasi-convexity
A function is quasi-convex if its sublevel sets are convex

• For convex constrs and quasi-convex obj., given γ consider

find x

subject to f0(x) ≤ γ; fm(x) ≤ ξm; gq(x) ≤ ζq

A convex feasibility problem

• There is a single threshold for feasibility

• Use bisection on γ to find that thresh.; hence efficient algo

• Unfort. sum of quasi convex is not necess. quasi-convex

• A direct application: joint power and resource allocation in
half-duplex cooperative communications
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Quasi convexity: Design spec’s

• If Tα is a nested family of convex sets,
with Tα1 ⊆ Tα2 for α1 ≤ α2, then

inf
x,α

α such that ∃ x ∈ Tα

can be handled in the same way

• Eng. interp: Tα represents design spec’s;
tighter for smaller α

• Applic’s in filter design (when all other constr’s convex):

• minimum length filter that satisfies specifications
• with previous mask and r̃h: min. stop-band edge
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Beyond reliable algorithms

• Reasonably widely known that convexity (almost
always) yields reliable algorithm for a global optimum

• What else does convexity offer?
• Efficiently computable inherent trade-offs between

competing criteria (first half)

• Can assess the size of suboptimal set
• Can gain considerable insight using duality

and optimality conditions
• Duality: lower bound on optimal value; often tight
• Insight into structure of opt. sol’n (more efficient algos)
• Some insight into how to modify configuration
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Size of ǫ-subopt. set

• Set of feasible points with objective within ǫ of optimal

• For convex problems, this set can be approximated
using straightforward convex opt. problems

• Impact on design problems
• if ǫ-suboptimal set is large

• lots of nearly optimal solutions
might exploit this by optimizing a secondary obj.

• Impact on estimation problems
• if ǫ-suboptimal set is large

• many plausible solutions
suggests low confidence in estimate
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Duality
• For simplicity, consider ineq. constrs only, ξm = 0.

Primal prob: p⋆ = minx f0(x) subject to fm(x) ≤ 0

• Define Lagrangian: L(x, λ) = f0(x) +
∑

m λmfm(x)

• Define Lagrangian dual function: g(λ) = infx L(x, λ)
Concave, even if fi (x) not convex

• For any λ < 0 and any feasible x: g(λ) ≤ f0(x)
Hence, g(λ) ≤ p⋆

• What is best lower bound? d⋆ = maxλ<0 g(λ)

• In general, d⋆ ≤ p⋆.
For convex problems with a strictly feasible point,
equality! (strong duality)

• Some consequences:

• can develop algo’s with rigorous stopping criteria
• can verify infeasibility
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Optimality conditions

• Again for simplified problem: minx f0(x) s.t. fm(x) ≤ 0.
Consider case of differentiable fi(x)

• For a “regular” point, necessary conditions for optimality:

fm(x⋆) ≤ 0

λ⋆
m ≥ 0

∇f0(x⋆) +
∑

m λ⋆
m∇fm(x⋆) = 0

λ⋆
mfm(x⋆) = 0

• For convex problems, under certain constraint qualifications
(including strong duality), these are also sufficient

• Analysis of this set of non-linear equations can yield insight
into optimal solution; e.g., structure
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Sensitivities of config.

• Perturb the simplified prob: minx f0(x) s.t. fm(x) ≤ δm

• Do we have to re-solve the problem?

• Under strong duality, some insight is already available:
• Tightening:

if λ⋆
m is large, δm < 0 greatly increases p⋆

• Loosening:
if λ⋆

m is small, δm > 0 does not greatly decrease p⋆

• In design setting, tells us what not to do to the
configuration to reduce p⋆

• If, in addition, objective changes smoothly with δm’s
• λ⋆

m is local sensitivity
• so for small changes we get symmetric insight
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Convexity offers

Beyond reliable algorithms for a globally optimal solution

We have highlighted the fact that you can

• Efficiently compute inherent trade-offs between
competing criteria

• Assess the size of suboptimal set

• Gain considerable insight using duality
and optimality conditions
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What about non-convex case?

• In the general case, what you see is all you’ve got

• How can convexity help?

• We will investigate a few ways
• Restriction and relaxation

• bounds on inherent trade-offs
• generating (provably) ‘good’ solutions
• generating ‘good’ starting points for further search

• Global optimization:
• using (convex) relaxation in branch-and-bound algorithm

• Local optimization:
• using sequential convex approximation

• We will also look at one other approach that is useful in
some non-convex problems
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Assess trade-offs in non-convex

• Consider a simple problem: minx f0(x) s.t. f1(x) ≤ ξ1

• Consider the trade-off between opt. value and ξ1;
i.e., p⋆(ξ1)

• If f0(x) and f1(x) convex, can efficiently find trade-off by
solving problem for different values of ξ1.

• General non-convex case:
• Even for one value of ξ1, problem is hard to solve

• Very hard to obtain inherent trade-off

• Typically, all you have is best trade-off that has been
found so far

• What to do? How can convexity help?
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Relaxation and restriction

• Relaxation:
• loosen, or remove, constraints
• feasible set expands;
• generates lower bound on solution of original prob

• Restriction:
• tighten, or add, constraints
• feasible set shrinks;
• generates upper bound on solution of original prob

• If you can find a convex relaxation;
get outer bound on trade-off region

• If you can find a convex restriction;
get inner bound on trade-off region
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A conceptual figure

Known

Known

Unachievable

Achievable

From restrict.

From relax.

ξ1

p⋆
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Example of restriction
Recall filter design problem, relaxed for real coefficients:

Up

Lp

Us

ωp ωs π ω

M
ag

ni
tu

de

min
h∈RL

hT Qh

subject to |v(ω)Hh|2 ≤ U2
p ∀ω ∈ [0, ωs)

|v(ω)Hh|2 ≥ L2
p ∀ω ∈ [0, ωp]

|v(ω)Hh|2 ≤ U2
s ∀ω ∈ [ωs, π]

• Second constraint non-convex

• If you restrict to linear phase filter and constrain the sign,
this constraint becomes linear, and hence convex

• Other constr’s also become linear; obj. remains conv. quad.

• Hence, in this case, phase lin. generates convex restriction
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Another ex. of relaxation
This time, focus is on generating ‘good’ soln,
although lower bounds are generated along the way

ML MIMO/MU detection for binary inputs, known channel, AWGN

min
x∈{−1,1}n

‖y − Hx‖2
2

Convex quadratic objective; non-convex constraints

• “Full” relaxation: minx∈Rn ‖y − Hx‖2
2

• Least-squares; closed-form solution
• Once solved, (randomly) round to binary vector

• Box relaxation: minx∈[−1,1]n ‖y − Hx‖2
2

• Convex problem, of the same dimension
• Clearly tighter relaxation
• Once solved, (randomly) round to binary vector

• Semidefinite relaxation
• A different relaxation; generates a matrix variable
• Bounds on accuracy (worst-case)
• Tends to be significantly tighter in practice
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Semidefinite relaxation

• Rewrite minx∈[−1,1]n ‖y − Hx‖2
2 as

maxx̃∈[−1,1]n+1 x̃T Qx̃ s.t. x̃n+1 = 1

• Using x̃T Qx̃ = trace(Qx̃x̃T ), rewrite as
maxx̃∈[−1,1]n+1,X∈Sn+1 trace(QX) s.t. x̃n+1 = 1, X = x̃x̃T

• Rewrite again

max
X∈Sn+1

trace(QX)

subject to
[

X
]

ii
= 1

X < 0

rank(X) = 1

Now “hardness” manifests as rank constraint
Drop rank constraint to get semidefinite relaxation

• Generate candidate x̃ using Lu , where L is Cholesky factor
of Xopt, u is a normalized Gaussian rv
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Convexity and global opt.
• In prev. ex’s we obtained global lower bounds by relax.

• Can (local) relaxation help us find globally optimal solutions?

• Branch-and-bound: Basic principles
• Partition the feasible set, and on each partition

• Determine a lower bound on min. value of f0(x) on the
partition, possibly by solving a convex relaxation

• Determine an upper bound on the min. value of f0(x) on
the partition, possibly by (coarse) local optimization or
by solving a convex restriction

• Compare lowest of lower bounds with lowest of upper
• If not within desired accuracy, partition (one of) the

existing partitions, and repeat

• Note recursive partitioning gives rise to a tree structure

• If the lower bound at one node of tree exceeds the upper
bound at another; subtree below can be pruned

• Wide variety of tree searches available, incl. “best first”
based on lower bounds

• SPAWC application: sphere decoder
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Convexity and local opt.

• Although it will find an optimal solution,
branch-and-bound is typically rather time consuming

• Alternative: accept suboptimality;
run a local optimization algorithm from a number of starting
points and pick the best

• Convexity plays a role in a large number of local optimization
algorithms

• Emphasis here is on local approximation,
rather than relaxation or restriction

• However, (global) relaxations and restrictions,
as well as (global) convex approximations,
may provide useful starting points.
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Convexity and local opt.

• Let’s look at a naive algorithm. At each iterate

• Construct a quadratic approximation of objective and
linearize the constraints

• Take a step in direction that minimizes this approx.
• Repeat until a measure of convergence satisfied

• Observations:

• When the Hessian is positive definite,
the approximate problem is convex:
convex quadratic obj. with linear constr’s

• However, curvature info. of constraints is lost
• Can be recovered by replacing obj. by Lagrangian and

jointly optimizing over variables and multipliers
• This is the basic principle that underlies sequential

quadratic programming

• Other approximations can be used at each iterate.
Convexity often plays a guiding role in the choice of approx.
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Opt. on manifolds

• Although we have talked a lot about the use of
convexity in non-convex problems, it is important to be
aware of other potentially useful techniques

• As an example, we consider optimization on manifolds

• In some non-convex problems, feasible set has a
perceptible structure

• In some cases feasible set forms a manifold

• In some cases, can construct optimization algorithms
such that iterates remain on the manifold

• Some examples in SPAWC areas:
• min f0(X) over tall X s.t. XT X = I

Stiefel manifold
• if f0(XQ) = f0(X) for orthogonal Q, it is the subspaces

that matter; Grassmannian manifold
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Opt. with oracles
• Generic problem

min
x∈X

f0(x)

subject to fm(x) ≤ ξm

gq(x) = ζq

• What if we don’t have a formula for f0(x)?
perhaps just a numerical code (outcome of a PDE solver);
might take several days to evaluate one point

• Could try pattern search, but we would like to try to use
some of our insight into the problem

• Try to construct a surrogate optimization problem to guide
where to evaluate the objective

• Key current applic’s in aerospace (wing tips, rotor blades),
microwave filter design, etc
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Robust optimization

min
x∈X

f0(x)

subject to fm(x) ≤ ξm

gq(x) = ζq

What if we don’t know these functions precisely?
e.g., imperfect CSI

Let’s just look at a linear constraint, aT x ≤ b, with a uncertain

Possible models

• Distribution for a, ask for Ea{aT x} ≤ b
Constraint satisfied on average

• a in a convex bounded set A, ask for aT x ≤ b for all a ∈ A
Constraint always satisfied

• Distribution for a, ask for Pr
(

aT x ≤ b
)

≥ 1− ǫ
Chance constrained; reminiscent of outage
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Robust optimization

• In some cases, the requirement specified via an
uncertain convex constraints can be precisely
characterized using deterministic convex constraints
(of possibly different type)

• In some other cases, one can obtain a set of
deterministic convex constraints that are conservative,
in sense that they guarantee that the requirement is
satisfied

• In the case in which the underlying constraints are not
convex, things are much more difficult
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Summary

• This has been a whirlwind tour!

• Take home messages

• “Problem first” methodology

• Convexity buys you more than just a nice algorithm

• Convex opt. still has much to offer when problem is not
convex

• Additional information:
• List of recommended entry points to the literature

• Some references on the topics discussed

• Further reading on some other aspects of (convex)
optimization that have been applied SPAWC areas
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Recommended entry points
• Convex optimization

• Boyd & Vandenberghe, Convex Optimization, Cambridge, 2004
• Bertsekas, Convex Optimization Theory, Athena Scientific, 2009
• Grant, CVX software, http://cvxr.com

• Continuous optimization
• Nocedal & Wright, Numerical Optimization, 2nd ed, Springer, 2006
• Bertsekas, Nonlinear Programming, 2nd ed, Athena Scientific, 1999

• Antoniou & Lu, Practical Optimization: Algorithms and Engineering

Applications, Springer, 2007

• Global optimization
• Lawler & Wood, “Branch-and-bound methods: A survey”, Operations

Research, Jul.–Aug. 1966
• Horst et al, Intro. to Global Optimization, 2nd ed, Springer, 2001

• Neumaier, “Complete search in continuous global optimization . . . ”,

Acta Numerica, May 2004

• Robust optimization

• Ben-Tal et al, Robust Optimization, Princeton, 2009
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Recommended entry points

• Applications in SPAWC areas
• Luo, Mathematical Programming, ser. B, 97:177–207, 2003

• IEEE J. Select. Areas Communications, Aug. 2006
especially tutorial of Luo and Yu

• IEEE J. Select. Topics Signal Processing, Dec. 2007

• Palomar and Eldar (Eds), Convex Optimization in Signal
Processing and Communications, Cambridge, 2010

• IEEE Signal Processing Magazine, May 2010
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References
A somewhat biased list

• FIR filter design
• Davidson, IEEE Signal Processing Mag., May 2010,

and references therein

• Sparsity
• IEEE Signal Processing Mag., Mar. 2008

• Proceedings of the IEEE, June 2010

• Geometric programs and applic’s in SPAWC areas
• Boyd et al, Optimization and Engineering, 2007
• Chiang, Found. & Trends Commun. Info. Theory, Aug. 2005

• Gohary & Davidson, EURASIP JWCN, 2009

• Quasi-convexity in cooperative communications
• Mesbah and Davidson, in Proc. ICASSP, 2010, and refs therein

• ǫ-suboptimal set
• Skaf & Boyd, Optimization and Engineering, June 2010

• Semidefinite relaxation
• Luo et al, IEEE Signal Processing Mag., May 2010
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References

• Branch-and-bound interpretation of sphere decoder

• Murugan et al, IEEE Trans. Info. Theory, Mar. 2006

• Optimization on manifolds and applic’s
• Edelman et al, SIAM J. Matrix Anal. Applic, 1998
• Manton, IEEE Trans. Signal Processing, Mar. 2002

• Gohary & Davidson, IEEE Trans. Info. Theory, Mar. 2009

• Optimization with oracles
• Booker et al, Structural and Multidisciplinary Optimization, Feb. 1999
• Koziel et al, IEEE Microwave Mag., Dec. 2008

• Some applic’s of robust optimization in SPAWC areas
• Vorobyov et al, IEEE Trans. Signal Processing, Feb. 2003
• Gershman et al, IEEE Signal Processing Mag., May 2010
• Vucic & Boche, and Shenouda & Davidson,

IEEE Trans. Signal Processing, Feb./May 2009
• Rong et al, IEEE J. Select. Areas Commun., Aug. 2006
• Shenouda and Davidson, in Proc. Asilomar Conf., 2008



Enriching
design
66 / 66

Davidson

Engineering
Design

Formulation

Convexity

Examples

Break

Convexity

Quasi-convex

Beyond algos

Non-convex

Oracles

Robust Opt.

Summary

Literature

Further
Reading

Further reading
Here are some starting points for information on a few
related topics that have applications in SPAWC areas

• Majorization and Schur convexity
• Palomar & Jiang, Found. & Trends Commun. Info. Theory, 2006

• Shenouda & Davidson, IEEE J. Select. Areas Commun., Feb. 2008

• Decomposition
• Palomar & Chiang, Lin et al, and Johansson et al,

IEEE J. Select. Areas Commun., Aug. 2006

• Chiang et al, Proceedings of the IEEE, Jan. 2007

• Gossip algorithms and consensus
• Olfati-Saber et al, Proceedings of the IEEE, Jan. 2007

• Dimakis et al, http://arxiv.org/abs/1003.5309, Mar. 2010

• Game theory
• IEEE Signal Processing Mag., Sep. 2009

• Dynamic programming
• Bertsekas, Dynamic Programming and Optimal Control, 3rd ed,

Athena Scientific, 2005/2007
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