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Dedication

In memory of Richard Harshman († Jan. 10, 2008), who co-founded
three-way analysis, and fathered PARAFAC in the early 70’s.

Richard was a true gentleman.
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� 3-way arrays: similarities and differences with matrices

� Rank, and low-rank decomposition

� 3-way notation, using CDMA as example

� Uniqueness

� Algorithms

� Performance

� Application: blind speech separation

� What lies ahead & wrap-up
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Applications

� CDMA intercept / signal intelligence

� Sensor array processing

� Multi-dimensional harmonic retrieval

� Radar

� Speech separation

� Multimedia data mining

� Chemistry

� Psychology

� Chromatography, spectroscopy, magnetic resonance ...
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Matrices, Factor Analysis, Rotational Indeterminacy

X = ABT = a1bT
1 + · · ·+arb

T
r (r := rank(X))

xi, j =
r

∑
k=1

ai,kb j,k

X = ABT = AMM−1BT

= + +

+ + +=

+
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Reverse engineering of soup?

� Can only guess recipe: a1bT
1 + · · ·+arb

T
r
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Sample from two or more Cooks!

� Left: a1bT
1 + · · ·+arb

T
r ; right: 1.2×a1bT

1 + · · ·+0.87×arb
T
r

� Same ingredients, different proportions ↪→ recipe!
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Three-Way Arrays

� Two-way arrays, AKA matrices: X := [xi, j] : (I × J)

� Three-way arrays: [xi, j,k] : (I × J×K)

� CDMA w/ Rx Ant array @ baseband: chip × symbol × antenna

9



TUC Nikos Sidiropoulos / SPS DL�

�

�

�

Take-Home Point

C
O
D
E

STEERING

SYMBOL

+=X

X = +

� Fact 1: Low-rank matrix (2-way array) decomposition not unique

for rank > 1

� Fact 2: Low-rank 3- and higher-way array decomposition (PARAFAC)

is unique under certain conditions
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Three-Way vs Two-Way Arrays - Similarities

� Rank := smallest number of rank-one “factors” (“terms” is probably

better) for exact additive decomposition (same concept for both

2-way and 3-way)

� Two-way rank-one factor: rank-one MATRIX outer product of 2

vectors (containing all double products)

� Three-way rank-one factor: rank-one 3-WAY ARRAY outer product

of 3 vectors (containing all triple products) - same concept
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Three-Way vs Two-Way Arrays - Differences

� Two-way (I × J): row-rank = column-rank = rank ≤ min(I,J);

� Three-way: row-rank �= column-rank �= “tube”-rank �= rank

� Two-way: rank(randn(I,J))=min(I,J) w.p. 1;

� Three-way: rank(randn(2,2,2)) is a RV (2 w.p. 0.3, 3 w.p. 0.7)

� 2-way: rank insensitive to whether or not underlying field is open or

closed (IR versus C); 3-way: rank sensitive to IR versus C

� 3-way: Except for loose bounds and special cases [Kruskal; J.M.F.

ten Berge], general results for maximal rank and typical rank sorely

missing for decomposition over IR; theory more developed for

decomposition over C [Burgisser, Clausen, Shokrollahi, Algebraic
complexity theory, Springer, Berlin, 1997]
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Khatri-Rao Product

� Column-wise Kronecker Product:

A =

⎡
⎣ 1 2

3 4

⎤
⎦ , B =

⎡
⎢⎢⎣

5 10

15 20

25 30

⎤
⎥⎥⎦ , A�B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 20

15 40

25 60

15 40

45 80

75 120

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vec(ADBT ) = (B�A)d(D)

A� (B�C) = (A�B)�C
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LRD of Three-Way Arrays: Notation

• Scalar: [CDMA: (i, j,k, f ): (Rx, symbol, chip, user)]

xi, j,k =
F

∑
f=1

ai, f b j, f ck, f , i = 1, · · · , I, j = 1, · · · ,J, k = 1, · · · ,K

• Slabs:
Xk = ADk(C)BT , k = 1, · · · ,K

• Matrix:
X(KJ×I) = (B�C)AT

• Vector:

x(KJI) := vec
(

X(KJ×I)
)

= (A� (B�C))1F×1 = (A�B�C)1F×1
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LRD of N-Way Arrays: Notation

• Scalar:

xi1,··· ,iN =
F

∑
f=1

N

∏
n=1

a(n)
in, f

• Matrix:

X(I1I2···IN−1×IN) =
(

A(N−1) �A(N−2) �·· ·�A(1)
)(

A(N)
)T

• Vector:
x(I1···IN) := vec

(
X(I1I2···IN−1×IN)

)
=

(
A(N) �A(N−1) �A(N−2) �·· ·�A(1)

)
1F×1
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Uniqueness

= +X

� [Kruskal, 1977], N = 3, IR: kA + kB + kC ≥ 2F +2

k-rank= maximum r such that every r columns are linearly independent

(≤ rank)

� [Sidiropoulos et al, IEEE TSP, 2000]: N = 3, C

� [Sidiropoulos & Bro, J. Chem., 2000]: any N, C:

∑N
n=1 k− ranks ≥ 2F +(N −1)
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Key-I

� Kruskal’s Permutation Lemma [Kruskal, 1977]: Consider A (I ×F)

having no zero column, and Ā (I × F̄). Let w(·) be the weight (# of

nonzero elements) of its argument. If for any vector x such that

w(xHĀ) ≤ F − rĀ +1,

we have

w(xHA) ≤ w(xHĀ),

then F ≤ F̄ ; if also F ≥ F̄ , then F = F̄ , and there exist a permutation

matrix P and a non-singular diagonal matrix D such that A = ĀPD.

� Easy to show for a pair of square nonsingular matrices (use rows of

pinv); but the result is very deep and difficult for fat matrices - see [Jiang

& Sidiropoulos, TSP:04], [Stegeman & Sidiropoulos, LAA:07]
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Key-II

� Property: [Sidiropoulos & Liu, 1999; Sidiropoulos & Bro, 2000]

If kA ≥ 1 and kB ≥ 1, then it holds that

kB�A ≥ min(kA + kB −1,F),

whereas if kA = 0 or kB = 0

kB�A = 0
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Is Kruskal’s Condition Necessary?

� Long-held conjecture (Kruskal’89): Yes

� ten Berge & Sidiropoulos, Psychometrika, 2002: Yes for F ∈ {2,3},

no for F > 3

� Jiang & Sidiropoulos ’03: new insights that explain part of the

puzzle: E.g., for rC = F , the following condition has been proven to

be necessary and sufficient:

No linear combination of two or more columns of A�B

can be written as KRP of two vectors
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P-a.s. uniqueness results

� de Lathauwer ’03 - SIAM JMAA ’06 (cf. Jiang & Sidiropoulos ’03):

Decomposition is a.s. unique provided

min(K, IJ) ≥ F and F(F −1) ≤ 1

2
I(I −1)J(J−1)

� Far better than previously known in many cases of practical interest
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Algorithms

� SVD/EVD or TLS 2-slab solution (similar to ESPRIT) in some cases

(but conditions for this to work are restrictive)

� Workhorse: ALS [Harshman, 1970]: LS-driven (ML for AWGN),

iterative, initialized using 2-slab solution or multiple random cold

starts

� ALS −→ monotone convergence, usually to global minimum

(uniqueness), close to CRB for F << IJK
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Algorithms

� ALS is based on matrix view:

X(KJ×I) = (B�C)AT

� Given interim estimates of B, C, solve for conditional LS update of

A:

ACLS =
(
(B�C)†X(KJ×I)

)T

� Similarly for the CLS updates of B, C (symmetry); repeat in a

circular fashion until convergence in fit (guaranteed)
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Algorithms

� ALS initialization matters, not crucial for heavily over-determined

problems

� Alt: rank-1 updates possible [Kroonenberg], but inferior

� COMFAC (Tucker3 compression), G-N, Levenberg, ATLD, DTLD,

ESPRIT-like,...

� G-N converges faster than ALS, but it may fail

� In general, no “algebraic” solution like SVD

� Possible if e.g., a subset of columns in A is known [Jiang &

Sidiropoulos, JASP 2003]; or under very restrictive rank conditions
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Robust Regression Algorithms

� Laplacian, Cauchy-distributed errors, outliers

� Least Absolute Error (LAE) criterion: optimal (ML) for Laplacian,

robust across α-stable

� Similar to ALS, each conditional matrix update can be shown

equivalent to a LP problem −→ alternating LP [Vorobyov, Rong,

Sidiropoulos, Gershman, 2003]

� Alternatively, very simple element-wise updating using weighted
median filtering [Vorobyov, Rong, Sidiropoulos, Gershman, 2003]

� Robust algorithms perform well for Laplacian, Cauchy, and not far

from optimal in the Gaussian case
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CRBs for the PARAFAC model

� Dependent on how scale-permutation ambiguity is resolved

� Real i.i.d. Gaussian, 3-way, Complex circularly symmetric i.i.d.

Gaussian, 3-way & 4-way [Liu & Sidiropoulos, TSP 2001]

� Compact expressions for complex 3-way case & asymptotic CRB

when one mode length goes to infinity [Jiang & Sidiropoulos,

JASP/SMART:04]

� Laplacian, Cauchy [Vorobyov, Rong, Sidiropoulos, Gershman,

TSP:04] - scaled versions of the Gaussian CRB; scaling parameter

only dependent on noise pdf
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Performance
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Figure 1: RMSEs versus SNR: Gaussian noise, 8×8×20, F = 2
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Performance
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Figure 2: RMSEs versus SNR: Cauchy noise, 8×8×20, F = 2

27



TUC Nikos Sidiropoulos / SPS DL�

�

�

�

Performance

� ALS works well in AWGN because it is ML-driven, and with 3-way

data it is easy to get to the large-samples regime: e.g.,

10×10×10 = 1000

� Performance is worse (and further from the CRB) when operating

close to the identifiability boundary; but ALS works under model

identifiability conditions only, which means that at high SNR the

parameter estimates are still accurate

� Main shortcoming of ALS and related algorithms is the high

computational cost

� For difficult datasets, so-called swamps are possible: progress towards

convergence becomes extremely slow
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Demo: Blind speech separation

� Frequency-domain vs time-domain methods

� Joint diagonalization (symmetric PARAFAC / INDSCAL) per

frequency bin

� Exploits time variation in speaker powers: Rk( f ) = A( f )DkAH( f )

� Frequency-dependent permutation problem is key

� How to ensure consistency (“string together”) across bins

� Engineering! - not science ...

� We now have very competitive solution

� Joint work with D. Nion, K. Mokios, A. Potamianos http:

//www.telecom.tuc.gr/˜nikos/BSS_Nikos.html
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Adaptive PARAFAC

� Nion & Sidiropoulos 2008, IEEE TSP, submitted
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Figure 3: Blind speaker separation and tracking
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Adaptive PARAFAC

� MIMO radar
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Figure 4: Trajectory tracking
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Adaptive PARAFAC

� Complexity
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Learn more - tutorials, bibliography, papers, software,...

� Group homepage (Nikos Sidiropoulos):
www.telecom.tuc.gr/˜nikos

� 3-way group at KVL/DK (Rasmus Bro):
http://www.models.kvl.dk/users/rasmus/ and

http://www.models.kvl.dk/courses/

� 3-Mode Company (Peter Kroonenburg):
http://www.leidenuniv.nl/fsw/three-mode/3modecy.htm

� Hard-to-find original papers (Richard Harshman):
http://publish.uwo.ca/˜harshman/

� 3-way workshop: TRICAP every 3 years, since ’97; 2006,

Chania-Crete Greece; 2009, Pyrenees Spain.
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What lies ahead & wrap-up

� Take home point: (N > 3)-way arrays are different; low-rank

models unique, have many applications

� Major challenges: Rank & uniqueness: i) rank detection; ii)

necessary & sufficient conditions, esp. for higher-way models; iii)

uniqueness under application-specific constraints

� Major challenges: Algorithms: Faster at small performance loss;

incorporation of application-specific constraints

� New exciting applications: Yours!

34



TUC Nikos Sidiropoulos / SPS DL�

�

�

�

Preaching the Gospel of 3-Way Analysis

� Thank you!
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