Adaptive Processing in a World of Projections

Sergios Theodoridis ${ }^{1}$

Joint work with
Konstantinos Slavakis ${ }^{2}$ and Isao Yamada ${ }^{3}$

${ }^{1}$ University of Athens, Greece
${ }^{2}$ University of Peloponnese, Greece
${ }^{3}$ Tokyo Institute of Technology, Japan

$$
\text { January 16, } 2009
$$

"O؟ $\Delta \mathrm{EI} \Sigma$ АГЕ $2 \mathrm{METPHTO} \mathrm{\Sigma} \mathrm{EI} \mathrm{\Sigma I"}$

"O؟ $\Delta \mathrm{EI} \Sigma$ АГЕ $2 \mathrm{METPHTO} \mathrm{\Sigma} \mathrm{EI} \mathrm{\Sigma I"}$

("Those who do not know geometry are not welcome here")

Plato's Academy of Philosophy

Outline

- The fundamental tool of metric projections in Hilbert spaces.
- The Set Theoretic Estimation approach and multiple intersecting closed convex sets.
- Online classification and regression in Reproducing Kernel Hilbert Spaces (RKHS).
- Incorporating a-priori constraints in the design.
- An algorithmic solution to constrained online learning in RKHS.
- A nonlinear adaptive beamforming application.

Machine Learning

Problem Definition

Given

- A set of measurements $\left(\boldsymbol{x}_{n}, y_{n}\right)_{n=1}^{N}$, which are jointly distributed, and
- A parametric set of functions

$$
\mathcal{F}=\left\{f_{\alpha}(\boldsymbol{x}): \alpha \in A \subset \mathbb{R}^{k}\right\}
$$

Compute an $f(\cdot)$ that best approximates y, given the value of \boldsymbol{x} :

$$
y \approx f(\boldsymbol{x})
$$

Machine Learning

Problem Definition

Given

- A set of measurements $\left(\boldsymbol{x}_{n}, y_{n}\right)_{n=1}^{N}$, which are jointly distributed, and
- A parametric set of functions

$$
\mathcal{F}=\left\{f_{\alpha}(\boldsymbol{x}): \alpha \in A \subset \mathbb{R}^{k}\right\}
$$

Compute an $f(\cdot)$ that best approximates y, given the value of \boldsymbol{x} :

$$
y \approx f(\boldsymbol{x})
$$

Special Cases

Smoothing, prediction, filtering, system identification, beamforming, curve-fitting, regression, and classification.

The More Classical Approach

Select a loss function $\ell(\cdot, \cdot)$ and estimate $f(\cdot)$ so that

$$
f(\cdot) \in\left\{f_{\alpha}(\cdot) \in \arg \min _{\alpha} \sum_{n=1}^{N} \ell\left(y_{n}, f_{\alpha}\left(\boldsymbol{x}_{n}\right)\right)\right\}
$$

The More Classical Approach

Select a loss function $\ell(\cdot, \cdot)$ and estimate $f(\cdot)$ so that

$$
f(\cdot) \in\left\{f_{\alpha}(\cdot) \in \arg \min _{\alpha} \sum_{n=1}^{N} \ell\left(y_{n}, f_{\alpha}\left(\boldsymbol{x}_{n}\right)\right)\right\} .
$$

Drawbacks

- Most often, in practice, the choice of the cost is dictated not by physical reasoning but by the computational tractability.
- The existence of a-priori information in the form of constraints makes the task even more difficult.
- The optimization task is solved iteratively, and iterations freeze after a finite number of steps. Thus, the obtained solution lies in a neighborhood of the optimal one.
- The stochastic nature of the data and the existence of noise add another uncertainty on the optimality of the obtained solution.
- In this talk we are concerned in finding a set of solutions that are in agreement with all the available information.
- This will be achieved in the general context of fixed point theory, using convex analysis and the powerful tool of projections.

Projection onto a Closed Subspace

Theorem
Given a Euclidean \mathbb{R}^{N} or a Hilbert space \mathcal{H}, the projection of a point f onto a closed subspace M is the point $P_{M}(f) \in M$ that lies closest to f (Pythagoras Theorem).

Projection onto a Closed Convex Set

Theorem

Let C be a closed convex set in a Hilbert space \mathcal{H}. Then, for each $f \in \mathcal{H}$ there exists a unique $f_{*} \in C$ such that

$$
\left\|f-f_{*}\right\|=\min _{g \in C}\|f-g\| .
$$

Projection onto a Closed Convex Set

Theorem

Let C be a closed convex set in a Hilbert space \mathcal{H}. Then, for each $f \in \mathcal{H}$ there exists a unique $f_{*} \in C$ such that

$$
\left\|f-f_{*}\right\|=\min _{g \in C}\|f-g\| .
$$

Definition (Metric Projection Mapping)
Projection is the mapping $P_{C}: \mathcal{H} \rightarrow C: f \mapsto f_{*}$.

Projection onto a Closed Convex Set

Theorem

Let C be a closed convex set in a Hilbert space \mathcal{H}. Then, for each $f \in \mathcal{H}$ there exists a unique $f_{*} \in C$ such that

$$
\left\|f-f_{*}\right\|=\min _{g \in C}\|f-g\| .
$$

Definition (Metric Projection Mapping)
Projection is the mapping $P_{C}: \mathcal{H} \rightarrow C: f \mapsto f_{*}$.

Projectors

Example (Hyperplane $H:=\{g \in \mathcal{H}:\langle g, a\rangle=c\})$

Projectors

Example (Hyperplane $H:=\{g \in \mathcal{H}:\langle g, a\rangle=c\})$

Projectors

Example (Hyperplane $H:=\{g \in \mathcal{H}:\langle g, a\rangle=c\}$)

Projectors
Example (Hyperplane $H:=\{g \in \mathcal{H}:\langle g, a\rangle=c\}$)

Projectors

Example (Halfspace $\left.H^{-}:=\{g \in \mathcal{H}:\langle g, a\rangle \leq c\}\right)$

Projectors

Example (Halfspace $\left.H^{-}:=\{g \in \mathcal{H}:\langle g, a\rangle \leq c\}\right)$

$$
P_{H^{-}}(f)=f-\frac{\max \{0,\langle f, a\rangle-c\}}{\|a\|^{2}} a, \quad \forall f \in \mathcal{H} .
$$

Projectors

Example (Closed Ball $B[0, \delta]:=\{g \in \mathcal{H}:\|g\| \leq \delta\})$

Projectors

Example (Closed Ball $B[0, \delta]:=\{g \in \mathcal{H}:\|g\| \leq \delta\}$)

$$
P_{B[0, \delta]}(f):=\left\{\begin{array}{ll}
f, & \text { if }\|f\| \leq \delta, \\
\frac{\delta}{\|f\|} f, & \text { if }\|f\|>\delta .
\end{array} \quad \forall f \in \mathcal{H} .\right.
$$

Projectors

Example (Icecream Cone $K:=\{(f, \tau) \in \mathcal{H} \times \mathbb{R}:\|f\| \geq \tau\}$)

Projectors

Example (Icecream Cone $K:=\{(f, \tau) \in \mathcal{H} \times \mathbb{R}:\|f\| \geq \tau\}$)

$$
P_{K}((f, \tau))=\left\{\begin{array}{ll}
(f, \tau), & \text { if }\|f\| \leq \tau, \\
(0,0), & \text { if }\|f\| \leq-\tau, \\
\frac{\|f\| \tau \tau}{2}\left(\frac{f}{\|f\|}, 1\right), & \text { otherwise },
\end{array} \quad \forall(f, \tau) \in \mathcal{H} \times \mathbb{R} .\right.
$$

Relaxed Projection

Definition

Given a closed convex set C and its associated projection mapping P_{C}, the relaxed projection mapping is defined as

$$
T_{C}(f):=f+\mu\left(P_{C}(f)-f\right), \mu \in(0,2), \quad \forall f \in \mathcal{H} .
$$

Relaxed Projection

Definition

Given a closed convex set C and its associated projection mapping P_{C}, the relaxed projection mapping is defined as

$$
T_{C}(f):=f+\mu\left(P_{C}(f)-f\right), \mu \in(0,2), \quad \forall f \in \mathcal{H} .
$$

Relaxed Projection

Definition

Given a closed convex set C and its associated projection mapping P_{C}, the relaxed projection mapping is defined as

$$
T_{C}(f):=f+\mu\left(P_{C}(f)-f\right), \mu \in(0,2), \quad \forall f \in \mathcal{H} .
$$

Relaxed Projection

Definition

Given a closed convex set C and its associated projection mapping P_{C}, the relaxed projection mapping is defined as

$$
T_{C}(f):=f+\mu\left(P_{C}(f)-f\right), \mu \in(0,2), \quad \forall f \in \mathcal{H} .
$$

Relaxed Projection

Definition

Given a closed convex set C and its associated projection mapping P_{C}, the relaxed projection mapping is defined as

$$
T_{C}(f):=f+\mu\left(P_{C}(f)-f\right), \mu \in(0,2), \quad \forall f \in \mathcal{H} .
$$

Remark: The use of the relaxed projection operator with $\mu>1$ can, potentially, speed up the convergence rate of the algorithms to be presented.

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

$$
P_{M_{1}}(f)
$$

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

$$
P_{M_{2}} P_{M_{1}}(f)
$$

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

$$
P_{M_{1}} P_{M_{2}} P_{M_{1}}(f)
$$

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

$$
P_{M_{2}} P_{M_{1}} P_{M_{2}} P_{M_{1}}(f) .
$$

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

$$
\cdots P_{M_{2}} P_{M_{1}} P_{M_{2}} P_{M_{1}}(f)
$$

Alternating Projections

Composition of Projection Mappings: Let M_{1} and M_{2} be closed subspaces in the Hilbert space \mathcal{H}. For any $f \in \mathcal{H}$, define the sequence of projections:

$$
\cdots P_{M_{2}} P_{M_{1}} P_{M_{2}} P_{M_{1}}(f) .
$$

Theorem (Von Neumann '33)

For any $f \in \mathcal{H}, \quad \lim _{n \rightarrow \infty}\left(P_{M_{2}} P_{M_{1}}\right)^{n}(f)=P_{M_{1} \cap M_{2}}(f)$.

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n .
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated relaxed projection mappings be $T_{C_{1}}, \ldots, T_{C_{q}}$. For any $f_{0} \in \mathcal{H}$, this defines the sequence of points

$$
f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \quad \forall n
$$

Theorem ([Bregman '65], [Gubin, Polyak, Raik '67])
For any $f \in \mathcal{H}$,
$\left(T_{C_{q}} \cdots T_{C_{1}}\right)^{n}(f) \underset{n \rightarrow \infty}{w}{ }^{\exists} f_{*} \in \bigcap_{i=1}^{q} C_{i}$.

Extrapolated Parallel Projection Method (EPPM)

Recall
 $T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \forall n$.

Extrapolated Parallel Projection Method (EPPM)

Recall

$T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated projection mappings be $P_{C_{1}}, \ldots, P_{C_{q}}$. Let also a set of positive constants w_{1}, \ldots, w_{q} such that $\sum_{i=1}^{q} w_{i}=1$. Then for any f_{0}, the sequence

$$
f_{n+1}=f_{n}+\mu_{n}(\underbrace{\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)}_{\text {Convex combination of projections }}-f_{n}), \quad \forall n
$$

Extrapolated Parallel Projection Method (EPPM)

Recall

$T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated projection mappings be $P_{C_{1}}, \ldots, P_{C_{q}}$. Let also a set of positive constants w_{1}, \ldots, w_{q} such that $\sum_{i=1}^{q} w_{i}=1$. Then for any f_{0}, the sequence

$$
f_{n+1}=f_{n}+\mu_{n}(\underbrace{\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)}_{\text {Convex combination of projections }}-f_{n}), \quad \forall n
$$

Extrapolated Parallel Projection Method (EPPM)

Recall

$T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated projection mappings be $P_{C_{1}}, \ldots, P_{C_{q}}$. Let also a set of positive constants w_{1}, \ldots, w_{q} such that $\sum_{i=1}^{q} w_{i}=1$. Then for any f_{0}, the sequence

$$
f_{n+1}=f_{n}+\mu_{n}(\underbrace{\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)}_{\text {Convex combination of projections }}-f_{n}), \quad \forall n
$$

Extrapolated Parallel Projection Method (EPPM)

Recall

$T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated projection mappings be $P_{C_{1}}, \ldots, P_{C_{q}}$. Let also a set of positive constants w_{1}, \ldots, w_{q} such that $\sum_{i=1}^{q} w_{i}=1$. Then for any f_{0}, the sequence

$$
f_{n+1}=f_{n}+\mu_{n}(\underbrace{\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)}_{\text {Convex combination of projections }}-f_{n}), \quad \forall n
$$

Extrapolated Parallel Projection Method (EPPM)

Recall

$T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated projection mappings be $P_{C_{1}}, \ldots, P_{C_{q}}$. Let also a set of positive constants w_{1}, \ldots, w_{q} such that $\sum_{i=1}^{q} w_{i}=1$. Then for any f_{0}, the sequence

$$
f_{n+1}=f_{n}+\mu_{n}(\underbrace{\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)}_{\text {Convex combination of projections }}-f_{n}), \quad \forall n
$$

Extrapolated Parallel Projection Method (EPPM)

Recall

$T_{C}(f):=f+\mu\left(P_{C}(f)-f\right)$, with $\mu \in(0,2)$, and $f_{n+1}:=T_{C_{q}} \cdots T_{C_{1}}\left(f_{n}\right), \forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_{1}, \ldots, C_{q}, with $\bigcap_{i=1}^{q} C_{i} \neq \emptyset$, let their associated projection mappings be $P_{C_{1}}, \ldots, P_{C_{q}}$. Let also a set of positive constants w_{1}, \ldots, w_{q} such that $\sum_{i=1}^{q} w_{i}=1$. Then for any f_{0}, the sequence

$$
f_{n+1}=f_{n}+\mu_{n}(\underbrace{\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)}_{\text {Convex combination of projections }}-f_{n}), \quad \forall n
$$

converges weakly to a point f_{*} in $\bigcap_{i=1}^{q} C_{i}$, where $\mu_{n} \in\left(\epsilon, \mathcal{M}_{n}\right)$, for $\epsilon \in(0,1)$, and $\mathcal{M}_{n}:=\frac{\sum_{i=1}^{q} w_{i}\left\|P_{C_{i}}\left(f_{n}\right)-f_{n}\right\|^{2}}{\left\|\sum_{i=1}^{q} w_{i} P_{C_{i}}\left(f_{n}\right)-f_{n}\right\|^{2}}$.

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

Given an infinite number of closed convex sets $\left(C_{n}\right)_{n \geq 0}$, let their associated projection mappings be ($P_{C_{n}}$). For any starting point f_{0}, let the sequence

$$
f_{n+1}=f_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n,
$$

where $\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right]$, and $\mathcal{M}_{n}:=$ $\frac{\sum_{j \in\{n-q+1, \ldots, n\}} w_{j}\left\|P_{C_{j}}\left(f_{n}\right)-f_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} w_{j} P_{C_{j}}\left(f_{n}\right)-f_{n}\right\|^{2}}$. Under certain mild constraints the above sequence converges strongly to a point
$f_{*} \in \operatorname{clos}\left(\bigcup_{m \geq 0} \bigcap_{n \geq m} C_{n}\right)$.

Application to Machine Learning

The Task
Given a set of training samples $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{N} \subset \mathbb{R}^{m}$ and a set of corresponding desired responses y_{0}, \ldots, y_{N}, estimate a function $f(\cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}$ that fits the data.

Application to Machine Learning

The Task

Given a set of training samples $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{N} \subset \mathbb{R}^{m}$ and a set of corresponding desired responses y_{0}, \ldots, y_{N}, estimate a function $f(\cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}$ that fits the data.

The Expected / Empirical Risk Function approach

Estimate f so that the expected risk based on a loss function $\ell(\cdot, \cdot)$ is minimized:

$$
\min _{f} \mathbb{E}\{\ell(f(\boldsymbol{x}), y)\},
$$

or, in practice, the empirical risk is minimized:

$$
\min _{f} \sum_{n=0}^{N} \ell\left(f\left(\boldsymbol{x}_{n}\right), y_{n}\right) .
$$

Example (Classification)

For a given margin $\rho \geq 0$, and $y_{n} \in\{+1,-1\}, \forall n$, define the soft margin loss functions:

$$
\ell\left(f\left(\boldsymbol{x}_{n}\right), y_{n}\right):=\max \left\{0, \rho-y_{n} f\left(\boldsymbol{x}_{n}\right)\right\}, \quad \forall n .
$$

Loss Functions

Example (Regression)

The square loss functions:

$$
\ell\left(f\left(\boldsymbol{x}_{n}\right), y_{n}\right):=\left(y_{n}-f\left(\boldsymbol{x}_{n}\right)\right)^{2}, \quad \forall n
$$

The Set Theoretic Estimation Approach

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Set Theoretic Estimation Approach

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair $\left(x_{n}, y_{n}\right)$, is represented in the solution space by a set.

The Set Theoretic Estimation Approach

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair $\left(x_{n}, y_{n}\right)$, is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.

The Set Theoretic Estimation Approach

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair $\left(x_{n}, y_{n}\right)$, is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.
- The intersection of all these sets constitutes the family of solutions.

The Set Theoretic Estimation Approach

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair $\left(x_{n}, y_{n}\right)$, is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.
- The intersection of all these sets constitutes the family of solutions.
- The family of solutions is known as the feasibility set.

That is, represent each cost and constraint by an equivalent set C_{n} and find the solution

$$
f \in \bigcap_{n} C_{n} \subset \mathcal{H} .
$$

Classification: The Soft Margin Loss

The Setting

Let the training data set $\left(\boldsymbol{x}_{n}, y_{n}\right) \subset \mathbb{R}^{m} \times\{+1,-1\}, n=0,1, \ldots$. Assume the two class task,

$$
\begin{cases}y_{n}=+1, & x_{n} \in W_{1}, \\ y_{n}=-1, & x_{n} \in W_{2} .\end{cases}
$$

Assume linear separable classes.

Classification: The Soft Margin Loss

The Setting
Let the training data set $\left(\boldsymbol{x}_{n}, y_{n}\right) \subset \mathbb{R}^{m} \times\{+1,-1\}, n=0,1, \ldots$.. Assume the two class task,

$$
\begin{cases}y_{n}=+1, & x_{n} \in W_{1}, \\ y_{n}=-1, & x_{n} \in W_{2} .\end{cases}
$$

Assume linear separable classes.
The Goal (for $\rho=0$)

Classification: The Soft Margin Loss

The Setting
Let the training data set $\left(\boldsymbol{x}_{n}, y_{n}\right) \subset \mathbb{R}^{m} \times\{+1,-1\}, n=0,1, \ldots$. Assume the two class task,

$$
\begin{cases}y_{n}=+1, & x_{n} \in W_{1}, \\ y_{n}=-1, & x_{n} \in W_{2} .\end{cases}
$$

Assume linear separable classes.
The Goal (for $\rho=0$)

Find $\quad f(\boldsymbol{x})=\boldsymbol{w}^{t} \boldsymbol{x}+b$, so that

$$
\begin{cases}\boldsymbol{w}^{t} \boldsymbol{x}_{n}+b \geq 0, & \text { if } y_{n}=+1, \\ \boldsymbol{w}^{t} \boldsymbol{x}_{n}+b \leq 0, & \text { if } y_{n}=-1 .\end{cases}
$$

Classification: The Soft Margin Loss

The Setting
Let the training data set $\left(\boldsymbol{x}_{n}, y_{n}\right) \subset \mathbb{R}^{m} \times\{+1,-1\}, n=0,1, \ldots$. Assume the two class task,

$$
\begin{cases}y_{n}=+1, & x_{n} \in W_{1}, \\ y_{n}=-1, & x_{n} \in W_{2} .\end{cases}
$$

Assume linear separable classes.
The Goal (for $\rho=0$)

Find $\quad f(\boldsymbol{x})=\boldsymbol{w}^{t} \boldsymbol{x}+b$, so that

$$
\left\{\begin{array}{ll}
\boldsymbol{w}^{t} \boldsymbol{x}_{n}+b \geq 0, & \text { if } y_{n}=+1, \\
\boldsymbol{w}^{t} \boldsymbol{x}_{n}+b \leq 0, & \text { if } y_{n}=-1 .
\end{array} \quad \text { Hereafter, }\left(\boldsymbol{w} \leftarrow\left[\begin{array}{c}
\boldsymbol{w} \\
b
\end{array}\right], \quad \boldsymbol{x}_{n} \leftarrow\left[\begin{array}{c}
\boldsymbol{x}_{n} \\
1
\end{array}\right]\right) .\right.
$$

Set Theoretic Estimation Approach to Classification

The Piece of Information
Find all those \boldsymbol{w} so that $\quad y_{n} \boldsymbol{w}^{t} \boldsymbol{x}_{n} \geq 0, \quad n=0,1, \ldots$

Set Theoretic Estimation Approach to Classification

The Piece of Information
Find all those \boldsymbol{w} so that $y_{n} \boldsymbol{w}^{t} \boldsymbol{x}_{n} \geq 0, \quad n=0,1, \ldots$
The Equivalent Set

$$
H_{n}^{+}:=\left\{\boldsymbol{w} \in \mathbb{R}^{m}: y_{n} \boldsymbol{x}_{n}^{t} \boldsymbol{w} \geq 0\right\}, n=0,1, \ldots .
$$

The feasibility set

For each pair (x_{n}, y_{n}), form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} \text {. }
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} \text {. }
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} \text {. }
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

The feasibility set

For each pair $\left(x_{n}, y_{n}\right)$, form the equivalent halfspace H_{n}^{+}, and

$$
\text { find } \boldsymbol{w}_{*} \in \bigcap_{n} H_{n}^{+} .
$$

If linearly separable, the problem is feasible.

The Algorithm

Each H_{n}^{+}is a convex set.

- Start from an arbitrary initial \boldsymbol{w}_{0}.
- Keep projecting as each H_{n}^{+}is formed.
- $P_{H_{n}^{+}}(\boldsymbol{w})=\boldsymbol{w}-\frac{\min \left\{0,\left\langle\boldsymbol{w}, y_{n} \boldsymbol{x}_{n}\right\rangle\right\}}{\left\|\boldsymbol{x}_{n}\right\|^{2}} y_{n} \boldsymbol{x}_{n}$, $\forall \boldsymbol{w} \in \mathcal{H}$.

Algorithmic Solution to Online Classification

$$
\begin{aligned}
& \boldsymbol{w}_{n+1}:=\boldsymbol{w}_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right), \\
& \mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \text { and } \\
& \mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, & \text { if } \boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}, \\
1, & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Algorithmic Solution to Online Classification

$$
\begin{aligned}
& \boldsymbol{w}_{n+1}:=\boldsymbol{w}_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right), \\
& \mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \text { and } \\
& \mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, & \text { if } \boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}, \\
1, & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Algorithmic Solution to Online Classification

$$
\begin{aligned}
& \boldsymbol{w}_{n+1}:=\boldsymbol{w}_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right), \\
& \mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \text { and } \\
& \mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, & \text { if } \boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}, \\
1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Algorithmic Solution to Online Classification

$$
\boldsymbol{w}_{n+1}:=\boldsymbol{w}_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right)
$$

$\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right]$, and
$\mathcal{M}_{n}:=\left\{\begin{array}{l}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, \\ 1,\end{array}\right.$
if $\boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}$, otherwise.

Algorithmic Solution to Online Classification

$$
\boldsymbol{w}_{n+1}:=\boldsymbol{w}_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right)
$$

$\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right]$, and
$\mathcal{M}_{n}:=\left\{\begin{array}{l}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, \\ 1,\end{array}\right.$
if $\boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}$, otherwise.

Algorithmic Solution to Online Classification

$$
\begin{aligned}
& \boldsymbol{w}_{n+1}:=\boldsymbol{w}_{n}+\mu_{n}\left(\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right), \\
& \mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \text { and } \\
& \mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, & \text { if } \boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}, \\
1, & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Algorithmic Solution to Online Classification

$$
\begin{aligned}
& \mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \text { and } \\
& \mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, & \text { if } \boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}, \\
1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Algorithmic Solution to Online Classification

$$
\begin{aligned}
& \mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \text { and } \\
& \mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)}\left\|P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}{\left\|\sum_{j \in\{n-q+1, \ldots, n\}} \omega_{j}^{(n)} P_{H_{n}^{+}}\left(\boldsymbol{w}_{n}\right)-\boldsymbol{w}_{n}\right\|^{2}}, & \text { if } \boldsymbol{w}_{n} \notin \bigcap_{j \in\{n-q+1, \ldots, n\}} H_{n}^{+}, \\
1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Theorem (Cover '65)

The probability of linearly separating any two subgroups of a given finite number of data approaches unity as the dimension of the space, where classification is carried out, increases.

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

- $\kappa(\boldsymbol{x}, \cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$,

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

- $\kappa(\boldsymbol{x}, \cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$,
- $\langle f, \kappa(\boldsymbol{x}, \cdot)\rangle=f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{m}, \forall f \in \mathcal{H}$, (reproducing property).

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

- $\kappa(\boldsymbol{x}, \cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$,
- $\langle f, \kappa(\boldsymbol{x}, \cdot)\rangle=f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{m}, \forall f \in \mathcal{H}$, (reproducing property).

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

- $\kappa(\boldsymbol{x}, \cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$,
- $\langle f, \kappa(\boldsymbol{x}, \cdot)\rangle=f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{m}, \forall f \in \mathcal{H}$, (reproducing property).

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Properties

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

- $\kappa(\boldsymbol{x}, \cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$,
- $\langle f, \kappa(\boldsymbol{x}, \cdot)\rangle=f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{m}, \forall f \in \mathcal{H}$, (reproducing property).

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Properties

- Kernel Trick: $\langle\kappa(\boldsymbol{x}, \cdot), \kappa(\boldsymbol{y}, \cdot)\rangle=\kappa(\boldsymbol{x}, \boldsymbol{y})$.

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. Assume there exists a kernel function $\kappa(\cdot, \cdot): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

- $\kappa(\boldsymbol{x}, \cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$,
- $\langle f, \kappa(\boldsymbol{x}, \cdot)\rangle=f(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{m}, \forall f \in \mathcal{H}$, (reproducing property).

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).

Properties

- Kernel Trick: $\langle\kappa(\boldsymbol{x}, \cdot), \kappa(\boldsymbol{y}, \cdot)\rangle=\kappa(\boldsymbol{x}, \boldsymbol{y})$.
- $\mathcal{H}=\operatorname{clos}\left\{\sum_{n=0}^{N} \gamma_{n} \kappa\left(\boldsymbol{x}_{n}, \cdot\right): \forall \boldsymbol{x}_{n} \in \mathbb{R}^{m}, \forall \gamma_{n}, \forall N\right\}$.

Classification in RKHS

The Goal

Let the training data set $\left(\boldsymbol{x}_{n}, y_{n}\right) \subset \mathbb{R}^{m} \times\{+1,-1\}, n=0,1, \ldots$..

- $\boldsymbol{x}_{n} \mapsto \kappa\left(\boldsymbol{x}_{n}, \cdot\right)$,

Classification in RKHS

The Goal

Let the training data set $\left(\boldsymbol{x}_{n}, y_{n}\right) \subset \mathbb{R}^{m} \times\{+1,-1\}, n=0,1, \ldots$.

- $\boldsymbol{x}_{n} \mapsto \kappa\left(\boldsymbol{x}_{n}, \cdot\right)$,
- Find $f \in \mathcal{H}$ and $b \in \mathbb{R}$ so that

$$
y_{n}\left(f\left(\boldsymbol{x}_{n}\right)+b\right)=y_{n}\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle+b\right) \geq 0, \quad \forall n
$$

The Piece of Information

Find all those f so that $\left\langle f, y_{n} \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle \geq 0, \quad n=0,1, \ldots$

The Piece of Information

Find all those f so that $\left\langle f, y_{n} \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle \geq 0, \quad n=0,1, \ldots$

The Equivalence Set

$$
H_{n}^{+}:=\left\{f \in \mathcal{H}:\left\langle f, y_{n} \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle \geq 0\right\}, n=0,1, \ldots .
$$

Let the index set $\mathcal{J}_{n}:=\{n-q+1, \ldots, n\}$. Also the weights $\omega_{j}^{(n)} \geq 0$ such that $\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)}=1$. For $f_{0} \in \mathcal{H}$,

$$
f_{n+1}:=f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right), \quad \forall n \geq 0
$$

where the extrapolation coefficient $\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right]$ with

$$
\mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)}\left\|P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right\|^{2}}{\left\|\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right\|^{2}}, & \text { if } f_{n} \notin \bigcap_{j \in \mathcal{J}_{n}} H_{j}^{+}, \\ 1, & \text { otherwise. }\end{cases}
$$

Representer Theorem

Theorem

By mathematical induction on the previous algorithmic procedure, for each index n, there exist $\left(\gamma_{i}^{(n)}\right)$ such that

$$
f_{n}:=\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right)
$$

Sparsification

Recall that as time goes by:

$$
f_{n}:=\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right)
$$

Sparsification

Recall that as time goes by:

$$
f_{n}:=\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right) .
$$

Memory and computational load grows unbounded as $n \rightarrow \infty$!

Sparsification

Recall that as time goes by:

$$
f_{n}:=\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right) .
$$

Memory and computational load grows unbounded as $n \rightarrow \infty$!
To cope with the problem, we additionally constrain the norm of f_{n} by a predefined $\delta>0$ [Slavakis, Theodoridis, Yamada '08]:

$$
(\forall n \geq 0) f_{n} \in \mathcal{B}:=\{f \in \mathcal{H}:\|f\| \leq \delta\}: \text { Closed Ball. }
$$

Sparsification

Recall that as time goes by:

$$
f_{n}:=\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right)
$$

Memory and computational load grows unbounded as $n \rightarrow \infty$!
To cope with the problem, we additionally constrain the norm of f_{n} by a predefined $\delta>0$ [Slavakis, Theodoridis, Yamada '08]:

$$
(\forall n \geq 0) f_{n} \in \mathcal{B}:=\{f \in \mathcal{H}:\|f\| \leq \delta\}: \text { Closed Ball. }
$$

Goal

Thus, we are looking for a classifier $f \in \mathcal{H}$ such that

$$
f \in \mathcal{B} \cap\left(\bigcap_{n} H_{n}^{+}\right) .
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} . \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1,
\end{gathered}
$$

Geometric Illustration of the Algorithm

$$
\begin{gathered}
f_{n+1}:=P_{\mathcal{B}}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{H_{j}^{+}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \in \mathbb{Z}_{\geq 0} \\
\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right], \quad \mathcal{M}_{n} \geq 1
\end{gathered}
$$

Remark: It can be shown that this scheme leads to a forgetting factor effect, as in adaptive filtering!

Regression in RKHS

The linear ϵ-insensitive loss function case

$$
\ell(x):=\max \{0,|x|-\epsilon\}, x \in \mathbb{R} .
$$

Set Theoretic Estimation Approach to Regression

The Piece of Information
Given $\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{m} \times \mathbb{R}$, find $f \in \mathcal{H}$ such that

$$
\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon, \quad \forall n
$$

Set Theoretic Estimation Approach to Regression

The Piece of Information
Given $\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{m} \times \mathbb{R}$, find $f \in \mathcal{H}$ such that

$$
\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon, \quad \forall n
$$

The Equivalence Set (Hyperslab)

$$
S_{n}:=\left\{f \in \mathcal{H}:\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon\right\}, \quad \forall n .
$$

Projection onto a Hyperslab

$$
P_{S_{n}}(f)=f+\beta \kappa\left(\boldsymbol{x}_{n}, \cdot\right), \forall f \in \mathcal{H}
$$

where

$$
\beta:= \begin{cases}\frac{y_{n}-\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-\epsilon}{\kappa\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{\boldsymbol{n}}\right)}, & \text { if }\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}<-\epsilon, \\ 0, & \text { if }\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon \\ -\frac{\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}-\epsilon}{\kappa\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{\boldsymbol{n}}\right)}, & \text { if }\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}>\epsilon\end{cases}
$$

Projection onto a Hyperslab

$$
P_{S_{n}}(f)=f+\beta \kappa\left(\boldsymbol{x}_{n}, \cdot\right), \forall f \in \mathcal{H}
$$

where

$$
\beta:= \begin{cases}\frac{y_{n}-\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-\epsilon}{\kappa\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{n}\right)}, & \text { if }\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}<-\epsilon, \\ 0, & \text { if }\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon, \\ -\frac{\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}-\epsilon}{\kappa\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{n}\right)}, & \text { if }\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}>\epsilon .\end{cases}
$$

The feasibility set

For each pair $\left(\boldsymbol{x}_{n}, y_{n}\right)$, form the equivalent hyperslab S_{n}, and

$$
\text { find } f_{*} \in \bigcap_{n} S_{n} \text {. }
$$

Algorithm for the Online Regression in RKHS

Let the index set $\mathcal{J}_{n}:=\{n-q+1, \ldots, n\}$. Also the weights $\omega_{j}^{(n)} \geq 0$ such that $\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)}=1$. For $f_{0} \in \mathcal{H}$,

$$
f_{n+1}:=f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{S_{j}}\left(f_{n}\right)-f_{n}\right), \quad \forall n \geq 0,
$$

where the extrapolation coefficient $\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right]$ with

$$
\mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)}\left\|P_{S_{j}}\left(f_{n}\right)-f_{n}\right\|^{2}}{\left\|\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{S_{j}}\left(f_{n}\right)-f_{n}\right\|^{2}}, & \text { if } f_{n} \notin \bigcap_{j \in \mathcal{J}_{n}} S_{j}, \\ 1, & \text { otherwise. }\end{cases}
$$

Geometric Illustration of the Algorithm
f_{n}.

Geometric Illustration of the Algorithm

Geometric Illustration of the Algorithm

Geometric Illustration of the Algorithm

Geometric Illustration of the Algorithm

Geometric Illustration of the Algorithm

Geometric Illustration of the Algorithm

Constraints for Online Regression in RKHS

Example (Affine Set)

An affine set V is the translation of a closed subspace M, i.e., $V:=v+M$, where $v \in V$.

$$
P_{V}(f)=v+P_{M}(f-v), \forall f \in \mathcal{H} .
$$

Constraints for Online Regression in RKHS

Example (Affine Set)

An affine set V is the translation of a closed subspace M, i.e., $V:=v+M$, where $v \in V$.

$$
P_{V}(f)=v+P_{M}(f-v), \forall f \in \mathcal{H}
$$

For example, if $M=\operatorname{span}\left\{\tilde{h}_{1}, \ldots, \tilde{h}_{p}\right\}$, then

$$
P_{V}(f)=v+\left[\tilde{h}_{1}, \ldots, \tilde{h}_{p}\right] \boldsymbol{G}^{\dagger}\left[\begin{array}{c}
\left\langle f-v, \tilde{h}_{1}\right\rangle \\
\vdots \\
\left\langle f-v, \tilde{h}_{p}\right\rangle
\end{array}\right], \quad \forall f \in \mathcal{H}
$$

where the $p \times p$ matrix \boldsymbol{G}, with $\boldsymbol{G}_{i j}:=\left\langle\tilde{h}_{i}, \tilde{h}_{j}\right\rangle$, is a Gram matrix, and \boldsymbol{G}^{\dagger} is the Moore-Penrose pseudoinverse of \boldsymbol{G}. The notation $\left[\tilde{h}_{1}, \ldots, \tilde{h}_{p}\right] \gamma:=\sum_{i=1}^{p} \gamma_{i} \tilde{h}_{i}$, for any p-dimensional vector γ.

Constraints for Online Regression in RKHS

Example (Icecream Cone)

Find $f \in \mathcal{H}$ such that $\langle f, h\rangle \geq \gamma, \forall h \in B[\tilde{h}, \delta]$:
(Robustness is desired).

Constraints for Online Regression in RKHS

Example (Icecream Cone)

Find $f \in \mathcal{H}$ such that $\langle f, h\rangle \geq \gamma, \forall h \in B[\tilde{h}, \delta]$:
(Robustness is desired).
If Γ is the set of all such solutions, then

Constraints for Online Regression in RKHS

Example (Icecream Cone)

Find $f \in \mathcal{H}$ such that $\langle f, h\rangle \geq \gamma, \forall h \in B[\tilde{h}, \delta]$:
(Robustness is desired).
If Γ is the set of all such solutions, then

Find a point in $K \cap \Pi$, K : an icecream cone, Π : a hyperplane.

The Complete Picture

Given $\left(\boldsymbol{x}_{n}, y_{n}\right)$, find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$
\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon \quad \text { subject to }
$$

The Complete Picture

Given $\left(\boldsymbol{x}_{n}, y_{n}\right)$, find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$
\begin{array}{cc}
\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon & \text { subject to } \\
f \in V & \text { (Affine constraint) }, \\
\text { and / or }
\end{array}
$$

The Complete Picture

Given $\left(\boldsymbol{x}_{n}, y_{n}\right)$, find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$
\begin{gathered}
\left|\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right| \leq \epsilon \quad \text { subject to } \\
f \in V \quad \text { (Affine constraint), } \quad \text { and / or } \\
\langle f, h\rangle \geq \gamma, \forall h \in B[\tilde{h}, \delta] \quad \text { (Robustness). }
\end{gathered}
$$

Algorithm for Robust Regression in RKHS

Let the index set $\mathcal{J}_{n}:=\{n-q+1, \ldots, n\}$. Also the weights $\omega_{j}^{(n)} \geq 0$ such that $\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)}=1$. For $f_{0} \in \mathcal{H}$,

$$
f_{n+1}:=P_{\Pi} P_{K}\left(f_{n}+\mu_{n}\left(\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{S_{j}}\left(f_{n}\right)-f_{n}\right)\right), \quad \forall n \geq 0,
$$

where the extrapolation coefficient $\mu_{n} \in\left[0,2 \mathcal{M}_{n}\right]$ with

$$
\mathcal{M}_{n}:= \begin{cases}\frac{\sum_{j \in \mathcal{J}_{j}} \omega_{j}^{(n)}\left\|P_{S_{j}}\left(f_{n}\right)-f_{n}\right\|^{2}}{\left\|\sum_{j \in \mathcal{J}_{n}} \omega_{j}^{(n)} P_{S_{j}}\left(f_{n}\right)-f_{n}\right\|^{2}}, & \text { if } f_{n} \notin \bigcap_{j \in \mathcal{J}_{n}} S_{j}, \\ 1, & \text { otherwise. }\end{cases}
$$

Theorem

By mathematical induction on the previous algorithmic procedure, for each index n, there exist $\left(\gamma_{i}^{(n)}\right)$, and $\left(\alpha_{i}^{(n)}\right)$ such that [Slavakis, Theodoridis '08]

$$
f_{n}:=\underbrace{\sum_{l=1}^{L_{c}} \alpha_{l}^{(n)} \tilde{h}_{l}}_{\text {Constraints }}+\underbrace{\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right)}_{\text {Training Data }}, \quad \forall n
$$

Sparsification

Recall that

$$
f_{n}:=\sum_{l=1}^{L_{c}} \alpha_{l}^{(n)} \tilde{h}_{l}+\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right), \quad \forall n
$$

Sparsification

Recall that

$$
f_{n}:=\sum_{l=1}^{L_{c}} \alpha_{l}^{(n)} \tilde{h}_{l}+\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right), \quad \forall n .
$$

Memory and computational load grows unbounded as $n \rightarrow \infty$!

Sparsification

Recall that

$$
f_{n}:=\sum_{l=1}^{L_{c}} \alpha_{l}^{(n)} \tilde{h}_{l}+\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right), \quad \forall n .
$$

Memory and computational load grows unbounded as $n \rightarrow \infty$!
Additionally constrain the norm of f_{n} by a predefined $\delta>0$:

$$
(\forall n \geq 0) f_{n} \in \mathcal{B}:=\{f \in \mathcal{H}:\|f\| \leq \delta\}: \text { Closed Ball. }
$$

Sparsification

Recall that

$$
f_{n}:=\sum_{l=1}^{L_{c}} \alpha_{l}^{(n)} \tilde{h}_{l}+\sum_{i=0}^{n-1} \gamma_{i}^{(n)} \kappa\left(\boldsymbol{x}_{i}, \cdot\right), \quad \forall n
$$

Memory and computational load grows unbounded as $n \rightarrow \infty$!
Additionally constrain the norm of f_{n} by a predefined $\delta>0$:

$$
(\forall n \geq 0) f_{n} \in \mathcal{B}:=\{f \in \mathcal{H}:\|f\| \leq \delta\}: \text { Closed Ball. }
$$

Goal

Thus, we are looking for a classifier $f \in \mathcal{H}$ such that

$$
f \in \mathcal{B} \cap K \cap \Pi \cap\left(\bigcap_{n} S_{n}\right) .
$$

f_{n}

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

The quadratic ϵ-insensitive loss function case

$$
\Theta_{n}(f):=\max \left\{0,\left(\left\langle f, \kappa\left(\boldsymbol{x}_{n}, \cdot\right)\right\rangle-y_{n}\right)^{2}-\epsilon\right\}, \quad \forall f \in \mathcal{H}, \forall n .
$$

Piece of Information: $C_{n}:=\left\{f \in \mathcal{H}: \Theta_{n}(f) \leq 0\right\}$.

$$
P_{H_{n}^{+}}(f)=f-\lambda_{n} \frac{\Theta_{n}(f)}{\left\|\Theta_{n}^{\prime}(f)\right\|^{2}} \Theta_{n}^{\prime}(f) .
$$

The Recursion
For an arbitrary $f_{0} \in \mathcal{H}$, and $\forall n$,

$$
f_{n+1}= \begin{cases}T\left(f_{n}-\lambda_{n} \frac{\Theta_{n}\left(f_{n}\right)}{\left\|\Theta_{n}^{\prime}\left(f_{n}\right)\right\|^{2}} \Theta_{n}^{\prime}\left(f_{n}\right)\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right) \neq 0, \\ T\left(f_{n}\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right)=0,\end{cases}
$$

where

The Recursion

For an arbitrary $f_{0} \in \mathcal{H}$, and $\forall n$,

$$
f_{n+1}= \begin{cases}T\left(f_{n}-\lambda_{n} \frac{\Theta_{n}\left(f_{n}\right)}{\left\|\Theta_{n}^{\prime}\left(f_{n}\right)\right\|^{2}} \Theta_{n}^{\prime}\left(f_{n}\right)\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right) \neq 0 \\ T\left(f_{n}\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right)=0\end{cases}
$$

where

- T comprises the projections associated with the constraints.

The Recursion

For an arbitrary $f_{0} \in \mathcal{H}$, and $\forall n$,

$$
f_{n+1}= \begin{cases}T\left(f_{n}-\lambda_{n} \frac{\Theta_{n}\left(f_{n}\right)}{\left\|\Theta_{n}^{\prime}\left(f_{n}\right)\right\|^{2}} \Theta_{n}^{\prime}\left(f_{n}\right)\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right) \neq 0 \\ T\left(f_{n}\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right)=0\end{cases}
$$

where

- T comprises the projections associated with the constraints.
- In case Θ_{n} is non-differentiable the subgradient Θ_{n}^{\prime} is used in the place of the gradient.

The Recursion

For an arbitrary $f_{0} \in \mathcal{H}$, and $\forall n$,

$$
f_{n+1}= \begin{cases}T\left(f_{n}-\lambda_{n} \frac{\Theta_{n}\left(f_{n}\right)}{\left\|\Theta_{n}^{\prime}\left(f_{n}\right)\right\|^{2}} \Theta_{n}^{\prime}\left(f_{n}\right)\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right) \neq 0 \\ T\left(f_{n}\right), & \text { if } \Theta_{n}^{\prime}\left(f_{n}\right)=0\end{cases}
$$

where

- T comprises the projections associated with the constraints.
- In case Θ_{n} is non-differentiable the subgradient Θ_{n}^{\prime} is used in the place of the gradient.
- Note that the above recursion holds true for any strongly attracting nonexpansive mapping T [Slavakis, Yamada, Ogura '06].

Definition (Nonexpansive Mapping)

A mapping T is called nonexpansive if

$$
\left\|T\left(f_{1}\right)-T\left(f_{2}\right)\right\| \leq\left\|f_{1}-f_{2}\right\|, \quad \forall f_{1}, f_{2} \in \mathcal{H} .
$$

Example (Projection Mapping)

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θ_{n}, the subgradient $\Theta_{n}^{\prime}(f)$ is an element of \mathcal{H} such that

$$
\left\langle g-f, \Theta_{n}^{\prime}(f)\right\rangle+\Theta_{n}(f) \leq \Theta_{n}(g), \forall g \in \mathcal{H} .
$$

Theoretical Properties

Definition (Fixed Point Set)

Given a mapping $T: \mathcal{H} \rightarrow \mathcal{H}, \operatorname{Fix}(T):=\{f \in \mathcal{H}: T(f)=f\}$.
Define at $n \geq 0, \Omega_{n}:=\operatorname{Fix}(T) \cap\left(\arg \min _{f \in \mathcal{H}} \Theta_{n}(f)\right)$. Let $\Omega:=\bigcap_{n \geq n_{0}} \Omega_{n} \neq \emptyset$, for some nonnegative integer n_{0}. Set the extrapolation parameter $\mu_{n} \in\left[\mathcal{M}_{n} \epsilon_{1}, \mathcal{M}_{n}\left(2-\epsilon_{2}\right)\right], \forall n \geq n_{0}$ for some sufficiently small $\epsilon_{1}, \epsilon_{2}>0$. Then, the following statements hold.

- Monotone approximation. For any $f^{\prime} \in \Omega$, we have

$$
\left\|f_{n+1}-f^{\prime}\right\| \leq\left\|f_{n}-f^{\prime}\right\|, \quad \forall n \geq n_{0} .
$$

- Asymptotic minimization. $\lim _{n \rightarrow \infty} \Theta_{n}\left(f_{n}\right)=0$.
- Strong convergence. Assume that there exists a hyperplane $\Pi \subset \mathcal{H}$ such that $\operatorname{rin}_{\Pi}(\Omega) \neq \emptyset$. Then, there exists a $f_{*} \in \operatorname{Fix}(T)$ such that $\lim _{n \rightarrow \infty} f_{n}=: f_{*}$.
- Characterization of the limit point. Assume that $\operatorname{int}(\Omega) \neq \emptyset$. Then, the limit point

$$
f_{*} \in \operatorname{clos}\left(\liminf _{n \rightarrow \infty} \Omega_{n}\right)
$$

where $\liminf \operatorname{inc\infty }_{n \rightarrow} \Omega_{n}:=\bigcup_{m=0}^{\infty} \bigcap_{n \geq m} \Omega_{n}$.

Adaptive Beamforming in RKHS

- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Constraints: Given erroneous information \tilde{s}_{0} on the actual SOI steering vector s_{0} (e.g. imperfect array calibration), find a solution that gives uniform output for all the steering vectors in an area around \tilde{s}_{0}; use a closed ball $B\left[\tilde{s}_{0}, \delta\right]$.

Robustness is desired!

- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Constraints: Given erroneous information \tilde{s}_{0} on the actual SOI steering vector s_{0} (e.g. imperfect array calibration), find a solution that gives uniform output for all the steering vectors in an area around \tilde{s}_{0}; use a closed ball $B\left[\tilde{s}_{0}, \delta\right]$.
\Downarrow
Robustness is desired!
- Antenna Geometry: Only 3 array elements, but with 5 jammers with SNRs $10,30,20,10$, and 30 dB . The SOl's SNR is set equal to 10 dB .

Numerical Results

Beam-Patterns

	Input	LCMV	KRLS	APSM
SINR (dB)	-23.26	-20.21	Very low	18.65

Numerical Results

Convergence Results

Conclusions

- A geometric framework for learning in Reproducing Kernel Hilbert Spaces (RKHS) was presented.
- The key ingredients of the framework are
- the basic tool of metric projections,
- the Set Theoretic Estimation approach, where each property of the system is described by a closed convex set.
- Both the online classification and regression tasks were considered.
- The way to encapsulate a-priori constraints as well as sparsification, in the framework was also depicted.
- The framework can be easily extended to any continuous, not necessarily differentiable, convex cost function, and to any closed convex a-priori constraint.
- A nonlinear online beamforming task was presented in order to validate the proposed approach.

