
Learning in the Context of
Set Theoretic Estimation:

an Efficient and Unifying Framework for
Adaptive Machine Learning and Signal Processing

Sergios Theodoridis1

a joint work with
K. Slavakis (Univ. of Peloponnese, Greece), and

I. Yamada (Tokyo Institute of Technology, Japan)

1University of Athens, Athens, Greece.

Vienna,
April 11th, 2012

Sergios Theodoridis A Framework for Online Learning Vienna 1 / 97



“OΥ∆EIΣ AΓEΩMETPHTOΣ EIΣITΩ”

Sergios Theodoridis A Framework for Online Learning Vienna 2 / 97



“OΥ∆EIΣ AΓEΩMETPHTOΣ EIΣITΩ”

(“Those who do not know geometry are not welcome here”)

Plato’s Academy of Philosophy
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Part A
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Outline of Part A

The set theoretic estimation approach and multiple intersecting
closed convex sets.

The fundamental tool of metric projections in Hilbert spaces.

Online classification and regression.

The concept of Reproducing Kernel Hilbert Spaces (RKHS) and
nonlinear processing.

Distributive learning in sensor networks.

Sergios Theodoridis A Framework for Online Learning Vienna 4 / 97



Machine Learning

Problem Definition
Given

A set of measurements (xn, yn)
N
n=1, which are jointly distributed,

and
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Machine Learning

Problem Definition
Given

A set of measurements (xn, yn)
N
n=1, which are jointly distributed,

and

A parametric set of functions F =
{
fα(x) : α ∈ A ⊂ R

k
}

.

Compute an f(·), within F , that best approximates y given the value of
x:

y ≈ f(x).

Special Cases
Smoothing, prediction, curve-fitting, regression, classification, filtering,
system identification, and beamforming.
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The More Classical Approach
Select a loss function L(·, ·) and estimate f(·) so that

f(·) ∈ argminfα(·): α∈A

N∑

n=1

L
(
yn, fα(xn)

)
.
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Drawbacks
Most often, in practice, the choice of the cost is dictated not by
physical reasoning but by computational tractability.

The existence of a-priori information in the form of constraints
makes the task even more difficult.

The optimization task is solved iteratively, and iterations freeze
after a finite number of steps. Thus, the obtained solution lies in a
neighborhood of the optimal one.

The stochastic nature of the data and the existence of noise add
another uncertainty to the optimality of the obtained solution.
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In this talk, we are concerned in finding a set of solutions, which
are in agreement with all the available information.

This will be achieved in the general context of
◮ Set theoretic estimation.
◮ Convexity.
◮ Mappings or operators, e.g., projections, and their associated fixed

point sets.
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Projection onto a Closed Subspace

Theorem
Given a Euclidean R

m or a Hilbert space H, the projection
of a point f onto a closed subspace M is the unique point
PM (f) ∈M that lies closest to f (Pythagoras Theorem).

PM(f)
M

H

f
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Projection onto a Closed Convex Set

Theorem
Let C be a closed convex set in a Hilbert space H. Then, for each
f ∈ H, there exists a unique f∗ ∈ C such that

‖f − f∗‖ = min
g∈C
‖f − g‖ =: d(f,C).
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Projection Mappings

Example (Hyperplane H := {g ∈ H : 〈g, a〉 = c})

0

f

H
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0

f

H

{g ∈ H : 〈g, a〉 = c}

H

a

−〈f,a〉−c‖a‖2 a

PH(f )

Sergios Theodoridis A Framework for Online Learning Vienna 10 / 97



Projection Mappings

Example (Hyperplane H := {g ∈ H : 〈g, a〉 = c})

0

f

H

{g ∈ H : 〈g, a〉 = c}

H

a

−〈f,a〉−c‖a‖2 a

PH(f )

PH(f) = f −
〈f, a〉 − c

‖a‖2
a, ∀f ∈ H.
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Projection Mappings

Example (Halfspace H+ := {g ∈ H : 〈g, a〉 ≥ c})
f

H+

PH+(f)

a
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Projection Mappings

Example (Halfspace H+ := {g ∈ H : 〈g, a〉 ≥ c})
f

H+

PH+(f)

a

PH+(f) = f −
min

{
0, 〈f, a〉 − c

}

‖a‖2
a, ∀f ∈ H.
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Projection Mappings

Example (Closed Ball B[0, δ] := {g ∈ H : ‖g‖ ≤ δ})

PB[0,δ](f)

f

B[0, δ]
0

δ
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Projection Mappings

Example (Closed Ball B[0, δ] := {g ∈ H : ‖g‖ ≤ δ})

PB[0,δ](f)

f

B[0, δ]
0

δ

PB[0,δ](f) :=
δ

max
{
δ, ‖f‖

}f, ∀f ∈ H.
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Projection Mappings

Example (Icecream Cone K :=
{
(f, τ) ∈ H × R : ‖f‖ ≥ τ

}
)

PK((f, τ ))

(f, τ )

H

R

K
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Projection Mappings

Example (Icecream Cone K :=
{
(f, τ) ∈ H × R : ‖f‖ ≥ τ

}
)

PK((f, τ ))

(f, τ )

H

R

K

PK

(
(f, τ)

)
=







(f, τ), if ‖f‖ ≤ τ,

(0, 0), if ‖f‖ ≤ −τ,
‖f‖+τ

2

(
f

‖f‖ , 1
)
, otherwise,

∀(f, τ) ∈ H× R.
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Alternating Projections

Composition of Projection Mappings: Let M1 and M2 be closed
subspaces in the Hilbert space H. For any f ∈ H, define the sequence
of projections:

M2

M1

f
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Alternating Projections

Composition of Projection Mappings: Let M1 and M2 be closed
subspaces in the Hilbert space H. For any f ∈ H, define the sequence
of projections:

· · ·PM2PM1PM2PM1(f).

M2

M1

f

Theorem ([von Neumann ’33])

For any f ∈ H, limn→∞

(
PM2PM1

)n
(f) = PM1∩M2(f).
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Projections Onto Convex Sets (POCS)

Theorem (POCS1)
Given a finite number of closed convex sets C1, . . . , Cp, with

⋂p

i=1 Ci 6= ∅, let their
associated projection mappings be PC1 , . . . , PCp . For any f0 ∈ H, this defines the
sequence of points

fn+1 := PCp · · ·PC1(fn), ∀n,

converges weakly to an f∗ ∈
⋂p

i=1 Ci.

C1

C2
fn

1[Bregman ’65], [Gubin, Polyak, Raik ’67].
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Extrapolated Parallel Projection Method (EPPM)

EPPM2

Given a finite number of closed convex sets C1, . . . , Cp, with
⋂p

i=1 Ci 6= ∅, let their
associated projection mappings be PC1 , . . . , PCp . Let also a set of positive constants
w1, . . . , wp such that

∑p

i=1 wi = 1. Then for any f0, the sequence

fn+1 = fn + µn

( p∑

i=1

wiPCi
(fn)

︸ ︷︷ ︸

Convex combination of projections

−fn

)

, ∀n,

2[Pierra ’84].
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i=1

wiPCi
(fn)

︸ ︷︷ ︸

Convex combination of projections

−fn

)

, ∀n,

converges weakly to a point f∗ in
⋂p

i=1 Ci,
where µn ∈ (ǫ,Mn), for ǫ ∈ (0, 1), and

Mn :=
∑p

i=1
wi‖PCi

(fn)−fn‖2

‖
∑p

i=1
wiPCi

(fn)−fn‖2 .

C1

C2

fn

fn+1

fn+2

2[Pierra ’84].
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Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM)3

Given an infinite number of closed convex sets (Cn)n≥0, let their associated projection
mappings be (PCn)n≥0. For any starting point f0, and an integer q > 0, let the
sequence

fn+1 = fn + µn

( n∑

j=n−q+1

wjPCj
(fn)− fn

)

, ∀n,

3[Yamada ’03], [Yamada, Ogura ’04], [Slavakis, Yamada, Ogura ’06].
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Given an infinite number of closed convex sets (Cn)n≥0, let their associated projection
mappings be (PCn)n≥0. For any starting point f0, and an integer q > 0, let the
sequence

fn+1 = fn + µn

( n∑

j=n−q+1

wjPCj
(fn)− fn

)

, ∀n,

where µn ∈ (0, 2Mn), and

Mn :=
∑n

j=n−q+1 wj

∥

∥

∥
PCj

(fn)−fn

∥

∥

∥

2

∥

∥

∥

∑

n
j=n−q+1

wjPCj
(fn)−fn

∥

∥

∥

2 .

Under certain constraints the above
sequence converges strongly to a
point f∗ ∈ clos

(⋃

m≥0

⋂

n≥m Cn

)
.

Cn

fn

Cn−1 fn+1

Cn+1

fn+2

3[Yamada ’03], [Yamada, Ogura ’04], [Slavakis, Yamada, Ogura ’06].
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Application to Machine Learning

The Task
Given a set of training samples x0, . . . ,xN ⊂ R

m and a set of
corresponding desired responses y0, . . . , yN , estimate a function
f(·) : Rm → R that fits the data.
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The Task
Given a set of training samples x0, . . . ,xN ⊂ R

m and a set of
corresponding desired responses y0, . . . , yN , estimate a function
f(·) : Rm → R that fits the data.

The Expected / Empirical Risk Function approach
Estimate f so that the expected risk based on a loss function L(·, ·) is
minimized:

min
f

E
{
L(f(x), y)

}
,

or, in practice, the empirical risk is minimized:

min
f

N∑

n=0

L
(
f(xn), yn

)
.
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Loss Functions

Example (Classification)
For a given margin ρ ≥ 0, and yn ∈ {+1,−1}, ∀n, define the soft
margin loss function:

L
(
f(xn), yn

)
:= max

{
0, ρ− ynf(xn)

}
, ∀n.

ρ0

L

R
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Loss Functions

Example (Regression)
The square loss function:

L
(
f(xn), yn

)
:=
(
yn − f(xn)

)2
, ∀n.

L

0
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The Set Theoretic Estimation Approach

Main Idea
The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.
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The Set Theoretic Estimation Approach

Main Idea
The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.

The Means
Each piece of information, associated with the training pair
(xn, yn), is represented in the solution space by a set.

Each piece of a-priori information, i.e., each constraint, is also
represented by a set.

The intersection of all these sets constitutes the family of
solutions.

The family of solutions is known as the feasibility set.
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That is, represent each cost and constraint by
an equivalent set Cn and find the solution

f ∈
⋂

n

Cn ⊂ H.
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Classification: The Soft Margin Loss

The Setting

Let the training data set (xn, yn) ⊂ R
m × {+1,−1}, n = 0, 1, . . ..

Assume the two class task,
{

yn = +1, xn ∈W1,

yn = −1, xn ∈W2.

Assume linear separable classes.
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m × {+1,−1}, n = 0, 1, . . ..

Assume the two class task,
{

yn = +1, xn ∈W1,

yn = −1, xn ∈W2.

Assume linear separable classes.

The Goal

Find f(x) = θtx+ b, so that
{

θtxn + b ≥ ρ, if yn = +1,

θtxn + b ≤ ρ, if yn = −1.
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Classification: The Soft Margin Loss

The Setting

Let the training data set (xn, yn) ⊂ R
m × {+1,−1}, n = 0, 1, . . ..

Assume the two class task,
{

yn = +1, xn ∈W1,

yn = −1, xn ∈W2.

Assume linear separable classes.

The Goal

Find f(x) = θtx+ b, so that
{

θtxn + b ≥ ρ, if yn = +1,

θtxn + b ≤ ρ, if yn = −1.
Hereafter,

(
θ ←

[
θ
b

]
, xn ← [ xn

1 ]
)
.
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Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those θ so that ynθ
txn ≥ ρ, n = 0, 1, . . .
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Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those θ so that ynθ
txn ≥ ρ, n = 0, 1, . . .

The Equivalent Set

H+
n :=

{
θ ∈ R

m : ynx
t
nθ ≥ ρ

}
, n = 0, 1, . . ..

w

R
m

{w : ynx
t
nw ≥ ρ}

{w : ynx
t
nw = ρ}

PH+
n
(w)

ynxn

L
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The feasibility set

For each pair (xn, yn), form the equivalent halfspace H+
n , and

find θ∗ ∈
⋂

n

H+
n .

If linearly separable, the problem is feasible.
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If linearly separable, the problem is feasible.

The Algorithm

Each H+
n is a convex set.

Start from an arbitrary initial θ0.
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The Algorithm

Each H+
n is a convex set.

Start from an arbitrary initial θ0.

Keep projecting as each H+
n is

formed.

P
H

+
n
(θ) = θ −

min
{
0,〈θ,ynxn〉

}

‖xn‖2
ynxn.
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Algorithmic Solution to Online Classification

θn+1 := θn + µn





n∑

j=n−q+1

ω
(n)
j PH+

n
(θn)− θn



 ,

µn ∈ (0, 2Mn), and

Mn :=







∑n
j=n−q+1 ω

(n)
j

∥

∥

∥

P
H

+
n
(θn)−θn

∥

∥

∥

2

∥

∥

∥

∑n
j=n−q+1 ω

(n)
j P

H
+
n
(θn)−θn

∥

∥

∥

2 , if
∑n

j=n−q+1 ω
(n)
j PH+

n
(θn) 6= θn,

1, otherwise.
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Regression

The linear ǫ-insensitive loss function case

L(x) := max
{
0, |x| − ǫ

}
, x ∈ R.

0

L

x

−ǫ ǫ

−ǫ
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Set Theoretic Estimation Approach to Regression

The Piece of Information
Given (xn, yn) ∈ R

m × R, find θ ∈ R
m such that

∣
∣θtxn − yn

∣
∣ ≤ ǫ, ∀n.
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Set Theoretic Estimation Approach to Regression

The Piece of Information
Given (xn, yn) ∈ R

m × R, find θ ∈ R
m such that

∣
∣θtxn − yn

∣
∣ ≤ ǫ, ∀n.

The Equivalent Set (Hyperslab)

Sn[ǫ] :=
{
θ ∈ R

m : |θtxn − yn| ≤ ǫ
}
, ∀n.

L

0

xn

Sn[ǫ]

{θ ∈ R
m : θtxn − yn = ǫ}

{θ ∈ R
m : θtxn − yn = −ǫ}

θ

PSn[ǫ](θ)

R
m
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Projection onto a Hyperslab

PSn[ǫ](θ) = θ + βxn, ∀θ ∈ R
m,

where

β :=







yn−θtxn−ǫ
xt
nxn

, if θtxn − yn < −ǫ,

0, if
∣
∣θtxn − yn

∣
∣ ≤ ǫ,

−θ
t
xn−yn−ǫ
xt
nxn

, if θtxn − yn > ǫ.
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Projection onto a Hyperslab

PSn[ǫ](θ) = θ + βxn, ∀θ ∈ R
m,

where

β :=







yn−θtxn−ǫ
xt
nxn

, if θtxn − yn < −ǫ,

0, if
∣
∣θtxn − yn

∣
∣ ≤ ǫ,

−θ
t
xn−yn−ǫ
xt
nxn

, if θtxn − yn > ǫ.

The feasibility set
For each pair (xn, yn), form the equivalent hyperslab Sn, and

find θ∗ ∈
⋂

n

Sn[ǫ].
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Algorithm for the Online Regression

Assume weights ω
(n)
j ≥ 0 such that

∑n
j=n−q+1 ω

(n)
j = 1. For any

θ0 ∈ R
m,

θn+1 := θn + µn





n∑

j=n−q+1

ω
(n)
j PSj [ǫ](θn)− θn



 , ∀n ≥ 0,

where the extrapolation coefficient µn ∈ (0, 2Mn) with

Mn :=







∑n
j=n−q+1 ω

(n)
j ‖PSj [ǫ]

(θn)−θn‖2

‖
∑n

j=n−q+1 ω
(n)
j PSj [ǫ]

(θn)−θn‖2
, if

∑n
j=n−q+1 ω

(n)
j PSj [ǫ](θn) 6= θn,

1, otherwise.

Sergios Theodoridis A Framework for Online Learning Vienna 30 / 97



Geometry of the Algorithm

θn
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Geometry of the Algorithm

θn
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Reproducing Kernel Hilbert Spaces (RKHS)

Definition
Consider a Hilbert space H of functions f : Rm → R.
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Reproducing Kernel Hilbert Spaces (RKHS)

Definition
Consider a Hilbert space H of functions f : Rm → R.
Assume there exists a kernel function κ(·, ·) : Rm × R

m → R such that

κ(x, ·) ∈ H, ∀x ∈ R
m,

〈f, κ(x, ·)〉 = f(x), ∀x ∈ R
m, ∀f ∈ H, (reproducing property).

Then H is called a Reproducing Kernel Hilbert Space (RKHS).

x
R

m

H

κ(x, ·)
κ(·, ·)

dim(H) ≤ ∞

f
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Properties of the Kernel Function

If such a kernel function exists, then it is a symmetric and positive
definite kernel; for any real numbers a0, a1, . . . , aN , any
x0,x1, . . .xN ∈ R

m, and any N ,

N∑

i=0

N∑

j=0

aiajκ(xi,xj) ≥ 0.
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m, and any N ,

N∑

i=0

N∑

j=0

aiajκ(xi,xj) ≥ 0.

The reverse is also true. Let

κ(·, ·) : Rm × R
m → R,

be symmetric and positive definite. Then, there exists an RKHS of
functions on R

m, such that κ(·, ·) is a reproducing kernel of H.
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Properties of the Kernel Function

If such a kernel function exists, then it is a symmetric and positive
definite kernel; for any real numbers a0, a1, . . . , aN , any
x0,x1, . . .xN ∈ R

m, and any N ,

N∑

i=0

N∑

j=0

aiajκ(xi,xj) ≥ 0.

The reverse is also true. Let

κ(·, ·) : Rm × R
m → R,

be symmetric and positive definite. Then, there exists an RKHS of
functions on R

m, such that κ(·, ·) is a reproducing kernel of H.

Each RKHS is uniquely defined by a κ(·, ·), and each (symmetric)
positive definite kernel, κ(·, ·), uniquely defines an RKHS4.

4[Aronszajn ’50]
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Properties of the Kernel Function (cntd)
The Kernel Trick

The celebrated kernel trick is formed as follows.
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x 7→ κ(x, ·) =: φ(x) ∈ H,

y 7→ κ(y, ·) =: φ(y) ∈ H.

Then,
〈φ(x), φ(y)〉 = κ(x,y).
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Properties of the Kernel Function (cntd)
The Kernel Trick

The celebrated kernel trick is formed as follows. Let

x 7→ κ(x, ·) =: φ(x) ∈ H,

y 7→ κ(y, ·) =: φ(y) ∈ H.

Then,
〈φ(x), φ(y)〉 = κ(x,y).

This is an important property since it leads to an easy, black box
rule, which transforms a nonlinear task to a linear one; this is done
by the following steps...
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Steps for Kernel Methods

Assume the implicit mapping

R
m ∋ x 7→ φ(x) ∈ H.
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Steps for Kernel Methods

Assume the implicit mapping

R
m ∋ x 7→ φ(x) ∈ H.

Solve the problem linearly in H.

Use an algorithm that can be casted (modified) in terms of inner
products.

Replace inner product computations with kernel ones:

〈φ(x), φ(y)〉 = κ(x,y).

This is the step that brings the nonlinearity in the modeling.
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Kernel Functions Examples

The Gaussian kernel:

κ(x,y) := exp

(

−
‖x− y‖2

σ2

)

,
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0

0.2

0.4

0.6

0.8

1

κ(x, y)

x
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The Gaussian kernel:

κ(x,y) := exp

(

−
‖x− y‖2
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)

,
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The polynomial kernel:

κ(x,y) :=
(
xty + 1

)d
,
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The Representer Theorem

Let a strictly monotone increasing function: Ω : [0,∞)→ R,
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The Representer Theorem

Let a strictly monotone increasing function: Ω : [0,∞)→ R,
and a (cost) function: L : R× R→ R ∪ {∞}.
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The Representer Theorem

Let a strictly monotone increasing function: Ω : [0,∞)→ R,
and a (cost) function: L : R× R→ R ∪ {∞}.
Then, the solution of the task

min
f∈H

N∑

n=0

L(yn, f(xn)) + Ω(‖f‖),

admits a representation of the form:

f∗ =

N∑

n=0

anκ(xn, ·).
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The Representer Theorem

Let a strictly monotone increasing function: Ω : [0,∞)→ R,
and a (cost) function: L : R× R→ R ∪ {∞}.
Then, the solution of the task

min
f∈H

N∑

n=0

L(yn, f(xn)) + Ω(‖f‖),

admits a representation of the form:

f∗ =

N∑

n=0

anκ(xn, ·).

Example

L(yn, f(xn)) :=
(
yn − f(xn)

)2
,

Ω(‖f‖) := ‖f‖2 = 〈f, f〉.
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Regression in RKHS

The Goal
Let the training data set (xn, yn) ⊂ R

m ×R, n = 0, 1, . . ..

xn 7→ κ(xn, ·), which is a function of one variable.
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Regression in RKHS

The Goal
Let the training data set (xn, yn) ⊂ R

m ×R, n = 0, 1, . . ..

xn 7→ κ(xn, ·), which is a function of one variable.

Find f ∈ H such that

|f(xn)− yn| ≤ ǫ, ∀n.
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Set Theoretic Estimation Approach to Regression

The Piece of Information
Given (xn, yn) ∈ R

m × R, n = 0, 1, 2, . . ., find f ∈ H such that

|〈f, κ(xn, ·)〉 − yn| ≤ ǫ, ∀n.
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Set Theoretic Estimation Approach to Regression

The Piece of Information
Given (xn, yn) ∈ R

m × R, n = 0, 1, 2, . . ., find f ∈ H such that

|〈f, κ(xn, ·)〉 − yn| ≤ ǫ, ∀n.

The Equivalent Set (Hyperslab)

Sn[ǫ] :=
{
f ∈ H : |〈f, κ(xn, ·)〉 − yn| ≤ ǫ

}
, ∀n.

L

0

κ(xn, ·)

Sn[ǫ]

{f ∈ H : 〈f, κ(xn, ·)〉 − yn = ǫ}
{f ∈ H : 〈f, κ(xn, ·)〉 − yn = −ǫ}

f

PSn[ǫ](f)

H
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Projection onto a Hyperslab

PSn[ǫ](f) = f + βκ(xn, ·),∀f ∈ H,

where

β :=







yn−〈f,κ(xn,·)〉−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn < −ǫ,

0, if |〈f, κ(xn, ·)〉 − yn| ≤ ǫ,

− 〈f,κ(xn,·)〉−yn−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn > ǫ.
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Projection onto a Hyperslab

PSn[ǫ](f) = f + βκ(xn, ·),∀f ∈ H,

where

β :=







yn−〈f,κ(xn,·)〉−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn < −ǫ,

0, if |〈f, κ(xn, ·)〉 − yn| ≤ ǫ,

− 〈f,κ(xn,·)〉−yn−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn > ǫ.

The feasibility set

For each pair (xn, yn), form the equivalent hyperslab Sn, and

find f∗ ∈
⋂

n≥n0

Sn[ǫ].
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Algorithm for Online Regression in RKHS

For f0 ∈ H, execute the following algorithm5

fn+1 := fn + µn





n∑

j=n−q+1

ω
(n)
j PSj [ǫ](fn)− fn



 , ∀n ≥ 0,

where the extrapolation coefficient µn ∈ (0, 2Mn) with

Mn :=







∑n
j=n−q+1 ω

(n)
j ‖PSj [ǫ]

(fn)−fn‖2

‖
∑n

j=n−q+1 ω
(n)
j PSj [ǫ]

(fn)−fn‖2
, if

∑n
j=n−q+1 ω

(n)
j PSj [ǫ](fn) 6= fn,

1, otherwise.

5[Slavakis, Theodoridis, Yamada ’09].
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Sparsification

As time goes by:

fn :=

n−1∑

i=0

γ
(n)
i κ(xi, ·).
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γ
(n)
i κ(xi, ·).

Memory and computational load grows unbounded as n→∞!
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Sparsification

As time goes by:

fn :=

n−1∑

i=0

γ
(n)
i κ(xi, ·).

Memory and computational load grows unbounded as n→∞!

To cope with the problem, we additionally constrain the norm of fn by a
predefined δ > 06:

∀n ≥ 0, fn ∈ B[0, δ] := {f ∈ H : ‖f‖ ≤ δ} : Closed Ball.

6[Slavakis, Theodoridis, Yamada ’08], [Slavakis, Theodoridis ’08].
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Sparsification

As time goes by:

fn :=

n−1∑

i=0

γ
(n)
i κ(xi, ·).

Memory and computational load grows unbounded as n→∞!

To cope with the problem, we additionally constrain the norm of fn by a
predefined δ > 06:

∀n ≥ 0, fn ∈ B[0, δ] := {f ∈ H : ‖f‖ ≤ δ} : Closed Ball.

Goal
Thus, we are looking for a classifier f ∈ H such that

f ∈ B[0, δ] ∩ (
⋂

n≥n0

Sn[ǫ]).

6[Slavakis, Theodoridis, Yamada ’08], [Slavakis, Theodoridis ’08].
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Geometric Illustration of the Algorithm

fn
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Geometric Illustration of the Algorithm

fn

Sn−1[ǫ]

Sn[ǫ]

PSn[ǫ](fn)

PSn−1[ǫ](fn)

B[0, δ]

0
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Geometric Illustration of the Algorithm

fn

Sn−1[ǫ]

Sn[ǫ]

PSn[ǫ](fn)

PSn−1[ǫ](fn)

B[0, δ]

0

fn+1
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Distributive Learning for Sensor Networks

Problem Definition
In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:
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Distributive Learning for Sensor Networks

Problem Definition
In a distributed network, the nodes are tasked to collect
information and estimate a parameter of interest. The general
concept can be summarized as follows:

◮ The nodes sense an amount of data from the environment.
◮ Computations are performed locally in each node.
◮ Each node transmits the locally obtained estimate to a

neighborhood of nodes.

The goal is to drive the locally computed estimates to
converge to the same value. This is known as consensus.
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The Diffusion Topology

The most commonly used topology is the diffusion network:

#1

#2

#3

#5

#7#6

#1’s neighborhood

#5’s neighborhood

#4
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Problem Formulation
Let a node set denoted as N := {1, 2, . . . , N} and each node, k, at
time, n, has access to the measurements

yk(n) ∈ R, xk,n ∈ R
m,
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Problem Formulation
Let a node set denoted as N := {1, 2, . . . , N} and each node, k, at
time, n, has access to the measurements

yk(n) ∈ R, xk,n ∈ R
m,

we assume that there exists a linear system, θ∗, such that

yk(n) = xt
k,nθ∗ + vk(n),

where vk(n) is the noise.
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Problem Formulation
Let a node set denoted as N := {1, 2, . . . , N} and each node, k, at
time, n, has access to the measurements

yk(n) ∈ R, xk,n ∈ R
m,

we assume that there exists a linear system, θ∗, such that

yk(n) = xt
k,nθ∗ + vk(n),

where vk(n) is the noise.
The task is to estimate the common θ∗.
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The Algorithm (node k)

Combine estimates received from the neighborhoodNk:

φk(n) :=
∑

l∈Nk

ck,l(n+ 1)θl(n).
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The Algorithm (node k)

Combine estimates received from the neighborhoodNk:

φk(n) :=
∑

l∈Nk

ck,l(n+ 1)θl(n).

Perform the adaptation step7:

θk(n+1) := φk(n)+µk(n+1)





n∑

j=n−q+1

ωk,jPSk,j
(φk(n))− φk(n)



 .

7[Chouvardas, Slavakis, Theodoridis, ’11].
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The Geometry of the Algorithm

#1

#3

#1’s neighborhood

#6

#2
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The Geometry of the Algorithm

#1

#3

#1’s neighborhood

#6

#2 θ6(n)

θ2(n)

θ3(n)

θ2(n)
θ6(n)

θ3(n)

R
m

φ1(n)

S1,n−1

S1,n

PS1,n
(φ1(n))

PS1,n−1
(φ1(n))

θ1(n + 1)
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Part B
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Outline of Part B

Incorporate a-priori information into our algorithmic framework.
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Outline of Part B

Incorporate a-priori information into our algorithmic framework.

An operator theoretic approach will be followed.
Such an approach will be illustrated through two paradigms:

◮ Beamforming task.
◮ Sparsity-aware learning problem.

Our objective is to show that a large variety of constrained online
learning tasks can be unified under a common umbrella; the
Adaptive Projected Subgradient Method (APSM).
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The Underlying Concepts
A Mapping and its Fixed Point Set

A mapping defined in a Hilbert space H:

T : H → H.

Sergios Theodoridis A Framework for Online Learning Vienna 51 / 97



The Underlying Concepts
A Mapping and its Fixed Point Set

A mapping defined in a Hilbert space H:

T : H → H.

Given a mapping T : H → H, its fixed point set is defined as

Fix(T ) :=
{
f ∈ H : T (f) = f

}
,

i.e., all those points which are unaffected by T .
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The Underlying Concepts
A Mapping and its Fixed Point Set

A mapping defined in a Hilbert space H:

T : H → H.

Given a mapping T : H → H, its fixed point set is defined as

Fix(T ) :=
{
f ∈ H : T (f) = f

}
,

i.e., all those points which are unaffected by T .

Example

If C is a closed convex set in
H, then Fix(PC) = C.

f

R
m (H)

C

d(f, C)
PC(f )

f ′ = PC(f
′)
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Beamforming

Antenna arrays are vastly utilized for space-time filtering:

M2 − 1

θ∗(m1,m2, 1) θ∗(m1,m2, P − 1)

x(m1,m2, n− 1) x(m1,m2, n− P + 1)

M1 − 1

d1

d2

m2

SOIJammer

Jammer

(0, 0)

x(m1,m2, n)
Output

φ2

m1

ỹn

φ1

z−1 z−1

θ∗(m1,m2, 0)
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◮ The superscript ∗ stands for complex conjugation.
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Beamforming

Antenna arrays are vastly utilized for space-time filtering:

M2 − 1

θ∗(m1,m2, 1) θ∗(m1,m2, P − 1)

x(m1,m2, n− 1) x(m1,m2, n− P + 1)

M1 − 1

d1

d2

m2

SOIJammer

Jammer

(0, 0)

x(m1,m2, n)
Output

φ2

m1

ỹn

φ1

z−1 z−1

θ∗(m1,m2, 0)

◮ The superscript ∗ stands for complex conjugation.
◮ SOI: Signal Of Interest.

After some re-arrangements, the output of the array is given by

ỹn := θtxn, n = 0, 1, 2, . . . .
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Beamforming

Antenna arrays are vastly utilized for space-time filtering:

M2 − 1

θ∗(m1,m2, 1) θ∗(m1,m2, P − 1)

x(m1,m2, n− 1) x(m1,m2, n− P + 1)

M1 − 1

d1

d2

m2

SOIJammer

Jammer

(0, 0)

x(m1,m2, n)
Output

φ2

m1

ỹn

φ1

z−1 z−1

θ∗(m1,m2, 0)

◮ The superscript ∗ stands for complex conjugation.
◮ SOI: Signal Of Interest.

After some re-arrangements, the output of the array is given by

ỹn := θtxn, n = 0, 1, 2, . . . .

The beamformer is the vector θ.
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The Goal of Beamforming
By utilizing all the available a-priori knowledge, reconstruct the SOIs,
while, in the meantime, suppress the jamming signals.
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The Goal of Beamforming
By utilizing all the available a-priori knowledge, reconstruct the SOIs,
while, in the meantime, suppress the jamming signals.

A-priori information
Known locations of the SOIs and/or the jammers.
Robustness against erroneous information and array
imperfections:

◮ Knowledge of the approximate location of the SOIs and jammers.
◮ Array calibration errors.
◮ Inoperative array elements.
◮ Bounds on the weights of the array elements.

Given the previous a-priori info, and the set of data (yn,xn),
n = 0, 1, 2, . . ., compute θ such that

θtxn ≈ yn, ∀n.
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Distortionless and Null Constraints

Definition (Steering vector)
Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if
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If sSOI is the steering vector associated to a SOI, then we would like to have:
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Distortionless and Null Constraints

Definition (Steering vector)
Each transmitting source is associated to a steering vector, s, defined as the vector
which collects all the signal values in the array if

only the source of interest transmits a signal of value 1,

and there is no noise in the system.

Remark: The steering vector comprises information like the location of the associated
source, and the geometry of the array.

Distortionless constraint
If sSOI is the steering vector associated to a SOI, then we would like to have:

s
t
SOIθ = 1.

Nulls
If sjam is the steering vector associated to a jammer, then we would like to have:

s
t
jamθ = 0.
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Affinely Constrained Beamforming

A large variety of a-priori knowledge in beamforming problems can be
cast by means of affine constraints; given a matrix C and a vector g:

Ctθ = g.
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Affinely Constrained Beamforming

A large variety of a-priori knowledge in beamforming problems can be
cast by means of affine constraints; given a matrix C and a vector g:

Ctθ = g.

Example

Let C := [sSOI, sjam], and g := [1, 0]t.

Define the following affine set V := argminθ∈Rm

∥
∥Ctθ − g

∥
∥, which

contains, in general, an infinite number of points, and covers also the
case of inconsistent a-priori constraints, i.e., the case:

∀θ, Ctθ 6= g.
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Projection onto the affine set V

Given V := argminθ∈Rm

∥
∥Ctθ − g

∥
∥, the metric projection mapping

onto V is given by

PV (θ) = θ −Ct†
(
Ctθ − g

)
, ∀θ ∈ R

m,

where (·)† denotes the Moore-Penrose pseudoinverse of a matrix.

θ

PV (θ)V

R
m
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Affinely Constrained Algorithm

At time n, given the training data (yn,xn), define the hyperslab:

Sn[ǫ] :=
{
θ ∈ R

m :
∣
∣xt

nθ − yn
∣
∣ ≤ ǫ

}
.
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Affinely Constrained Algorithm

At time n, given the training data (yn,xn), define the hyperslab:

Sn[ǫ] :=
{
θ ∈ R

m :
∣
∣xt

nθ − yn
∣
∣ ≤ ǫ

}
.

For any initial point θ0, and ∀n,

θn+1 := PV



θn + µn





n∑

i=n−q+1

ω
(n)
i PSi[ǫ](θn)− θn







 ,

µn ∈ (0, 2Mn),

Mn :=







∑n
j=n−q+1 ω

(n)
j ‖PSj [ǫ]

(θn)−θn‖2

‖
∑n

j=n−q+1 ω
(n)
j PSj [ǫ]

(θn)−θn‖2
,

if
∑n

j=n−q+1 ω
(n)
j PSj [ǫ](θn) 6= θn,

1, otherwise.
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Geometry of the Algorithm

θn
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Geometry of the Algorithm

θn

Sn[ǫ]

Sn−1[ǫ]

V

PSn[ǫ](θn)

PSn−1[ǫ](θn)

θn+1
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Robustness in Beamforming
Towards More Elaborated Constrained Learning
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Robustness in Beamforming
Towards More Elaborated Constrained Learning

Robustness is a key design issue in beamforming.

There are cases, for example, where the location of the SOI is
known approximately.
A mathematical formulation for such a scenario is as follows;

◮ given the approximate steering vector s̃,
◮ and a ball of uncertainty B[s̃, ǫ′], of radius ǫ′ around s̃:

s

s̃

ǫ′

B[s̃, ǫ′]
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Robustness in Beamforming
Towards More Elaborated Constrained Learning

Robustness is a key design issue in beamforming.

There are cases, for example, where the location of the SOI is
known approximately.
A mathematical formulation for such a scenario is as follows;

◮ given the approximate steering vector s̃,
◮ and a ball of uncertainty B[s̃, ǫ′], of radius ǫ′ around s̃:

s

s̃

ǫ′

B[s̃, ǫ′]

◮ calculate those θ such that, for some user-defined ǫ′′ ≥ 0,

θts ∈ [1− ǫ′′, 1 + ǫ′′], ∀s ∈ B[s̃, ǫ′].
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The Icecream Cone

The previous task breaks down to a number of more fundamental
problems of the following type; find a vector that belongs to

Γ :=
{
θ ∈ R

m : θts ≥ γ,∀s ∈ B[s̃, ǫ′]
}
=
{

all vectors that satisfy an
infinite number of inequalities

}

.

If Γ 6= ∅, then the previous problem is equivalent to8

finding a point in K ∩Π,
K: an icecream cone,
Π: a hyperplane.

Π

K

R

π

K ∩ Π

R
m

Γ

8[Slavakis, Yamada’ 07], [Slavakis, Theodoridis, Yamada ’09].
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The Complete Picture

Given (xn, yn), find a θ ∈ R
m such that

∣
∣θtxn − yn

∣
∣ ≤ ǫ,
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The Complete Picture

Given (xn, yn), find a θ ∈ R
m such that

∣
∣θtxn − yn

∣
∣ ≤ ǫ,

θts ≥ γ, ∀s ∈ B[s̃, ǫ′], (Robustness).
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Algorithm for Robust Regression

Assume weights ω
(n)
j ≥ 0 such that

∑n
j=n−q+1 ω

(n)
j = 1. For any

θ0 ∈ R
m,

θn+1 := PΠPK



θn + µn





n∑

j=n−q+1

ω
(n)
j PSj [ǫ](θn)− θn







 , ∀n ≥ 0,

where the extrapolation coefficient µn ∈ (0, 2Mn) with

Mn :=







∑n
j=n−q+1 ω

(n)
j ‖PSj [ǫ]

(θn)−θn‖2

‖
∑

j=n−q+1 ω
(n)
j PSj [ǫ]

(θn)−θn‖2
, if

∑

j=n−q+1 ω
(n)
j PSj [ǫ](θn) 6= θn,

1, otherwise.
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Geometry of the Algorithm
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θ
′
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K

PK(θ
′
n)

Π

Sergios Theodoridis A Framework for Online Learning Vienna 63 / 97



Geometry of the Algorithm

θn

Sn−1

Sn

PSn
[ǫ](θn)

PSn−1[ǫ](θn)

θ
′

n

K

PK(θ
′
n)

Π

θn+1
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Handling A-Priori Information

How did we handle a-priori information?
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Handling A-Priori Information

How did we handle a-priori information?

Each piece of a-priori info was represented by a closed convex set, e.g., K, Π.

In order to be in agreement with all of the pieces of the a-priori info, we looked
for a point into the intersection of the closed convex sets, e.g., K ∩ Π.

In algorithmic terms, we utilized the composition mapping PΠPK : Rm → R
m.

This strategy reminds us of POCS:

POCS
Given a finite number of closed convex sets C1, . . . , Cp, with

⋂p

i=1 Ci 6= ∅, let their
associated projection mappings be PC1 , . . . , PCp . Then,

∀θ ∈ R
m
,
(
PCp · · ·PC1

)n
(θ)

w
−−−−→
n→∞

∃
θ∗ ∈

p
⋂

i=1

Ci.
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Handling A-Priori Information

How did we handle a-priori information?

Each piece of a-priori info was represented by a closed convex set, e.g., K, Π.

In order to be in agreement with all of the pieces of the a-priori info, we looked
for a point into the intersection of the closed convex sets, e.g., K ∩ Π.

In algorithmic terms, we utilized the composition mapping PΠPK : Rm → R
m.

This strategy reminds us of POCS:

POCS
Given a finite number of closed convex sets C1, . . . , Cp, with

⋂p

i=1 Ci 6= ∅, let their
associated projection mappings be PC1 , . . . , PCp . Then,

∀θ ∈ R
m
,
(
PCp · · ·PC1

)n
(θ)

w
−−−−→
n→∞

∃
θ∗ ∈

p
⋂

i=1

Ci.

Key assumption
The a-priori info is consistent, i.e.,

⋂p

i=1 Ci 6= ∅.
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Inconsistent A-Priori Information

Is the case of inconsistent a-priori info possible in practice?
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Yes, in highly constrained learning tasks; the more constraints we
add to the problem, the smaller the intersection of the associated
convex sets becomes.
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Is the case of inconsistent a-priori info possible in practice?

Yes, in highly constrained learning tasks; the more constraints we
add to the problem, the smaller the intersection of the associated
convex sets becomes.

Example
A beamforming problem where there is erroneous info on SOI and
jammer steering vectors, array calibration errors, info on inoperative
array elements, and stringent bounds on the weights of the array.

Sergios Theodoridis A Framework for Online Learning Vienna 65 / 97



Inconsistent A-Priori Information

Is the case of inconsistent a-priori info possible in practice?

Yes, in highly constrained learning tasks; the more constraints we
add to the problem, the smaller the intersection of the associated
convex sets becomes.

Example
A beamforming problem where there is erroneous info on SOI and
jammer steering vectors, array calibration errors, info on inoperative
array elements, and stringent bounds on the weights of the array.

How do we deal with the case of inconsistent a-priori info, i.e.,

p
⋂

i=1

Ci = ∅?

Sergios Theodoridis A Framework for Online Learning Vienna 65 / 97



An Intuitive Suggestion

Sergios Theodoridis A Framework for Online Learning Vienna 66 / 97



An Intuitive Suggestion

K

Cp−1

C2C1

Sergios Theodoridis A Framework for Online Learning Vienna 66 / 97



An Intuitive Suggestion

K

Cp−1

C2C1

θ

Sergios Theodoridis A Framework for Online Learning Vienna 66 / 97



An Intuitive Suggestion

K

Cp−1

C2C1

θ

d(θ, C1)
d(θ, C2)

d(θ, Cp−1)

Sergios Theodoridis A Framework for Online Learning Vienna 66 / 97



An Intuitive Suggestion

K

Cp−1

C2C1

θ

d(θ, C1)
d(θ, C2)

d(θ, Cp−1)

KΦ

Sergios Theodoridis A Framework for Online Learning Vienna 66 / 97



An Intuitive Suggestion

K

Cp−1

C2C1

θ

d(θ, C1)
d(θ, C2)

d(θ, Cp−1)

KΦ

Definition (KΦ)
All those points of K which minimize a function Φ of the distances
{d(·, Ci)}

p−1
i=1 .
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A Way to Handle Inconsistent A-Priori Information

Given a number of a-priori constraints, represented as p closed convex sets,
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C1, C2, . . . , Cp−1.
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Identify one of them as the absolute constraint K, and rename the other ones as
C1, C2, . . . , Cp−1.

Assign to each Ci a convex weight βi, i.e., βi ∈ (0, 1] and
∑p−1

i=1 βi = 1.
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A Way to Handle Inconsistent A-Priori Information

Given a number of a-priori constraints, represented as p closed convex sets,

Identify one of them as the absolute constraint K, and rename the other ones as
C1, C2, . . . , Cp−1.

Assign to each Ci a convex weight βi, i.e., βi ∈ (0, 1] and
∑p−1

i=1 βi = 1.

Define the function:

Φ(θ) :=
1

2

p−1∑

i=1

βid
2(θ, Ci), ∀θ ∈ K.

Our objective is to look for the minimizers KΦ of this function.
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Given a number of a-priori constraints, represented as p closed convex sets,

Identify one of them as the absolute constraint K, and rename the other ones as
C1, C2, . . . , Cp−1.

Assign to each Ci a convex weight βi, i.e., βi ∈ (0, 1] and
∑p−1

i=1 βi = 1.

Define the function:

Φ(θ) :=
1

2

p−1∑

i=1

βid
2(θ, Ci), ∀θ ∈ K.

Our objective is to look for the minimizers KΦ of this function.

Notice that Φ′ = I −
∑p−1

i=1 βiPCi
.
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A Way to Handle Inconsistent A-Priori Information

Given a number of a-priori constraints, represented as p closed convex sets,

Identify one of them as the absolute constraint K, and rename the other ones as
C1, C2, . . . , Cp−1.

Assign to each Ci a convex weight βi, i.e., βi ∈ (0, 1] and
∑p−1

i=1 βi = 1.

Define the function:

Φ(θ) :=
1

2

p−1∑

i=1

βid
2(θ, Ci), ∀θ ∈ K.

Our objective is to look for the minimizers KΦ of this function.

Notice that Φ′ = I −
∑p−1

i=1 βiPCi
.

Define the mapping T : Rm → R
m as

T := PK

(

I − λ
(

I −

p−1
∑

i=1

βiPCi

)
)

, λ ∈ (0, 2).
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A Way to Handle Inconsistent A-Priori Information

Given a number of a-priori constraints, represented as p closed convex sets,

Identify one of them as the absolute constraint K, and rename the other ones as
C1, C2, . . . , Cp−1.

Assign to each Ci a convex weight βi, i.e., βi ∈ (0, 1] and
∑p−1

i=1 βi = 1.

Define the function:

Φ(θ) :=
1

2

p−1∑

i=1

βid
2(θ, Ci), ∀θ ∈ K.

Our objective is to look for the minimizers KΦ of this function.

Notice that Φ′ = I −
∑p−1

i=1 βiPCi
.

Define the mapping T : Rm → R
m as

T := PK

(

I − λ
(

I −

p−1
∑

i=1

βiPCi

)
)

, λ ∈ (0, 2).

Then, Fix(T ) = KΦ.
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The Algorithm

For any θ0 ∈ R
m,

θn+1 := T



θn + µn





n∑

j=n−q+1

ω
(n)
j PSj [ǫ](θn)− θn







 , ∀n ≥ 0,

where the extrapolation coefficient µn ∈ (0, 2Mn) with

Mn :=







∑n
j=n−q+1 ω

(n)
j ‖PSj [ǫ]

(θn)−θn‖2

‖
∑

j=n−q+1 ω
(n)
j PSj [ǫ]

(θn)−θn‖2
, if

∑

j=n−q+1 ω
(n)
j PSj [ǫ](θn) 6= θn,

1, otherwise.
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Sparsity-Aware Learning

Problem definition
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Sparsity-Aware Learning

Problem definition
In a number of applications, many of the parameters to be estimated are a-priori
known to be zero. That is, the parameter vector, θ, is sparse.

θ
t = [∗, ∗, 0, 0, 0, ∗, 0, . . .].
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Sparsity-Aware Learning

Problem definition
In a number of applications, many of the parameters to be estimated are a-priori
known to be zero. That is, the parameter vector, θ, is sparse.

θ
t = [∗, ∗, 0, 0, 0, ∗, 0, . . .].

If the locations of the zeros were known, the problem would be trivial.

However, the locations of the zeros are not known a-priori. This makes the task
challenging.

Typical applications include echo cancellation in Internet telephony, MIMO
channel estimation, Compressed Sensing (CS), etc.

Sparsity promotion is achieved via ℓ1-norm regularization of a loss function:

min
θ∈Rm

N∑

n=0

L
(
yn,x

t
nθ
)
+ λ ‖θ‖1 , λ > 0.
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Measuring Sparsity

The ℓ0 norm

‖θ‖0 := card
{
i : θi 6= 0

}
.

θ6

θ9

θ12

θ15
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The ℓ0 norm

‖θ‖0 := card
{
i : θi 6= 0

}
.

θ6

θ9

θ12

θ15

Consider the linear model:

yn := xt
nθ + vn, ∀n,

where (vn)n≥0 denotes the noise process.
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The ℓ0 norm

‖θ‖0 := card
{
i : θi 6= 0

}
.

θ6

θ9

θ12

θ15

Consider the linear model:

yn := xt
nθ + vn, ∀n,

where (vn)n≥0 denotes the noise process.
Define XN := [x0,x1, . . . ,xN ], yN := [y0, y1, . . . , yN ]t, and ǫ ≥ 0.
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Measuring Sparsity

The ℓ0 norm

‖θ‖0 := card
{
i : θi 6= 0

}
.

θ6

θ9

θ12

θ15

Consider the linear model:

yn := xt
nθ + vn, ∀n,

where (vn)n≥0 denotes the noise process.
Define XN := [x0,x1, . . . ,xN ], yN := [y0, y1, . . . , yN ]t, and ǫ ≥ 0.
A typical Compressed Sensing task is formulated as follows:

min
θ∈Rm

‖θ‖0

s.t.
∥
∥Xt

Nθ − yN

∥
∥ ≤ ǫ.
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Alternatives to the ℓ0 Norm

The ℓp norm (0 < p ≤ 1)

‖θ‖p :=

(
m∑

i=1

|θi|
p

) 1
p

.

−2 −1 0 1 2
−2

−1

0

1

2

p = 1

p = 2

θ1

θ2

p =∞

p = 0.5

p = 0

Sergios Theodoridis A Framework for Online Learning Vienna 71 / 97



Algorithm for Sparsity-Aware Learning

The ℓ1-ball case
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Algorithm for Sparsity-Aware Learning

The ℓ1-ball case
Given (xn, yn), n = 0, 1, 2, . . ., find θ such that

∣
∣θtxn − yn

∣
∣ ≤ ǫ, n = 0, 1, 2, . . .

θ ∈ Bℓ1 [δ] :=
{
θ′ ∈ R

m :
∥
∥θ′
∥
∥
1
≤ δ
}
.
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Algorithm for Sparsity-Aware Learning

The ℓ1-ball case
Given (xn, yn), n = 0, 1, 2, . . ., find θ such that

∣
∣θtxn − yn

∣
∣ ≤ ǫ, n = 0, 1, 2, . . .

θ ∈ Bℓ1 [δ] :=
{
θ′ ∈ R

m :
∥
∥θ′
∥
∥
1
≤ δ
}
.

The recursion:

θn+1 := PBℓ1
[δ]



θn + µn





n∑

j=n−q+1

ω
(n)
j PSj [ǫ](θn)− θn







 .
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Geometric Illustration of the Algorithm

0

θn

θ∗
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Remark: The convergence can be significantly speeded up, if in place of the ℓ1-ball a
weighted ℓ1-ball is used to constrain the solutions.
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Remark: The convergence can be significantly speeded up, if in place of the ℓ1-ball a
weighted ℓ1-ball is used to constrain the solutions.

Definition:

‖θ‖1,w :=

m∑

i=1

wi|θi|,

Bℓ1 [wn, δ] :=
{
θ ∈ R

m : ‖θ‖1,w ≤ δ
}
.
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Remark: The convergence can be significantly speeded up, if in place of the ℓ1-ball a
weighted ℓ1-ball is used to constrain the solutions.

Definition:

‖θ‖1,w :=

m∑

i=1

wi|θi|,

Bℓ1 [wn, δ] :=
{
θ ∈ R

m : ‖θ‖1,w ≤ δ
}
.

Time-adaptive weighted norm:

wn,i :=
1

|θn,i|+ ǫ′n
.
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Remark: The convergence can be significantly speeded up, if in place of the ℓ1-ball a
weighted ℓ1-ball is used to constrain the solutions.

Definition:

‖θ‖1,w :=

m∑

i=1

wi|θi|,

Bℓ1 [wn, δ] :=
{
θ ∈ R

m : ‖θ‖1,w ≤ δ
}
.

Time-adaptive weighted norm:

wn,i :=
1

|θn,i|+ ǫ′n
.

The recursion9:

θn+1 := PBℓ1
[wn,δ]

(

θn + µn

(
n∑

j=n−q+1

ω
(n)
j PSj [ǫ](θn)− θn

))

.

9[Kopsinis, Slavakis, Theodoridis, ’11].
Sergios Theodoridis A Framework for Online Learning Vienna 74 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sergios Theodoridis A Framework for Online Learning Vienna 75 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sn[ǫ]

Sn−1[ǫ]

Sergios Theodoridis A Framework for Online Learning Vienna 75 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sn[ǫ]

Sn−1[ǫ]

PSn−1[ǫ](θn)

PSn[ǫ](θn)

Sergios Theodoridis A Framework for Online Learning Vienna 75 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sn[ǫ]

Sn−1[ǫ]

PSn−1[ǫ](θn)

PSn[ǫ](θn)

Sergios Theodoridis A Framework for Online Learning Vienna 75 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sn[ǫ]

Sn−1[ǫ]

PSn−1[ǫ](θn)

PSn[ǫ](θn)

Bℓ1[wn, δ]

Sergios Theodoridis A Framework for Online Learning Vienna 75 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sn[ǫ]

Sn−1[ǫ]

PSn−1[ǫ](θn)

PSn[ǫ](θn)

Bℓ1[wn, δ]

θn+1

Sergios Theodoridis A Framework for Online Learning Vienna 75 / 97



Geometric Illustration of the Algorithm

0

θn

θ∗

Sn[ǫ]

Sn−1[ǫ]

PSn−1[ǫ](θn)

PSn[ǫ](θn)

Bℓ1[wn, δ]

θn+1

Projecting onto Bℓ1 [wn, δ] is equivalent to a specific soft thresholding
operation.
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Note that our constraint, i.e., the weighted ℓ1-ball is a time-varying
constraint.
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Note that our constraint, i.e., the weighted ℓ1-ball is a time-varying
constraint.

θ∗

0

Bℓ1[δ]

Bℓ1[wn, δ]

Bℓ1[wn+1, δ]
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Time Invariant Signal

-TWL

-TNWL

m := 1024, ‖θ∗‖0 := 100 wavelet coefficients. The radius of the ℓ1-ball is set to δ := 101.
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Time Varying Signal
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Signal Samples

m := 4096. The radius of the ℓ1-ball is set to δ := 40.
The sum of two chirp signals.
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Time Varying Signal

-TWL

Movies of the OCCD, and the APWL1sub.
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Generalized Thresholding

What we have seen so far corresponds to soft thresholding operations.
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Identify the K largest, in magnitude, components of a vector θ.
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Generalized Thresholding

What we have seen so far corresponds to soft thresholding operations.

Hard thresholding

Identify the K largest, in magnitude, components of a vector θ.

Keep those as they are, while nullify the rest of them.

Generalized thresholding

Identify the K largest, in magnitude, components of a vector θ.

Shrink, under some rule, the rest of the components.

Sergios Theodoridis A Framework for Online Learning Vienna 80 / 97



Examples of Generalized Thresholding Mappings

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0.5

1

1.5
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λ
2

θ

Soft(θ)

Hard(θ)

−λ
2 Ridge(θ)

Hard(θ)

(a) Hard, soft thresholding, and the ridge
regression estimate.

−5 0 5
−5

0

5

θ

θ̂SCAD

θ̂garr

λSCAD

λgarr

(b) The SCAD and garrote thresholding.
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Mathematical Formulation of Thresholding

Penalized Least-Squares Thresholding

Identify the K largest, in magnitude, components of a vector θ.
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Penalized Least-Squares Thresholding

Identify the K largest, in magnitude, components of a vector θ.

Let θi be one of the rest of the components.

Sergios Theodoridis A Framework for Online Learning Vienna 82 / 97



Mathematical Formulation of Thresholding

Penalized Least-Squares Thresholding

Identify the K largest, in magnitude, components of a vector θ.

Let θi be one of the rest of the components.

In order to shrink θi, solve the optimization task:

min
θ̂i∈R

1

2

(
θ̂i − θi

)2
+ λp

(∣
∣θ̂i
∣
∣
)
, λ > 0,

where p(·) stands for a user-defined penalty function, which might be
non-convex.
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min
θ̂i∈R

1

2

(
θ̂i − θi

)2
+ λp

(∣
∣θ̂i
∣
∣
)
, λ > 0,

where p(·) stands for a user-defined penalty function, which might be
non-convex.

Under some mild conditions, the previous optimization task possesses a unique
solution θ̂i∗.
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Mathematical Formulation of Thresholding

Penalized Least-Squares Thresholding

Identify the K largest, in magnitude, components of a vector θ.

Let θi be one of the rest of the components.

In order to shrink θi, solve the optimization task:

min
θ̂i∈R

1

2

(
θ̂i − θi

)2
+ λp

(∣
∣θ̂i
∣
∣
)
, λ > 0,

where p(·) stands for a user-defined penalty function, which might be
non-convex.

Under some mild conditions, the previous optimization task possesses a unique
solution θ̂i∗.

Definition (Generalized Thresholding Mapping)
The Generalized Thresholding mapping is defined as follows:

TGT : θi 7→ θ̂i∗.
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Fixed Point Set of TGT

Given K, define the set of all tuples of length K:

T := {(i1, i2, . . . , iK) : 1 ≤ i1 < i2 < . . . < iK ≤ m}.
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Given K, define the set of all tuples of length K:

T := {(i1, i2, . . . , iK) : 1 ≤ i1 < i2 < . . . < iK ≤ m}.

Given a tuple J ∈ T , define the subspace:

MJ :=
{
θ ∈ R

m : θi = 0,∀i /∈ J
}
.
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Fixed Point Set of TGT

Given K, define the set of all tuples of length K:

T := {(i1, i2, . . . , iK) : 1 ≤ i1 < i2 < . . . < iK ≤ m}.

Given a tuple J ∈ T , define the subspace:

MJ :=
{
θ ∈ R

m : θi = 0,∀i /∈ J
}
.

Then, the fixed point set of TGT is a union of subspaces:

Fix
(
TGT

)
=
⋃

J∈T

MJ , (non-convex set).
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Fixed Point Set of TGT

Given K, define the set of all tuples of length K:

T := {(i1, i2, . . . , iK) : 1 ≤ i1 < i2 < . . . < iK ≤ m}.

Given a tuple J ∈ T , define the subspace:

MJ :=
{
θ ∈ R

m : θi = 0,∀i /∈ J
}
.

Then, the fixed point set of TGT is a union of subspaces:

Fix
(
TGT

)
=
⋃

J∈T

MJ , (non-convex set).

Example

For the 3-dimensional case R
3, and if K := 2,

Fix
(
TGT

)
=

xy-plane ∪ yz-plane
∪ xz-plane. y

z

x
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First Steps Towards a Unifying Framework

Definition (Nonexpansive Mapping)
A mapping T : H → H is called nonexpansive if

‖T (f1)− T (f2)‖ ≤ ‖f1 − f2‖ , ∀f1, f2 ∈ H.

The fixed point set of a nonexpansive mapping is closed and convex.
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The fixed point set of a nonexpansive mapping is closed and convex.

Example (Projection Mapping)
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First Steps Towards a Unifying Framework

Definition (Nonexpansive Mapping)
A mapping T : H → H is called nonexpansive if

‖T (f1)− T (f2)‖ ≤ ‖f1 − f2‖ , ∀f1, f2 ∈ H.

The fixed point set of a nonexpansive mapping is closed and convex.

Example (Projection Mapping)

f1

f2

H

C

‖f1 − f2‖

PC(f2)

PC(f1)

‖PC(f1)− PC(f2)‖

Fix(PC) = C.
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Quasi-nonexpansive Mapping

Definition (Quasi-nonexpansive Mapping)

A mapping T : H → H, with Fix(T ) 6= ∅, is called quasi-nonexpansive,
if

‖T (f)− h‖ ≤ ‖f − h‖ , ∀f ∈ H,∀h ∈ Fix(T ).

The fixed point set of T is convex.

f

Fix(T )

H
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Quasi-nonexpansive Mapping

Definition (Quasi-nonexpansive Mapping)

A mapping T : H → H, with Fix(T ) 6= ∅, is called quasi-nonexpansive,
if

‖T (f)− h‖ ≤ ‖f − h‖ , ∀f ∈ H,∀h ∈ Fix(T ).

The fixed point set of T is convex.

f

Fix(T )

H
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Definition (Quasi-nonexpansive Mapping)
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if
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Quasi-nonexpansive Mapping

Definition (Quasi-nonexpansive Mapping)

A mapping T : H → H, with Fix(T ) 6= ∅, is called quasi-nonexpansive,
if

‖T (f)− h‖ ≤ ‖f − h‖ , ∀f ∈ H,∀h ∈ Fix(T ).

The fixed point set of T is convex.

f

Fix(T )

H

T (f )

h

‖f − h‖‖T (f )− h‖
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Every nonexpansive mapping is quasi-nonexpansive.
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Projecting onto arbitrary separating hyperplanes generates a
quasi-nonexpansive mapping which is not nonexpansive.
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Fix(T )

f1T (f1)
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Projecting onto arbitrary separating hyperplanes generates a
quasi-nonexpansive mapping which is not nonexpansive.

H

Fix(T )

f1T (f1)

f2

T (f2)
‖T (f1)− T (f2)‖
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The Subgradient

Definition (Subgradient)
Given a convex function Θ : H → R, the subgradient, Θ′(f), is an element of H such
that

〈g − f ,Θ′(f)〉+Θ(f) ≤ Θ(g), ∀g ∈ H.

In other words, the hyperplane
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g, 〈g − f ,Θ′(f)〉+Θ(f)
)
: g ∈ H
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.

Definition (Level set)
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The Subgradient Projection Mapping
A Quasi-nonexpansive mapping

Definition (Subgradient projection mapping)

Let a convex function Θ : H → R, with lev≤0(Θ) 6= ∅. Then, the
subgradient projection mapping TΘ : H → H is defined as follows:

TΘ(f) :=

{

f − Θ(f)

‖Θ′(f)‖2
Θ′(f), if f /∈ lev≤0(Θ),

f, if f ∈ lev≤0(Θ).

The mapping TΘ is a quasi-nonexpansive one.

H
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subgradient projection mapping TΘ : H → H is defined as follows:
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{
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The mapping TΘ is a quasi-nonexpansive one.
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Generalizing the Previous Methodologies
Adaptive Projected Subgradient Method (APSM)

For some user-defined

◮ α ∈ (0, 1), λ ∈ (0, 2),
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︷ ︸︸ ︷(
(1− λ)I + λTΘn

)

︸ ︷︷ ︸
= relaxed subgradient

projection TΘn

(fn), ∀n,

where

(Rn)n=0,1,... is a sequence of quasi-nonexpansive mappings. This sequence of
mappings comprises the a-priori information.

(Θn)n=0,1,... is a sequence of loss/penalty function which quantifies the deviation
of the sequential training data from the underlying model.
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Candidates for the Loss Functions (Θn)n=0,1,...

Given the current estimate fn, define ∀f ∈ H,

Θn(f) :=







∑n
i=n−q+1

ω
(n)
i d(fn,Si[ǫ])

∑n
j=n−q+1 ω

(n)
j d(fn,Sj [ǫ])

d(f, Si[ǫ]),

if f /∈
⋂n

i=n−q+1 Si[ǫ],

0, otherwise.
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fn + µn
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ω
(n)
i PSi[ǫ](fn)− fn







 ,

where the extrapolation coefficient µn ∈ (0, 2Mn) with

Mn :=







∑n
j=n−q+1 ω

(n)
j ‖PSj [ǫ]

(fn)−fn‖2

‖
∑n

j=n−q+1 ω
(n)
j PSj [ǫ]

(fn)−fn‖2
, if

∑n
j=n−q+1 ω

(n)
j PSj [ǫ](fn) 6= fn,

1, otherwise.
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Candidates for the Averaged Quasi-nonexpansives Tn

Example (Examples of averaged quasi-nonexpansive mappings)
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balls, (sparsity-aware learning).

The composition of projections PC1 · · ·PCp , where C1, . . . Cp are
closed convex sets with

⋂p
i=1Ci 6= ∅.

◮ The composition of projections PΠPK , where Π is a hyperplane and
K is an icecream cone, (beamforming).

The composition PK

(

I − λ
(
I −

∑p−1
i=1 βiPCi

))

, λ ∈ (0, 2), where

K ∩
(⋂p−1

i=1 Ci

)
= ∅, (beamforming).
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The Trip Still Goes on and the Topic Still Grows...

Surprisingly, the APSM retains its performance and theoretical
properties in the case where the Generalized Thresholding
mapping TGT is used in the place of Tn!
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The Trip Still Goes on and the Topic Still Grows...

Surprisingly, the APSM retains its performance and theoretical
properties in the case where the Generalized Thresholding
mapping TGT is used in the place of Tn!

Recall that Fix(TGT) is a union of subspaces, which is a
non-convex set.

Such an application motivates the extension of the concept of a
quasi-nonexpansive mapping to that of a partially
quasi-nonexpansive one10.

10[Kopsinis etal ’11a].
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Theoretical Properties

Define at n ≥ 0, Ωn := Fix(Tn) ∩ lev≤0 Θn. Let Ω :=
⋂

n≥n0
Ωn 6= ∅, for some

nonnegative integer n0. Assume also that µn

Mn
∈ [ǫ1, 2− ǫ2], ∀n ≥ n0, for some

sufficiently small ǫ1, ǫ2 > 0. Under the addition of some mild assumptions, the
following statements hold true11.

Monotone approximation. d(fn+1,Ω) ≤ d(fn,Ω), ∀n ≥ n0.

Asymptotic minimization. limn→∞ Θn(fn) = 0.

Cluster points. If we assume that the set of all sequential strong cluster points
S
(
(fn)n=0,1,...

)
is nonempty, then

S
(
(fn)n=0,1,...

)
⊂ lim sup

n→∞
Fix(Tn) ∩ lim sup

n→∞
lev≤0(Θn),

where lim supn→∞ An :=
⋂

r>0

⋂∞
n=1

⋃∞
k=n

(
Ak +B[0, r]

)
, and B[0, r] is a

closed ball of center 0 and radius r.

Strong convergence. Assume that there exists a hyperplane Π ⊂ H such that
riΠ(Ω) 6= ∅. Then, there exists an f∗ ∈ H such that limn→∞ fn = f∗.

11[Slavakis, Yamada, ’11].
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