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Design and incentives in Social Networks
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Electrical Engineering, UCLA
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Networked Communitieg Emergence

i Rapid expansion of social networks, social computing, P2P
networks, grid computing etc.

i Networked communities allow individuals and organizations
to get connected and build relationships.

Networked communities = collection of selfterested,
f S| Ny Ay 3 | asyu“ O LJS 2 LI SZ Y I
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Promises and Challenges

w Promises

i Network communities open up many opportunities for users
to gain from various types of cooperative interactions (e.g.,
share information or content, anprovide resources such as
bandwidth, storage space, and computing power)

w Goals

i Design networks and protocols that are socially
optimal and induce compliance by agents

w Challenges
i Selfinterested, rational, intelligent, and heterogeneous user
i Largescale
i Ongoing interactions
i Limited (truthful?) information
i Privacy and security



Existing Approaches

w Networking

i Studies network architecture and design, communication
protocols, network operations and management, etc.

i Example: Network utility maximization (NUM)

L Mostly, network users are assumed to be obedient
(machines following given rules), but social networks cons
of seltinterested, selHorganizing users.

w Signal Processing

i Studies how to collect, learn, and process information frorr
signals.

i Users in social networks create and process a lot of
Information and signals.

L Processing techniques do not consider the social context,
the selfinterest of users etc.



Existing Approaches

w Control Theory

i Studies distributed control of autonomous agents to achie\
the system objective.

L Again, agents are assumed to be obedient.

w Classical Game Theory
i Studies interactions of selfiterested strategic players.
i Descriptive, often not constructive

L Not prescriptive- The issues of system design are neglecte
(The game in which players interact is taken as given, rath
than being considered as something that can be designed.



Where are we coming from and where
are we going?

Classical Engineering Next-generation Engineering
» Nodes: Cooperative w Agents: Selinterested, strategic
w System designer has a high w System designer can control only
degree of control: prescribes a playground on which agents
decision rules for nodes Interact, but the agents choose how
to play
w Systems assume compliance w System compliance not guaranteed

Strategyproof protocols needed

w Social and individual goals in
conflict, e.g. system collapse

w Agents may lie/hide information

«w Social and individual goals
coincide, e.g. utility maximization

w Truthful information revelation
assumed

w Mostly singleagent learning, » Multi-agent learning
prescriptive



Our contributions

w Paradigm shiftnew theoriesto capture features unigque
to networked communities.

w Developnew principledor analyzing and designing
dlstrlbuted systems composed of seiferested agents.

Whatinformationanddecisionmaking rulego provide for agents so that
they can optimize their decisions given their local information?

Given network and application constraints, howdisign the system?

If agents can themselves determine the connectivity, how to design the
rules that influencevhich agents should produce information, process
Information and to whom they should distribute the informat®n

Whatnew application€an emerge in such networks?

How to design effectiveicentive schemethat lead to socialkefficient
system designs?

10



Classification of Incentive Schemes

Incentive provision
through rewards and punishments

ﬂwm

Payment Differential service (by history)
(Pricing /
Credit) By whom?
Users System
(Repeated interaction) (Intervention)

Personal reciprocation Social reciprocation
(Identity) (Reputation)

11



What can be achievec )

Requirements for protocol designer

Approach Performance
Pp Enforcementon Knowledge about the systen

Non-cooperative

without any § Inefficient
Incentivescheme
: Socially
Cooperative optimal Completeknowledge
Can be Completeknowledge
Paymentschemej socially Payments (can be replaced with
optimal learning)
Regi:p:]rg rilaetion goi?alﬁg ?IS,ZTF%nfo rcing) 821? Iglgtreek&g\évé%d\’%ieth
optimal J learning)
Intervention Gl tl’le Intervention by Compéleteknlowlzdg_eh
<cheme socially the system (can be replaced wit
optimal learning)

WES21 tFNJ] | aAKFStl @Fy RSNJ { OKIF I NE a!
Production and Sharing over Paert S S NJ b S IEBE2IdLEnal BfSelected Topics in

Signal ProcessingSpecial issue on Social Netwonksl. 4, no. 4, pp. 70417, August 2010. 12



Who interacts with whom?
e 9:

T

w Random partnersDesign of social norms to sustain
cooperation

w Choosing partnerdesign of dynamic personal
reciprocation policies

w Community formationLink formation and information
production, sharing and consumption in networked
communities

13



Random partners

Design ofsocial Norms
to Sustain Cooperation

Yu Zhang, Jaeok Park, and Mihaela van der Schaar,
 20AFt bSUG2N] & tNRI20O2f 5S&A-:
Gamenets 2011, ICASSP 2011, ITA 2011, submitted for Journal Publicatic

14



Related Work

BuragohainAgrawal andSuri
Personal (2003)-CS
reciprocation Ma, Leelui andYau(2006)- CS
Cohen (2003)CS

Feldman, Lafstoica and ChuangFocuses on practical techniques

Not effective in a largscale
network with a high turnover
rate and asymmetry of interests

Social

: . (2006)- CS to aggregate, process, and
r(?rglgl:?;t?gr?)n Kamvay Schlosser, and Molina disseminate information
(2006)- EE generated in a system
K: Design missing
K: Ignores practical
complications such as
Social Kandori(1992)- Econ reputation update errors,
reciprocation Blanc, Liu, an¥ahdat(2007)-  turnover of population, and
(social norm) CS whitewashing attempts

K&BLV: Consider only the
limiting case as the discount
factor goesto 1 5



Setup

» We consider a largecale networked community where users
can help each other by providing a sort of service.

w In each period, a user generates exactly one service request,
which is sent to another user chosen randomly.

w There is no connectivity constraint, and thus a service reques
from a user can be sent to any other user in the network.

» We assume uniform random matching where each user
receives exactly one service request per period.

w In other words, each user is involved in two matches in each
period, once as a sender of a request and the other as a
receiver of a request.

16



Game Played by a Pair of Matched Peers

w Players
i Client: peer requesting a file
i Server: peer receiving an upload request

w Actions
i Client: no action to choose
i Serverae 4= S,NS
w{ O0d{SNIBSE€0Y LINRPOYARS ASNIAOS
wb{ o0ab2i {SNWS{£0Y NBFdzAS (2
w Payoffs

i When a file is uploaded, the client receives a benefit of b>0
while the server suffers a cost of ¢>0.

i We assume that b>c so that the net social benefit from a servic

i itive. Server
S posit S NS

Client b, -C 0,0

LJ

Applications 17



Social Welfare
w Social welfaren a period = the average payoff of peel

Server
S NS

Client b, -C 0,0

w Social welfare i1Is maximized when the server choose
In every match, maximum =

w When the server chooses its action to myopically
maximize its payoff, the optimum/equilibrium behavic
IS NS => suboptimal social welfare = 0.

w Therefore, incentive schemes are necessary to induc
selfinterested servers to choose S.

18



Soclal Norms

w Social norm Is defined as the rules for appropriate ar
Inappropriate behaviors
i Compliance
i Rewards (present and future)
i Punishments (present and future)

w We consider a social norm using reputation.
i Each peer is tagged a reputation label.

19



Formal Representation of a Social Norm

» A social norm is represented by- (@, ¢, 1)o)
i © . set of reputation labels
i g, € ©:Initial reputation

i 7:0x0x.4 — O: reputation update rule
w (6, 0,a;) is thenew reputation for a server with current
reputationd when it is matched with a client with
reputationd and its action is reported as

i 0:0x0 — 4. soclal strategy
w o(6, 6) IS the approved action for a server with
reputationg that is matched with a client with
reputationd .

reputation scheme

What do agents know? What choices do they have?
20



Design Choice

The design choice in the protocol design

problem is a social norf®, 6,, 7, 0).

Starting point we impose the following

restrictions on the reputation

schemdo, 6, 7).

i ©iIsfinite, .e.,©0 ={0,1, ... L} for
some integer L. ar does

i 6,=L.

We call the above reputation scheme

the maximum punishment reputation
scheme with punishment length L

The design choice is reduced kg o)

21



System Parameters

w There are five system parameters that affect the
solution of the protocol design problerfy ¢ o, 3, €)

b: benefit from service
c: cost of service

« €[0,1]: turnover rate (the fraction of peers that leave
and join the network between two consecutive periods)

3 €[0,1): time discount factor (patience)

¢ €[0,0.5]: report error probability (the probability that
the action of a server is misreported)

22



Focus on longun/steady-state

w Lemma 1For anya €[0,1] and [0,0.5] , there exis
unigue stationary distribution of reputations:

n(0) =1 -0’1 -9 for0 <O<L-1
Ll-—a)""1 -9 e+a

) = a9

Moreover, the distribution converges to the stationar
distribution starting from any initial distribution.

23



1 ISYydaQ trFréez2FfFa I yR

w The expected period payoff of the agdatlowing the social
strategy, evaluated before it is matched:

Zni

0cO

stationary distributiordownload benefit upload cost
of reputations
w The expected Ion@erm payoff of the agent'

probétﬁﬂﬁ)ﬁdﬁ%%lfﬂﬁ@ﬁﬂﬁ'@%ﬂﬁ@ﬂ@b'“ty of

reputations

w System Social welfareaverage period payoff of peers in the
stationary distribution

U,=>n 0V, 0
0

24



Sustainable Social Norms

We do not just want to have rules.
We must have rules that agentsvill follow!

w A reputation scheme sustainsa social strategy , or
a social normk = (7,0) sustainabldaf

— (6,6) +6Y , p('1 V() =—c( 0§ +5y_,p Lol OV V(Y
for allo’ , for al{f, §) & € 81— ) )

Lemma 2.7 sustainss If and only if
6d—2e)v (min{ 041, J) >c+@ 2 ¥ Vv(0)

Follow Deviate

25



Protocol Design Problem

«w Anoptimal social norms a social norm that
maximizes social welfa@mong sustainable social
norms.

w Theprotocol design problengcan be expressed as

maximize U_=)» n (v (4
0

(L,o)
subjectto {1 —28) [v(min{ 64, B —v(0) ]zc
Wuchthat 3@chtha tofQ =S

26



Optimal Value

» U = optimal value of the protocol design problem.

DI D
w Theorem 1:
() O<U <b-c .
BL—a)(1—2¢)

(U =0 > 1 rma 3 -
S < Bl —a)

(VU <b—c >0

MU >[1— 1-a e]lb—c  $<Hl-a)1 —2¢)
w Corollary 1for any (b, ¢) such that b>c,

(YU~ convergesto—C pBas:1 a —,0 e —antd

(i) U~ convergesto0Ads—-0 a—1 & -0D.5

27



How big does L have to be?

» LetU and  be the optimal value and the optimal
social strategy, respectively, of the protocol design
problem given L.

o Propositon 2u; >U", F2 NJ + £ £ [ LR

*

U =Ilim __ U =sup U

Conjecture: The supremum Is achieved by some finite

Costg benefit tradeoff when choosing L

28



Optimal Social Strategy For Fixed L

w We now study the structure of

w Theorem 3(i) If ¢,(0,6) =S for someg§ , then there is @
such thate, (0,8 =s  fordall ¢ .
(i) Thereis&@ e{l,..,L -1} , such;tfaat) =S
wheng > ¢~
(i) If oL(LLO) =S for soge , theh,L) =S



Optimal Social Strategy For Fixed L

Client
0 1 0 é L-1 L

Server

0
Services provided by a reputation

Services received by a reputation
L

30



lllustration with L=1

A16 possiblesocial strategies

Aonly 4of these strategiesan possibly be optimal
A12 of these strategiesan never be optimal

w By Theorem 3, there are four social strategies that
can be an optimal social strategy when- 0

. INs s] L, s , | NS . | NS N
NS 9 ‘7 INS $ 7T NS N

01:

s g1




lllustration with L=1

w Proposition 4Suppose that < (1—«)s <1/2 . The
S f0 <& < fl-afi-2ee
1 b = 14+3(1-a)(1- 26)6
02 if 81— oz) (1-2¢)e cC< Bl—a)(1-2¢)[1—(1—a)<]
(;I S 1 8(1—a)f@-2¢)e b~  1-g@l-a)(1-2¢)c
3 o Bl-a)1-29)[1-(1-0)e] _ ¢
If £ —-a)1 -2
91 Rz b B —a)( €),
o) if @ -yl 2) <£4

32



lllustration with L=1
b=10,aa = 0.1 = 0.8¢ = O..

=
@]
|

w u un o
NoF @ FN R ¥

The social welfare
@) = N w N a (0)] ~N (00] (o]
]
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lllustration with L=1

. b=10,aa = 0.16 = 0.8¢ = O.

The social welfare
U'I

|

<«—— Optimal cooperation ]
HH Optimal sustainable norm|

Network collapse
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lllustration with L=1
b=10,c = 0.13 = 0.8¢ = O..

10

The social welfare
(@]

<+ Qptimal cooperation

Optimal sustainable norm

Fixed, sustainable norm




lllustration with L=2
b=10,aa = 0.1,6 = 0.8 = O..




lllustration with L=2
b=10,a = 0.13 = 0.8¢ = O..

<«—— Optimal cooperation
9+ |

10

8+ i
Optimal sustainable norm

6 1
4+ |
3l -ixed, sustainable
)| orm
1 1
O ! L L

2 3 4 5

c
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Reputation Schemes with Less Severe Punishm

w We generalize maximum punishment reputation
schemes by considering reputation schemes
described by

min{6 +1, 3} if a,=q0d

0,0,a.) = -
008 = et —M 0} if a, =(0,6)0

w For fixedL, o) , Increasing M has two counteracting
effects when there are report errors:
iIncentive to follow

Social norm social strategy
M- —— provides a stronger
unishment ;
P social welfare®

38



lllustration with Fixed L=3
Lb — 1O,Loz — O.El.ﬂ — Q.85 = 0.

10n

The social welfare

39



WhitewashProof Social Norms

w We now relax the restriction that the initial
reputation is L and consider the case where a peer
can whitewash its identity at the cost qf > 0 aftel
observing its new reputation.

w LetK {0, ... L} be the Initial reputation label.

w Then a social norm  wshitewashproof if and only
Ifv>*(K) <v (9 +c, fopallQ,... L

w The protocol design problem is to choose a social

norm(L,K, o) that maximizes social welfare among
sustainable and whitewasproof social norms.

40



WhitewashProof Social Norms

w What about the initial reputation label K?

w For fixed L, Increasing K has two counteracting effec

social welfare-

New peers are

K= " treated better

Incentive for
whitewash-

41



Planetlab performance analysis

48
46

44

PSNR(dB)
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N
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Bl Cooperative benchmark
Optimal social norm
| Threshold strategy with h_=3

B 7T with random matching
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Extensions

«w Network with helpers
i Incentives to follow galown
i Network collapse occursooner
i Soclal welfare goesown

w Other types of altruism
w Learning
w Social norms vs. tokeexchanges




Social Norms Tokens

Central memory <------- Memory  -—--—---> No central memory
(tokens as memory)

Reputation| SR Punishments-------»
High G-mmeees Informational-------> Low

requirements
Does not limit < Impatience . Limits effectiveness of
effectiveness of design (nobody choose
design to build a large treasur

Initial reputation <------- Whitewashing-------> Initial endowment



Part Il

Design of Dynamiéersonal
ReciprocatiorPolicies

i 1 @8dzy 332y tIN] YR aAKIStl @Iy R
wSa2dz2NOS wSOA LINE O HEEE Prahs. Myftimediadl. 11
no. 1, pp. 104116, Jan. 2009.

i Hyunggort  NJ YR aAKIStl @Iy RSNJ {O
WSOALINROF OA2Y { 0 NIJIEEETmS.SigrialyProtesst
58, no. 3, pp. 1204218, Mar. 2010.

i Rafit IzhakRatzin, Hyunggon Park and Mihaela van der Schaatrr,
GWSAYTFT2NOSYSYd [ SFENYAYy3I migcom 201i1¢ ;
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Part II: Dynamic P2P systems

w As before
i Users interact repeatedly
i Users are heterogeneous
i Information is decentralized

w New
i Chooseartnersandlevel of cooperation
i Environmentchanging

A No previous solutions for rigorously designing and
evaluating protocols for P2P systems in dynamic
environments

46



Our approaclt central issues

a)

b)

A)

B)

What reciprocation policy (protocol) to adopt while
environment is known and stationary?

How to change the policy when environment changes?

Markov strategieg use Markov Decision Processes (MDPs) t
determine policies

Online learning;reinforcement learning or modddased

Update group information

yes

Group

5 R‘?SOU“"? Dynamics
Reciprocation Changed?

T |no

h 4

Group C'




Resource Reciprocation

A finite set of agents (peers)

Actions: upload bandwidth allocations

t 2f AOY | OGAzZzya aSfSOUSR (2RI &
levels = states

Utility: download rates, video quality, etc. State descriptions =>
Foresighted peers worry about lotgrm utility  SSNBE Q A v (!

a / : \
y 11 \
— \
// “ / \
/ q \\
\ > 1 a, /’
\
y A/a'?’ \4 /
/
O /
7
7/

| Policy determines optimé&gvelz2 ¥ O2 2 LIS NJ
A

V2OKAY3IE &2 dzi F&Ta) A Y (



Discrimination among peerdHow?

«w We prove assortative matching

w Richer peers (=peers with higher bandwidth) match with
richer peers
w Generosity prompts generosity

w Smarter peers (= peers with more refined states) match w
smarter peers
w Careful monitoring prompts careful monitoring

w Better to cooperate with smarter peers than to steal from stupid
peersd




Evolution of Mutual Resource Reciproca

Evolution of Resource Reciprocation (Average)

Download Rates [Kbps]

P ! : ‘ : 3
\ "% |
R
1o V / :| ," \
I : O peer1
100 ------- I . --------- I ---------- -------- I ------- I ’ ----- peer 2
- I : I b *  peer3
L Li i Li L

80
0 20 40 60 80 100 120 140

Number of Resource Reciprocation

A Peer 1 and peer Enprove their average download rates
Improvement ioounded by initial number of state description

A Peer 3 ipenalized

A50



Clustering for Heterogeneous Peers

Different state refinement ability, same available bandwidth

Probability of Clustering (Different Number of State Descriptions)
50 0.25

45

40 0.2

5 different classedifferent
ability to refine states

30 0.15

15 '\
10 - ** Probability

5 10 15 20 25 30 35 40 45 50
Peer Index

A Peers prefer to form a group with peers havegilar ability
to refine states _ _
Implementation and realvorld experiments in Planetlab

(Infocom 2011) 51



Part lll: Community Formatio

Information production, sharing and
consumption and link formation In
networked communities

i WES21 tIFIN] YR aAKIStl @Iy RSNJ {
Incentives in Content Production and Sharing over Be¢r SSNJ b S {i
IEEE Journal of Selected Topics in Signal Progessing no. 4, pp. 704
717, August 2010.

i Jaeok I NJ FTYR aAKFStl @Iy RSNio-PeKI |
b Sl ¢ 2 NeEdoR 40.

i Jacok I N]J YR aAKIStfl @Iy RSN { @Kl |
t SSNJ b SINBGCRY Z0I0¢



Current EE/CS/Econ Our research
Literature

Fixed SRR Who produces?--------> Choice

Fixed S What/how much-------> Choice
IS produced?

Fixed o What/how much-------> Choice
IS shared?

Fixed P Who connects te------> Choice
whom?

Challenges >



Introduction

w In today's Internet the emergence of usegenerated
content in the form of videos, muithodal information,

customer reviews, etc.

w P2P networks can offer a useful platform for sharing use
generated content, but the freeiding problem may
hinder the efficient utilization of P2P networks.

w Our contributions

i Propose a model afontent productionand sharing,
and usecontent pricingto overcome the freeiding
problem.

i We also consider the problem oétwork topology
design

54



Existing Work

w EXxisting Work on Pricing in P2P Networks:

i Golle, LeytorBrown, Mironov, and Lillibridge (200d9nstruct a
game theoretic model and propose a miggayment mechanism
to provide an incentive for sharing.

i Antoniadis, Courcoubetis, and Mason (200dinpare different
pricing schemes and their informational requirements in the
context of a simple filsharing game.

i Adler, Kumar, Ross, Rubenstein, Turner, and(X@@4)
Investigate the problem of selecting multiple server peers given
the prices of service and a budget constraint.

w Limitations:The models of the above papers capture only a
partial picture of a content production and sharing scenario.

i No production decisions, no explanation for how prices and
budgets are determined, etc.

55



Model

w We consider a P2P network consisting of N peers,
which produce content using their own production
technologies and distribute produced content using
the P2P network.

w N 2{,» , N} : set of peers in the P2P network
w D(1): set of peers that pearcan download from
w U(i): set of peers that pearcan upload to

w We model content production and sharing in the P2I
network as a threestage sequential game, called the
content production and sharing (CPS) game

56



Description of the CPS Game

w Stage One (ProductiorBach peer determines its level of
production.x I R, represents the amount of content
produced by peerand is known only to peer

w Stage Two (Sharindggach peer specifies its level of sharing.
y: | [0, x] represents the amount of content that peemakes
available to other peers. Peeobservesy,);i,;, atthe end of
stage two.

w Stage Three (TransfeBach peer determines the amount of
content that it downloads from other peers. Paeserves all

mm) the requests it receives from any other peeti(i) up to

z, 1 [0, y]1represents the amount of content that peer
downloads from peeji D() , or equivalently gegrloads
for peeri.

57



Allocation and Payoff

«w Anallocationof the CPS game Is represented by

(X,¥,Z), wherex = (%,» , %) Y5 (%> W)
Z,2(Z) 10, foreachii N, altl= (z,,» ,z,)

w Thepayoff functionof peeri in the CPS game is
v(xyZ) a qz m
il D)
utility from  production download upload

consumption cost cost cost
(diff., concave)(diff., convex)
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Nash Equilibrium

w Astrategyfor peeriin the CPS game is its complete
contingent plan over the three stages, which can be
represented by(x, ¥ (>).z (X, ¥.(¥) o))

«w Nash equilibrium (NES$ defined as a strategy profile

such that no peer can improve its payoff by a
unilateral deviation

w NE describes the outcome when peers behave
selfishly.
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Nash Equilibrium

w Proposition:Suppose that, for eacH A/, a solution to
max,,{f,(x,0)- k (X} exists, and denote it ag . Unique NI
outcome of the CPS game has x° ZardO for
alljl DG) ,forall NV

» |dea of Prooflfz, >0 for somé N gmdD() j peer
can increase Its payoff by deviatingyto=0 . Therefore,
z, =0 forallil AV angl D) at any NE outcome.

w Given that there is no transfer of content, peers choose ar
autarkic optimal level of production.

60



Pricing as an Incentive Scheme

» We introduce aricing schemdn the CPS game as a
solution to overcome the network collapse.

w ;- unit price of content that peeyprovides to peer.
» A pricing scheme can be representedi§ (P, )i v o ¢
w The payoff function of pearnn the CPS game with
pricing schem@ Is given by
p(xYy.Zp)=vXxy.Z) -a RB7 +a R7

D) i)

Vi(X’y’Z): fi(X,Zi) 'Iu((?() 'é q{ijz_ a jISjiZ'

iTD() v
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What can we accomplish with prices?

w We measuresocial welfareoy the sum of the payoffs
of peersd " vi(x,y,Z)

w Asocially optimal (SGllocation is an allocation that
maximizes social welfare among feasible allocations

w UsingKarushKuhnTucker (KK'Igonditions, we can
characterize SO allocations.
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Content Pricing

w Proposition:iLet(x',y ,Z ) be an SO allocation. There is
pricing schemep” = (P, )i v ¢ SUch that(x,y',Z) isa
NE outcome of the CPS game with this pricing scheme.

w Prices
In the expression p; = ﬂ,ﬁ,— +0,, we can see that peer |
compensates peer j for the upload cost, 6, as well as the
shadow price, A of content supplied from peer j to peer i

dea:We can construct an NE strategy such that the
KKT conditions for the NE outcome with the proposed
oricing scheme coincide with those for social optimum
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w Pricing schemes can always get us to the SOC
optimum

€y
w Important questions: .
i Who produces and how much?

i Who shares with whom?

w The answers to these questions depend
sensitively on the topologies

«w Network topology may be designparameter

* Next: We work out some surprising examples
> y



Assumptions

w (Perfectly substitutable contenfljhe utility from consumption depends
only on the total amount of content.

w (Linear production cosflhe production cost is linear in the amount of
content produced.

w (Socially valuable P2P netwof@btaining a unit of content through the
P2P network costs less to peers than producing it privately.

Production costs

w b is the per capita cost of peéproducing one unit of content
and supplying it to every other peer to which peean upload,
and we call it thecost parameteof peeri.

BALK+A o ( 0+ B A DD
bEmin{ p», b
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Focus on efficient production

w In a fully connected P2P network, we
haveD(i) =U (i) =V \{i} foir gl

wlLld A& {h (2 KI@S
STFAOASY (i€ LISSNE
smallest cost parameter in the
network) produce a positive amount,
where the total amount of production
is given by,
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Focus on efficient production
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Focus on efficient production

w In a fully connected P2P network, we
0 haveD(i) =U (i) =V \{i} foir gl
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X smallest cost parameter in the

network) produce a positive amount,
where the total amount of production

is given by,
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Focus on efficient production

w In a fully connected P2P network, we

0 haveD(i) =U (i) =V \{i} foir gl

wlLld A& {h (2 KI@S
STFAOASY (i€ LISSNE
smallest cost parameter in the
network) produce a positive amount,
where the total amount of production
is given by,

w The most efficient producer does all
the producing.

5
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Focus on efficient production

w Suppose that the network designer car
choose connectivity between peers,
assuming that the optimal pricing
scheme is implemented given the
connectivity topology.

w Then the star topology with the most
costefficient peer as the center will
achieve the maximum social welfare
with the minimum number of links.
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Focus on impact of topology

w We consider homogeneous peeysame benefit functions
and cost parameters.

w We consider three stylized network topologies: a star
topology, a ring topology, and a line topology.
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Star Topology

w b =[ ktN 1Y( d HEN and
b =(k+ d+)/2forj 1 .
w Since peer 1 is more connected than

other peers, it is more cosfficient
(le.,b,< £ forgll, 1 ).
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Star Topology

w b =[ ktN 1Y( d HEN and
b =(k+ d+)/2forj 1 .

w Since peer 1 is more connected than
other peers, it is more cosfficient
(le.,b,< £ forgll, 1 ).

w Only peer 1 produces a positive amoun

of content¥, and uploads it to every
other peer at the SO allocation.
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Star Topology

w b =[ ktN 1Y( d HEN and
b=(k+ dH)/2forj 1 .

w Since peer 1 is more connected than
other peers, it is more cosdfficient
(le.,b,< £ forgll, 1 ).

w Only peer 1 produces a positive amoun

of content¥, and uploads it to every
other peer at the SO allocation.

w The most efficient shipper does all the
producing.
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Ring Topology

w Every peer is connected to two neighboring
peers, and thus peers have the same cost
parameterb =[ k&2( a )]53.
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Ring Topology

- w Every peer is connected to two neighboring
% / 3 peers, and thus peers have the same cost
parameterb =[ k&2( a )]53.

w Each peer produces the amouﬁg/B
%/3 while consumingk,  at the SO allocation
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Ring Topology

w Every peer is connected to two neighboring
peers, and thus peers have the same cost
parameterb =[ k&2( a )]53.

w Each peer produces the amouﬁg/B
while consumingk,  at the SO allocation

w Interesting:The SO amounts of production
and consumption and the maximum per
capita social welfare are independent of N.
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