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• Universality : do all people have it ?
• Distinctiveness : can people be distinguished based on an identifier ?
• Permanence : how permanent is the identifier ?
• Collectability : how well can the identifier be captured and quantified ?
• Performance : speed and accuracy
• Acceptability : willingness of the people to use
• Circumvention : foolproof

Biometrics is the science and technology of measuring and statistically analyzing biological data.

S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric Recognition: Security and Privacy Concerns”, IEEE SECURITY & PRIVACY, 2003. 

Biometrics for Identity Verification
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Biometric Matching System

Four main components: 
sensor, feature extractor, template database, and matcher

Sensor Feature Extractor Template Database

Enrollment

Authentication

Sensor Feature Extractor

Matcher
Match/

No match

Question: How can we design a secure identity verification system?



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Securing Passwords

• Do not store passwords as clear text - store hash of password instead
• If computer stolen / broken into, password remains secure

• Enter identical password to gain access

letMeIn

Password:

Stored Hash 
of Password

gAd324aDZvco

letMeIn
gAd324aDZvco

= ?

1-way hash   
(hard to invert)

1-way hash   
(hard to invert)

letMeIn

Password:

Stored Hash 
of Password

gAd324aDZvco

letMeIn
gAd324aDZvco

= ?

1-way hash   
(hard to invert)

1-way hash   
(hard to invert)
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Challenge for Biometrics

• Biometric data is noisy
– Each feature extraction results in different but similar data

Reasons: sensor, feature extraction algorithm, environment
– Extremely difficult to model both the data and noise
– Conventional hash functions not applicable

• Traditional encryption schemes won’t help much either
– Clear template is needed for matching
– Where to store the key?

Four impressions 
from the same finger



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Two Approaches Considered

ECC-Based Systems

• Extract error correcting information 
from the biometric (aka helper data)

• Authentication performed by 
recovery of external key or original 
biometric

• Difficult to recover biometric from 
stored data; information-theoretic 
security analysis is possible

Encryption-Based Systems

• Apply homomorphic encryption to 
the biometric 

• Authentication performed on 
encrypted data through a protocol 
that does not reveal user biometric

• Computational security as offered 
by cryptographic primitives

attempt to cope with noise in data utilize properties of homomorphic functions 
to maintain security and data privacy
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ECC-Based Systems



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Modeled as a Slepian-Wolf system

Encode into syndrome S
• S cannot be uncompressed by itself & is therefore secure
• In combination with a noisy second reading Y the original X can be 

recovered using a Slepian-Wolf decoder
• Compare hash of estimate with stored hash to permit access

Encode 
enrollment 
biometric

Syndrome 
Encoding

Store syndrome S 
and hash of X

Syndrome 
Decoding

Original 
enrollment 
biometric

Noisy biometric probe

Decode  
w/ probe 
biometric

Biometric
Authentication

Biometric
Channel

X S

Y

Authenticate
only if hash of
estimate matches
stored hash

[Martinian, et al., Allerton 2005] [Draper, et al., ICASSP 2007]
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Overview: Syndrome encoding / SW decoding
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Syndrome Decoding
based on Belief Propagation

(iterative algorithm)

Security = number “missing” bits
= original bits – syndrome bits
Translates into number guesses
to identify original biometric w.h.p.

Robustness = false-rejection rate
Robustness to variations in biometric readings 
achieved by syndrome decoding process
(syndrome + noisy biometric => original biometric)

Fewer syndrome bits = greater security, but less robustness
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Security Analysis

candidate
biometric 1

candidate
biometric 2

candidate
biometric L

....
list of (equally likely)

biometrics that
match stored data

enrollment
biometric X secure biom

F(X)

F   (F(X))
-1

• Security not provided 
by difficulty of inverting F

• Security provided by size of list L; 
need to test almost all L to identify 
enrollment biometric
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Quantifying Security

candidate
biometric 1

candidate
biometric 2

candidate
biometric L

....
list of (equally likely)

biometrics that
match stored data

• Attacker knows F(x)

• Attacker knows secure biometric

enrollment
biometric X secure biom

F(X)

F   (F(X))
-1

• Attacker has this list

• We quantify the size of the list in terms    
of measurable characteristics of F
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Security of Syndrome-Based System
list of biometrics 
satisfying linear

constraints

enrollment
biometric X

secure biometric, S = evaluation
of functions (syndrome vector)

F(X), set of linear functions
specified by code C

F   (F(X))
-1
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Security/Robustness evaluation: 

information-theoretic analysis
X = biometric feature (length n binary vector)
S = syndrome (length nRSW binary vector, RSW is compression rate)
Y = biometric probe (length n binary vector)

Security corresponds to number of missing bits
Guess from typical sequences in bin
2H(X|S) guesses required for successful attack w.h.p.
Rsec = H(X|S) = H(X,S) – H(S) = H(X) – H(S) = H(X) – nRSW

Lower values of RSW � higher security

Robustness determined by Slepian-Wolf error exponent
Pr[false rejection] = exp{ -n ESW (RSW) }
Lower values of RSW � higher false-rejection-rate

Security/Robustness range
RSW < (1/n) H(X) needed for positive information security
RSW > (1/n) H(X|Y) needed for positive error exponent 
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System Design

• Key issue: what does the biometric channel look like?
– Depends heavily on the input X

• Our approach: transform the input to a binary feature vector so that 
the biometrics channel looks like a BSC

Encode 
enrollment 
biometric

Syndrome 
Encoding

Store syndrome S 
and hash of X

Syndrome 
Decoding

Original 
enrollment 
biometric

Noisy biometric probe

Decode  
w/ probe 
biometric

Biometric
Authentication

Biometric
Channel

X S

Y

Authenticate
only if hash of
estimate matches
stored hash
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Desired Properties of Extracted Binary Features
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This method provides positive information theoretic secrecy 
[Sutcu, et al, ISIT 2008]
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Individual bits
independent
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Feature Extraction (based on fingerprints)

X

Y

θθθθ
N random cuboids in

minutiae map
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Median
thresholds

Each cuboid contributes a 0 or 1 bit to the feature vector, if it contains 
less or more minutia points than the median

[Sutcu, et al, CVPR 2008]



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Performance Improvements

• Minimize Cuboids Overlap
Large overlap � similar bits 

� easy for attacker to guess

• Leverage Bit Reliability
– Differ depending on where the biometric bits are derived from 
– Reliabilities could even be user-specific
– Possible to leverage reliabilities in

• Initialization of LDPC decoding
• Degree distribution for irregular LDPC

Ri = log
1− pi

pi

 

 
 

 

 
 = LLR i

High-degree
nodes

Low-degree
nodes

≥ ≥ ≥ ≥

[Wang, et al, WIFS 2009]
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User-Specific Reliable Cuboids

0-List 1-List

… …

Sort by reliability

0-List 1-List

… …

N fair coin flips to
choose cuboids 

from top of each list…

1 2

34

5

1 2 3 4 5

Unordered list

To what extent are the 4 desired properties are satisfied ?
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Zeros & Ones 

Equally Likely
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Overall Security & Robustness (Syndrome Code Rate = 0.2)

0.050%0.00016%3.3%
Reordered Bits
Unequal LLR
Shuffled BP

0.043%0.0001%3.7%
Reordered Bits
Unequal LLR

0.044%0.0002%9.9%
Unordered Bits
Unequal LLR

0.012%0.0003%11%
Unordered Bits

Equal LLR

SAR*FARFRRScheme

* Successful Attack Rate (SAR) =  Pr{ Successful imposter login with side-info } ≥ FAR
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Bits of Security

• # bits of security = # bits the attacker must guess
≈ # feature bits - # syndrome bits

• Can trade off FRR for # bits of security
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R = 0.2
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Beyond Minutiae Counts

• Expanded feature set could enable better 
accuracy and increased security

• Need uncorrelated and discriminable features
– Correlated features lead to redundancy; loss in 

security so must eliminate pair-wise correlations

– Discriminability of ith bit corresponding to the jth
user is given as

Bits having highest discriminability are selected 
as final features

Orientation Features

Minutiae 
Features

Ridge map 
Features

j j j
i i id I G= −

j
iI : Impostor bit-flip probability 

j
iG : Genuine bit-flip probability 

[Nagar, et al, SPIE 2010]
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Results with Expanded Fingerprint Features

• FVC2002 Database-2
– 100 fingers, 8 impressions per finger

– One impression is enrolled, six used for training and one for testing

• Consider seven minutiae features, four ridge orientation features and 
ridge wavelength
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Summary

• ECC techniques can be utilized to cope with noise in 
secure verification of biometric data

• Important points to note
– Biometric feature vectors should be designed according to the 

ECC to achieve a good security-robustness tradeoff
– Possible to leverage reliability of extracted feature bits in code 

design and decoding process
– Extraction of bits from ridge orientation and ridge wavelength in 

addition to minutiae improves matching performance

• Drawback: attacker can eavesdrop on reconstructed 
biometric and verification result
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Encryption -Based Systems
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Private Information Retrieval

• Keyword search on encrypted documents
• Privacy-preserving medical analysis
• Private biometric authentication

Database
User

Query

Answer(s)
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Oblivious Transfer (OT)

• Input: Bob has

• Output: Alice gets

• Requirements
– Alice will know nothing about Bob’s other elements

– Bob will not know k

• Example: 
– Alice has x = 5, Bob has y = 7

– Alice wants to compute (x - y)2 where 1 ≤ x, y ≤ 10

– Bob keeps a list of (x - 7)2 i.e., z = [36,25,16,9,4,1,0,1,4,9]

– Alice wants z5 w/o Bob’s knowledge
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1 out of 10 Oblivious Transfer

• Alice                                                           Bob

• Alice                                                           Bob

• Bob tries to decrypt K5(E) using all 10 decryption keys to obtain 
D1[K5(E)], … D2 [K5(E)], …, D10 [K5(E)]. The 5th entry is Alice’s key, 
others are garbage. G1, G2, …,G5 = E,…, G10

• Alice                                                           Bob

• Alice decrypts the 5th entry. She can’t decrypt anything else.

10 public keys K1, K2, …, K10

K5(E)

G1(z1), G2(z2), …, E(z5), …, G10(z10)

10 public keys K1, K2, …, K10

K5(E)



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Practical Issues with OT

• Generality is good, but protocol overhead becomes heavy even for
very simple circuits (esp. with large values and long vectors)
– O(N) encrypted transmissions
– For naïve OT, # decryptions required = O(N)

• With homomorphic encryption, possible to reduce encrypted 
transmissions and decryptions drastically

• Traditional uses of homomorphic encryption
– Secure voting [Adida, Rivest, ‘06]
– Secure auctions and bidding [Damgard, ‘09]



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Secure Distance Computation

• Alice and Bob want to evaluate d(x,y) without sharing x and y

• Need protocols with low transmission and computation overhead

• Focus of this talk: consider d(x,y) as Hamming, L2 or L1 distance

Alice Bobprotocol
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Additively Homomorphic Functions

(Our protocol will work with any of them)

Additively homomorphic schemes in the literature:

[Paillier,`99; Benaloh,`86; Damgard–Jurik,`01]
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Squared Distance Protocol (Setup)

•

•

• Alice knows A, Bob knows B

Alice Bob



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Protocol

Bob1. Alice

2. Bob:

3. Bob:

Bob5. Alice

4. Bob:

6. Alice:

[Rane, et al., ICIP 2009]
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Privacy & Cost

Alice Bob

• Bob operates only on encrypted x1, x2, ..., xN

• Alice can decrypt d(x,y) and try to obtain y1, y2, ... yN

– No privacy for N = 1
– Privacy for N ≥ 2

• Alice: O(N) encryptions, 1 multiplication

• Bob: 1 encryption, O(N) exponentiations, O(N) multiplications in encrypted domain
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Anonymous Fingerprint Biometrics

Decrypt
Database of 

Encrypted Feature 

Vectors

Extract Binary

Feature Vector Bob

Alice

yes no

Authentication server

y

x

d(x,y)
< Dth for

some x
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Validation of Operating Characteristics
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Similar protocol not possible for L1 distance

• Can express integer L1 distance function as a polynomial in a large finite field

• However, tremendously large degree � high protocol overhead
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Convert L1 to L2

• Alice and Bob can binarize their inputs as follows:

Let alphabet size = 5

2 ≡ [11000] , 4 ≡ [11110]

Then u = [2,4] � ũ = [1100011110]

• Then,

• Possible to use squared distance protocol, but this is impractical 
because we have made our vectors so long

• For vectors of length n, and alphabet size M, size increases to Mn
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Reduce dimensionality of new L2 problem

S points in

D dimensions

S points in

dimensions

=

[Johnson, Lindenstrauss, 1984] [Achlioptas, 2001]

consists of i.i.d. Gaussian

or Bernoulli-0.5 entries

D x 1
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JL for our problem
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After JL embedding,

Thus, can apply squared distance protocol to JL projections to obtain 

approximate absolute distance between x and y
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Application: Private Face Image Retrieval

Extract integer
face features

A

BRemote database 
of face features

“Bob”

yes

noInput
Query

Binarization &
JL embedding

Binarization &
JL embedding

L2 distance
protocol

query
success

query
failure

Feature Vector: 900-length, 8-bit (229.5K after binarization)

JL embedding reduces dimensionality to 7.2K

[Rane, et al., ICME 2010]

MBGC database, 100 persons, 

each having 2 to 6 face image
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Accuracy of L1 approximation
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Many other interesting lines of research…

0 1 2 3 4

1 1 2 3 4

2 2 2 2 3

3 3 3 3 2

1

2

3

4

0 1 2 3 4 5

F

A

S

T

F I R S T

0 1 2 3 4

1 1 2 3 4

2 2 2 2 3

3 3 3 3 2

1

2

3

4

0 1 2 3 4 5

F

A

S

T

F I R S T

Alice Charlie

P2

P1

P3
P4

Pn

participants

assisting

server
researcher

x

y
z

w

v

cx

cy

cz cw

cvdx

dy
dz

dw

dv

f

s
Alice Charlie

P2

P1

P3
P4

Pn
x

y
z

w

v

cx

c c

f

s
Alice Charlie

P2

P1

P3
P4

Pn

participants

assisting

server
researcher

x

y
z

w

v

cx

cy

cz cw

cvdx

dy
dz

dw

dv

f

s
Alice Charlie

P2

P1

P3
P4

Pn
x

y
z

w

v

cx

c c

f

s

Polynomial Evaluation: n parties

Secure Edit Distance

[Rane, et al., Allerton 2009]

[Rane, et al., WIFS 2010]

(to appear)
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Summary

• Protocols to evaluate distance between private inputs 
held by untrusting parties
– Hamming distance
– L2 distance
– L1 distance
– Edit distance (for some useful substitution costs)

• Use additive homomorphism as a cryptographic primitive 
to reduce protocol overhead

• Applied to anonymous biometric authentication, but also 
relevant to many other applications
– E.g., private image retrieval, comparing DNA sequences, keyword 

spotting, speaker verification, etc.



MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Concluding Remarks

• Presented two approaches for secure identity verification
– ECC-based scheme: Slepian-Wolf setup to cope with noisy data
– Encryption-based scheme: secure distance calculation

• Various pros and cons for each; best solution depends on 
application requirements

Thanks for your attention!

Web: http://www.merl.com

Email: avetro@merl.com
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