MITSUBISHI ELECTRIC

Secure Identity Verification

Anthony Vetro
Mitsubishi Electric Research Labs
Cambridge, Massachusetts, USA
avetro@merl.com

IST - Lisbon, Portugal November 15, 2010

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Biometrics for Identity Verification

Biometrics is the science and technology of measuring and statistically analyzing biological data.

S. Prabhakar, S. Pankanti, and A. K. Jain, "Biometric Recognition: Security and Privacy Concerns", IEEE SECURITY \& PRIVACY, 2003.

- Universality
- Distinctiveness
- Permanence
- Collectability
- Performance
- Acceptability
- Circumvention : foolproof

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Biometric Matching System

Four main components:
sensor, feature extractor, template database, and matcher

Question: How can we design a secure identity verification system?

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Securing Passwords

- Do not store passwords as clear text - store hash of password instead
- If computer stolen / broken into, password remains secure
- Enter identical password to gain access

Challenge for Biometrics

- Biometric data is noisy
- Each feature extraction results in different but similar data Reasons: sensor, feature extraction algorithm, environment
- Extremely difficult to model both the data and noise
- Conventional hash functions not applicable

Four impressions from the same finger

- Traditional encryption schemes won't help much either
- Clear template is needed for matching
- Where to store the key?

Two Approaches Considered

ECC-Based Systems

- Extract error correcting information from the biometric (aka helper data)
- Authentication performed by recovery of external key or original biometric
- Difficult to recover biometric from stored data; information-theoretic security analysis is possible

Encryption-Based Systems

- Apply homomorphic encryption to the biometric
- Authentication performed on encrypted data through a protocol that does not reveal user biometric
- Computational security as offered by cryptographic primitives
utilize properties of homomorphic functions to maintain security and data privacy

ECC-Based Systems

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Modeled as a Slepian-Wolf system

Encode into syndrome S

- S cannot be uncompressed by itself \& is therefore secure
- In combination with a noisy second reading \mathbf{Y} the original \mathbf{X} can be recovered using a Slepian-Wolf decoder
- Compare hash of estimate with stored hash to permit access
[Martinian, et al., Allerton 2005] [Draper, et al., ICASSP 2007]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Overview: Syndrome encoding / SW decoding

Security = number "missing" bits = original bits $\boldsymbol{-}$ syndrome bits Translates into number guesses to identify original biometric w.h.p.

Robustness = false-rejection rate Robustness to variations in biometric readings achieved by syndrome decoding process (syndrome + noisy biometric => original biometric)

Fewer syndrome bits = greater security, but less robustness

Security Analysis

- Security provided by size of list L; need to test almost all L to identify
list of (equally likely) biometrics that match stored data
 enrollment biometric

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Quantifying Security

- Attacker knows secure biometric
- Attacker has this list
- We quantify the size of the list in terms of measurable characteristics of F
list of (equally likely) biometrics that match stored data

Security of Syndrome-Based System

list of biometrics satisfying linear constraints

secure biometric, $S=$ evaluation
enrollment of functions (syndrome vector) biometric X

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Security/Robustness evaluation: information-theoretic analysis

$\mathrm{X}=$ biometric feature (length n binary vector)
$\mathrm{S}=$ syndrome (length $n \mathrm{R}_{\mathrm{Sw}}$ binary vector, R_{Sw} is compression rate)
$\mathrm{Y}=$ biometric probe (length n binary vector)
Security corresponds to number of missing bits
Guess from typical sequences in bin
$2^{H(X \mid S)}$ guesses required for successful attack w.h.p.
$R_{\text {sec }}=H(X \mid S)=H(X, S)-H(S)=H(X)-H(S)=H(X)-n R_{S W}$
Lower values of $R_{S w} \rightarrow$ higher security
Robustness determined by Slepian-Wolf error exponent
Pr[false rejection] $=\exp \left\{-n \mathrm{E}_{\mathrm{sw}}\left(\mathrm{R}_{\mathrm{sw}}\right)\right\}$
Lower values of $\mathrm{R}_{\mathrm{SW}} \rightarrow$ higher false-rejection-rate
Security/Robustness range
$R_{\text {SW }}<(1 / n) H(X)$ needed for positive information security
$R_{S W}>(1 / n) H(X \mid Y)$ needed for positive error exponent

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

System Design

- Key issue: what does the biometric channel look like?
- Depends heavily on the input X
- Our approach: transform the input to a binary feature vector so that the biometrics channel looks like a BSC

Desired Properties of Extracted Binary Features

This method provides positive information theoretic secrecy [Sutcu, et al, ISIT 2008]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Feature Extraction (based on fingerprints)

Each cuboid contributes a 0 or 1 bit to the feature vector, if it contains less or more minutia points than the median
[Sutcu, et al, CVPR 2008]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Performance Improvements

- Minimize Cuboids Overlap

Large overlap \rightarrow similar bits
\rightarrow easy for attacker to guess

$$
O_{i, j}=\frac{V_{i} \bigcap_{j}}{V_{i} \bigcup_{j}}
$$

- Leverage Bit Reliability
- Differ depending on where the biometric bits are derived from
- Reliabilities could even be user-specific
- Possible to leverage reliabilities in
- Initialization of LDPC decoding
- Degree distribution for irregular LDPC

$$
R_{i}=\left|\log \left(\frac{1-p_{i}}{p_{i}}\right)\right|=\left|\operatorname{LLR}_{i}\right|
$$

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

User-Specific Reliable Cuboids

To what extent are the 4 desired properties are satisfied?

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Zeros \& Ones Equally Likely

Individual Bits Independent

Proprietary database of 1035 users, 15 pre-aligned samples per user, 150 cuboids

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Intra-user \& Inter-user Distance

* EER: equal error rate [false accept = false reject]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Overall Security \& Robustness (Syndrome Code Rate $=\mathbf{0 . 2}$)

Scheme	FRR	FAR	SAR*
Unordered Bits Equal LLR	11%	0.0003%	0.012%
Unordered Bits Unequal LLR	9.9%	0.0002%	0.044%
Reordered Bits Unequal LLR	3.7%	0.0001%	0.043%
Reordered Bits Unequal LLR Shuffled BP	3.3%	0.00016%	0.050%

* Successful Attack Rate $(S A R)=\operatorname{Pr}\{$ Successful imposter login with side-info $\} \geq$ FAR

Bits of Security

- \# bits of security = \# bits the attacker must guess \approx \# feature bits - \# syndrome bits
- Can trade off FRR for \# bits of security

Beyond Minutiae Counts

- Expanded feature set could enable better accuracy and increased security
- Need uncorrelated and discriminable features
- Correlated features lead to redundancy; loss in security so must eliminate pair-wise correlations
- Discriminability of ith bit corresponding to the jth user is given as

$$
d_{i}^{j}=I_{i}^{j}-G_{i}^{j}
$$

I_{i}^{j} : Impostor bit-flip probability
G_{i}^{j} : Genuine bit-flip probability
Bits having highest discriminability are selected as final features

Orientation Features

Minutiae
Ridge map
Features

[Nagar, et al, SPIE 2010]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Results with Expanded Fingerprint Features

- FVC2002 Database-2
- 100 fingers, 8 impressions per finger
- One impression is enrolled, six used for training and one for testing
- Consider seven minutiae features, four ridge orientation features and ridge wavelength

Summary

- ECC techniques can be utilized to cope with noise in secure verification of biometric data
- Important points to note
- Biometric feature vectors should be designed according to the ECC to achieve a good security-robustness tradeoff
- Possible to leverage reliability of extracted feature bits in code design and decoding process
- Extraction of bits from ridge orientation and ridge wavelength in addition to minutiae improves matching performance
- Drawback: attacker can eavesdrop on reconstructed biometric and verification result

Encryption-Based Systems

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Private Information Retrieval

- Keyword search on encrypted documents
- Privacy-preserving medical analysis
- Private biometric authentication

Oblivious Transfer (OT)

- Input: Bob has $\mathbf{z}=z_{1}, z_{2}, \ldots, z_{N}$
- Output: Alice gets z_{k}
- Requirements
- Alice will know nothing about Bob's other elements
- Bob will not know k
- Example:
- Alice has $x=5$, Bob has $y=7$
- Alice wants to compute $(x-y)^{2}$ where $1 \leq x, y \leq 10$
- Bob keeps a list of $(x-7)^{2}$ i.e., $z=[36,25,16,9,4,1,0,1,4,9]$
- Alice wants z_{5} w/o Bob's knowledge

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

1 out of 10 Oblivious Transfer

- Alice 10 public keys $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{10} \quad$ Bob
- Alice $\longrightarrow \mathrm{K}_{5}(\mathrm{E}) \longrightarrow$ Bob
- Bob tries to decrypt $\mathrm{K}_{5}(\mathrm{E})$ using all 10 decryption keys to obtain $D_{1}\left[K_{5}(E)\right], \ldots D_{2}\left[K_{5}(E)\right], \ldots, D_{10}\left[K_{5}(E)\right]$. The $5^{\text {th }}$ entry is Alice's key, others are garbage. $G_{1}, G_{2}, \ldots, G_{5}=E, \ldots, G_{10}$
- Alice $\stackrel{\mathrm{G}_{1}\left(z_{1}\right), \mathrm{G}_{2}\left(z_{2}\right), \ldots, \mathrm{E}\left(z_{5}\right), \ldots, \mathrm{G}_{10}\left(z_{10}\right)}{ }$ Bob
- Alice decrypts the $5^{\text {th }}$ entry. She can't decrypt anything else.

Practical Issues with OT

- Generality is good, but protocol overhead becomes heavy even for very simple circuits (esp. with large values and long vectors)
- $\mathrm{O}(\mathrm{N})$ encrypted transmissions
- For naïve OT, \# decryptions required $=O(N)$
- With homomorphic encryption, possible to reduce encrypted transmissions and decryptions drastically
- Traditional uses of homomorphic encryption
- Secure voting [Adida, Rivest, ‘06]
- Secure auctions and bidding [Damgard, ‘09]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Secure Distance Computation

- Alice and Bob want to evaluate $d(\mathbf{x}, \mathbf{y})$ without sharing \mathbf{x} and \mathbf{y}
- Need protocols with low transmission and computation overhead
- Focus of this talk: consider $d(\mathbf{x}, \mathbf{y})$ as Hamming, L2 or L1 distance

Additively Homomorphic Functions

$$
\begin{aligned}
\xi\left(m_{1}+m_{2}\right) & =\xi\left(m_{1}\right) \xi\left(m_{2}\right) \\
\xi\left(k m_{1}\right) & =\xi\left(m_{1}\right)^{k}
\end{aligned}
$$

Additively homomorphic schemes in the literature:
[Paillier, '99; Benaloh, '86; Damgard-Jurik, '01]
(Our protocol will work with any of them)

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Squared Distance Protocol (Setup)

- $s(\mathbf{x}, \mathbf{y})=\sum\left(x_{k}-y_{k}\right)^{2}=\sum x_{k}^{2}+y_{k}^{2}-2 x_{k} y_{k}=A+B+C$
- $A=\sum x_{k}^{2}, B=\sum y_{k}^{2}, C=-2 \sum x_{k} y_{k}$
- Alice knows A, Bob knows B

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Protocol

1. Alice $\xrightarrow{\xi\left(x_{k}\right) \text { for all } k}$ Bob
2. Bob: $\left[\xi\left(x_{k}\right)\right]^{-2 y_{k}}=\xi\left(-2 x_{k} y_{k}\right)$ for all k
3. Bob: $\quad \Pi_{k} \xi\left(-2 x_{k} y_{k}\right)=\xi\left(-2 \sum_{k} x_{k} y_{k}\right)=\xi(C)$
4. Bob: $B=\sum y_{k}^{2}, \xi(B) \xi(C)=\xi(B+C)$
5. Alice $\longleftarrow \xi(B+C) \quad$ Bob
6. Alice: $A=\sum x_{k}^{2}, \xi(A) \xi(B+C)=\xi(A+B+C)$ $=\xi(s(\mathbf{x}, \mathbf{y}))$

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Privacy \& Cost

- Bob operates only on encrypted $x_{1}, x_{2}, \ldots, x_{N}$
- Alice can decrypt $d(\mathbf{x}, \mathbf{y})$ and try to obtain $y_{1}, y_{2}, \ldots y_{N}$
- No privacy for $N=1$
- Privacy for $N \geq 2$
- Alice: $\mathrm{O}(N)$ encryptions, 1 multiplication
- Bob: 1 encryption, $\mathrm{O}(N)$ exponentiations, $\mathrm{O}(N)$ multiplications in encrypted domain

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Anonymous Fingerprint Biometrics

Validation of Operating Characteristics

1000 fingers, 15 samples per finger

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Similar protocol not possible for L1 distance

$$
\begin{aligned}
(x-y)^{2} & =x^{2}+y^{2}-2 x y \\
x \oplus y & =x+y-2 x y \\
|x-y| & =?
\end{aligned}
$$

- Can express integer L1 distance function as a polynomial in a large finite field
- However, tremendously large degree \rightarrow high protocol overhead

Convert L1 to L2

- Alice and Bob can binarize their inputs as follows:

Let alphabet size $=5$
$2 \equiv$ [11000], $4 \equiv$ [11110]
Then $u=[2,4] \rightarrow \tilde{u}=[1100011110]$

- Then, $\|\mathbf{x}-\mathbf{y}\|_{1}=\|\widetilde{\mathbf{x}}-\widetilde{\mathbf{y}}\|_{1}=\|\widetilde{\mathbf{x}}-\widetilde{\mathbf{y}}\|_{2}^{2}$
- Possible to use squared distance protocol, but this is impractical because we have made our vectors so long
- For vectors of length n, and alphabet size M, size increases to $M n$

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Reduce dimensionality of new L2 problem

[Johnson, Lindenstrauss, 1984] [Achlioptas, 2001]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

JL for our problem

$$
k=\alpha \log M^{n}=\alpha n \log M
$$

After JL embedding, $\|\hat{\mathbf{x}}-\hat{\mathbf{y}}\|_{2}^{2} \approx\|\tilde{\mathbf{x}}-\tilde{\mathbf{y}}\|_{2}^{2}=\|\mathbf{x}-\mathbf{y}\|_{1}$
Thus, can apply squared distance protocol to JL projections to obtain approximate absolute distance between \mathbf{x} and \mathbf{y}

Application: Private Face Image Retrieval

MBGC database, 100 persons, each having 2 to 6 face image

$$
\left\|\mathbf{x}-\mathbf{y}_{i}\right\|_{1} \approx\left\|\hat{\mathbf{x}}-\widehat{\mathbf{y}}_{i}\right\|_{2}^{2}
$$

Feature Vector: 900-length, 8-bit (229.5K after binarization) JL embedding reduces dimensionality to 7.2 K

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Accuracy of L1 approximation

6000 pairs of feature vectors chosen at random

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Many other interesting lines of research...

Polynomial Evaluation: n parties

		F	1	R	S	T
	0	1	2	3	4	5
F	1	0	1	2	3	4
A	2	1	1	2	3	4
S	3	2	2	2	2	3
T	4	3	3	3	3	2

Secure Edit Distance
[Rane, et al., WIFS 2010] (to appear)

[Rane, et al., Allerton 2009]

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Summary

- Protocols to evaluate distance between private inputs held by untrusting parties
- Hamming distance
- L2 distance
- L1 distance
- Edit distance (for some useful substitution costs)
- Use additive homomorphism as a cryptographic primitive to reduce protocol overhead
- Applied to anonymous biometric authentication, but also relevant to many other applications
- E.g., private image retrieval, comparing DNA sequences, keyword spotting, speaker verification, etc.

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Concluding Remarks

- Presented two approaches for secure identity verification
- ECC-based scheme: Slepian-Wolf setup to cope with noisy data
- Encryption-based scheme: secure distance calculation
- Various pros and cons for each; best solution depends on application requirements

Thanks for your attention!

Web: http://www.merl.com
Email: avetro@merl.com

Acknowledgments

- Shantanu Rane (MERL)
- Jonathan S. Yedidia (MERL)
- Yige Wang (MERL)
- Wei Sun (MERL)
- Stark C. Draper (U. Wisconsin)
- Yagiz Sutcu (Polytechnic U.)
- Ashish Nagar (MSU)
- Emin Martinian (Bain Capital)
- Ashish Khisti (MIT)

