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Spoken Dialog Systems (SDS) 
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I want to find a  
restaurant? 

inform(venuetype=restaurant) 

request(food) What kind of food 
would you like? 
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A Statistical Spoken Dialogue System 
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Policy 

Response 
Generator 

inform(food=italian){0.6} 
inform(food=indian) {0.2} 
inform(area=east){0.1} 
null(){0.1} 
  

confirm(food=italian) 
request(area)  

Decision 

Reward Function 
Rewards:  success/fail 

Reinforcement 
Learning 

Supervised Learning 

Partially Observable Markov Decision Process (POMDP) 

ASR 
Evidence 

Belief State 

Belief 
Propagation 

I want 
an 

Italian 

Your looking for an 
Italian restaurant, 

whereabouts? 

Id like italian {0.4} 
I want an Italian {0.2} 
Id like Indian{0.2} 
In the east{0.1} 
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The POMDP SDS Framework 

ot = p(ut | xt ) = p(ut |wt )p(wt | xt )
wt

∑
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∑
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Dialogue State 
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User 
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Understanding 

Errors 

Tourist Information Domain 
•  type = bar,restaurant   
•  food = French, Chinese, none 

Memory ofood 

gfood 

ufood 

hfood 
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J. Williams (2007). ”POMDPs for Spoken Dialog Systems." Computer Speech and Language 21(2) 

NB: All 
conditioned 
by previous 

action 
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Belief Monitoring (Tracking) 

B R F C - B R F C - 

otype 

gtype 

utype 

ofood 

gfood 

ufood 

otype 

gtype 

utype 

ofood 

gfood 

ufood 

t=1 t=2 

inform(type=bar, 
           food=french) {0.6} 
inform(type=restaurant, 
           food=french) {0.3} 

confirm(type=restaurant, 
             food=french) 

affirm() {0.9} 
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Choosing the next action – the Policy 

gtype gfood 

B R F C - 

inform(type=bar) {0.4} 
select(type=bar, 
           type=restaurant) 

0 0 0 1 0 1 0 0 
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Plot of predicted success against WER
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Plot of success against WER

Success 

Fail 

Let’s Go 2010 Control Test Results 

Word Error Rate (WER) 

Baseline System 

Average Success = 64.8% 
Average WER = 42.4% 
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Plot of predicted success against WER

Cambridge 
89% Success 
33% WER 

Baseline 
65% Success 
42% WER 

Another 
75% Success 
34% WER 

All Qualifying Systems 
Predicted 
Success 
Rate 

B. Thomson 
"Bayesian 
Update of State 
for the Let's Go 
Spoken 
Dialogue 
Challenge.” 
SLT 2010. 
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Demo of Cambridge Restaurant Information 
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Issues with the 2010 System Design 

§  Poor coverage of N-best of semantic hypotheses 

§  Hand-crafting of summary belief space 

§  Slow policy optimisation and reliance on user simulation 

§  Dependence on hand-crafted dialogue model parameters 

§  Dependence on static ontology/database 



12 

Recent Developments in Statistical Dialogue Systems, Braunschweig, Sept 2012 © Steve Young 

N-best Semantic Decoding 

ASR 
Semantic 
Decoder 
(applied N 

times) 

Merge 
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acts 
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Conventional N-best decoding 
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Decoder 
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once) 

speech 

Word 
confusion 
network 
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M-best 
dialogue 
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Confusion Network decoding 

optional context 
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food=italian 

venue=restaurant 

area=centre 

Confusion Network Decoder (Mairesse/Henderson) 

inform multi-way 
SVM 

Binary Vector 

Context 

bj   if   itemj  in last system act

SVMfood=italian 

SVMfood=indian 

… … 
SVMarea=east 

0.91 

0.42 

0.01 

I 
I’d 

Is 
In 

were 

want 

water 
well 

indian 

italian 

in 
-- 

xi = E C(n-grami ){ }
1/ n-grami

n=1,2,3 

input 
features 

M-best 
semantic  

trees 
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Confusion Network Decoder Evaluation 
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Comparison of item retrieval on corpus of 4.8k utterances 
N-best hand-crafted Phoenix decoder vs Confusion network decoder (trained on 10k utterances) 

Live Dialogue System 

N-best Phoenix Confusion Net 
F-score 0.80 0.82 
ICE 2.02 1.26 
Average Reward 10.6 11.15 

“Discriminative Spoken Language Understanding using Word Confusion 
Networks”, Henderson et al, IEEE SLT 2012 
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Policy Optimization 

Policy parameters chosen to maximize expected reward 

€ 

J(θ) = E 1
T

r(st ,at ) | πθ
t
∑

% 

& ' 
( 

) * 

€ 

˜ ∇ J(θ) = Fθ
−1∇J(θ )

Natural gradient ascent works well  

Gradient is estimated by sampling dialogues and in practice 
Fisher Information Matrix does not need to be explicitly computed. 

Fisher 
Information 

Matrix 

This is the Natural Actor Critic Algorithm. 

J. Peters and S. Schaal (2008). "Natural Actor-Critic." Neurocomputing 71(7-9) 

However,  
A)  slow (~100k dialogues) and  
B)  requires summary space approximations 
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Q-functions and the SARSA algorithm 

Traditional reinforcement learning is commonly based on finding the optimal Q function: 

Q*(b,a) =max
π

Eπ r(bτ ,aτ )
τ=t+1

T

∑
"
#
$

%
&
'

(

)
*

+

,
-

The optimal deterministic policy is then simply 

π *(b) = argmax
a

Q*(b,a)!" #$

Q* can be found sequentially using the SARSA algorithm 

b = b0; choose action a e-greedily from π(b) 	


For each dialogue turn	



	

Take action a, observe reward r and next state b’	


	

choose action a’ e-greedily from π(b’)	


	

Q(b, a) = Q(b, a) +λ[Q(b’, a’) – (Q(b, a) – r)]	


	

b = b’; a = a’	



end	



Eventually, Q à Q* 	
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Gaussian Process based Learning – Milica Gasic 

For POMDPs, the belief space is continuous and direct representations of Q are 
intractable. However, Q can be approximated as a zero mean Gaussian process by 
designing a kernel  to represent the correlations between points in belief x action 
space.  Thus: 

Q(b,a) ~�� 0,k (b,a), (b,a)( )( )
Given a sequence of state-action pairs 

and rewards Bt = (b0,a0 ), (b1,a1),.., (bt,at )[ ]! rt = r0, r1,.., rt[ ]!

there is a closed form solution for the posterior: 

Q(b,a) | Bt, rt ~ N Q(b,a), cov (b,a), (b,a)( )( )
This suggests a SARSA-like sequential optimisation: 

b = b0; choose action a e-greedily from 	


For each dialogue turn	



	

Take action a, observe reward r and next state b’	


	

choose action a’ e-greedily from 	


	

Update the posterior covariance estimate	


	

b = b’; a = a’	



end	



Q(b,a)

Q( !b , !a )
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Benefits of GP-SARSA 

§  sequential estimation of distribution of Q (not Q itself) 

§  each new data point can impact on whole distribution via the covariance function 
à very efficient use of training data 

§  much faster learning than gradient methods such a Natural Actor Critic (NAC) 

TownInfo 
System 

GP 

NAC 

a =
argmax

a
Q(b,a)!" #$  with prob 1−ε

random action           with prob ε

&

'
(

)(

ε-greedy exploration 
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Variance exploration
Stochastic policy

Benefits of GP-SARSA 

§  variance of Q is known at each stage à more intelligent exploration: 

a =
argmax

a
Q(b,a)!" #$  with prob 1−ε

argmax
a

cov((b,a), (b,a))[ ] with prob ε

&

'
(

)
(

Variance exploration 

Qi (b,ai ) ~ N Q(b,ai ), cov((b,ai ), (b,ai )( )
a = argmax

ai
Qi (b,ai )!" #$ 

Stochastic policy 

TownInfo 
System 

Well trained within 3k dialogues 

“On-line policy optimisation of SDS via live interaction with human subjects”, Gasic et al, ASRU 2011 
“Gaussian processes for policy optimisation of large scale POMDP-based SDS”, Gasic et al, SLT 2012. 

And summary space mapping no longer needed 
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Parameter Estimation – Blaise Thomson 

ot 

gt 

ut 

ht 

Goal 

User Act 

History 

Observation at time t 

User  Behaviour 

Memory 

Recognition Errors 

gt+1 

Transition Model p(gt+1|gt,at) 

p(ut|gt,at-1) 

p(ot|ut) 

p(ht|ut,ht-1,at-1) 

These parameters 
typically hand-crafted. 
How can we learn them 
from data? 

at-1 
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Factor Graphs and Expectation Propagation 

ot 

gt 

ut 

ht 

Goal 

User Act 

History 

gt+1 

at-1 at-1 

f1(S1) where S1 = at−1,gt,ut( )

b(st | ot, st−1,at−1)∝ fk (Sk )
k=1

K

∏

Posterior 

•  exact computation is intractable 
•  can be approximated using belief propagation 
•  we use Expectation Propagation (EP)  
•  using EP factors can be discrete & continuous  

System Act 

{θi} 

•  hence, parameters can be added and 
updated simultaneously 
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Effect of Parameter Learning on TownInfo System 
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Structure Learning 

The ability to learn parameters can be extended to learn structure. 

Compute Evidence 
p(D|gk) for all gk in G 

Let G = { gk}   be a set of Bayesian Networks (or Factor Graphs): 

Corpus  
data D 

Prune G 

Augment G by  
perturbing each gk 

Stop? 

Select gk with  
highest Evidence 

Evidence can be computed 
efficiently using expectation 

propagation  

Potential to learn: 
a)  additional values for an existing variable 
b)  new hidden variables 
c)  new links between variables 
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Conclusions 

§  Statistical Dialogue Systems based on POMDPs are viable, offer 
increased robustness to noise and require no hand-crafting 

§  Good progress is being made on increasing accuracy and speeding up 
learning 

§  Learning directly on human users rather than depending on user 
simulators is now possible 

§  Current systems are built from static ontologies for closed domains 

§  Next steps will include building more flexible systems capable of 
dynamically adapting to new information content. 
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