Recent Developments in Statistical Dialogue Systems

Steve Young

Machine Intelligence Laboratory
Information Engineering Division

NCF Cambridge University Engineering Department
Cambridge, UK

Contents

- Review of Basic Ideas and Current Limitations
- Semantic Decoding
- Fast Learning
- Parameter Optimisation and Structure Learning

Spoken Dialog Systems (SDS)

A Statistical Spoken Dialogue System

Partially Observable Markov Decision Process (POMDP)

The POMDP SDS Framework

observation
$$o_{t} = p(u_{t} \mid x_{t}) = \sum_{w_{t}} p(u_{t} \mid w_{t}) p(w_{t} \mid x_{t})$$

$$belief state$$

$$b_{t}(s_{t}) = \eta p(o_{t} \mid s_{t}, a_{t-1}) \sum_{s_{t-1}} P(s_{t} \mid s_{t-1}, a_{t-1}) b_{t-1}(s_{t-1})$$

$$state \quad action$$

$$a_{t} \sim \pi(b_{t}, a_{t}) = \frac{e^{\theta \cdot \phi_{a}(b_{t})}}{\sum_{a} e^{\theta \cdot \phi_{a}(b_{t})}}$$

$$R = E\left\{\sum_{s_{t}} reward function \\ recogniser$$

Belief Monitoring (Tracking)

inform(type=bar, food=french) {0.6} inform(type=restaurant, food=french) {0.3}

affirm() {0.9}

Choosing the next action – the Policy

Let's Go 2010 Control Test Results

Demo of Cambridge Restaurant Information

Call the system by pressing the call button to the right.

Issues with the 2010 System Design

- Poor coverage of N-best of semantic hypotheses
- Hand-crafting of summary belief space
- Slow policy optimisation and reliance on user simulation
- Dependence on hand-crafted dialogue model parameters
- Dependence on static ontology/database

N-best Semantic Decoding

Conventional N-best decoding

Confusion Network decoding

Confusion Network Decoder (Mairesse/Henderson)

Confusion Network Decoder Evaluation

Comparison of item retrieval on corpus of 4.8k utterances

N-best hand-crafted Phoenix decoder vs Confusion network decoder (trained on 10k utterances)

Live Dialogue System

	N-best Phoenix	Confusion Net
F-score	0.80	0.82
ICE	2.02	1.26
Average Reward	10.6	11.15

"Discriminative Spoken Language Understanding using Word Confusion Networks", Henderson et al, IEEE SLT 2012

Policy Optimization

Policy parameters chosen to maximize expected reward

$$J(\theta) = E\left[\frac{1}{T}\sum_{t} r(s_{t}, a_{t}) \mid \pi_{\theta}\right]$$

Natural gradient ascent works well

$$\tilde{\nabla}J(\theta) = F_{\theta}^{-1}\nabla J(\theta)$$

Fisher Information Matrix

Gradient is estimated by sampling dialogues and in practice Fisher Information Matrix does not need to be explicitly computed. This is the Natural Actor Critic Algorithm.

However,

- A) slow (~100k dialogues) and
- B) requires summary space approximations

Q-functions and the SARSA algorithm

Traditional reinforcement learning is commonly based on finding the optimal Q function:

$$Q^{*}(b,a) = \max_{\pi} \left[E_{\pi} \left\{ \sum_{\tau=t+1}^{T} r(b_{\tau}, a_{\tau}) \right\} \right]$$

The optimal deterministic policy is then simply

$$\pi^*(b) = \underset{a}{\operatorname{argmax}} \left[Q^*(b, a) \right]$$

 Q^* can be found sequentially using the SARSA algorithm

 $b=b_0; \ choose \ action \ a \ e\ -greedily \ from \ \pi(b)$ For each dialogue turn $Take \ action \ a, \ observe \ reward \ r \ and \ next \ state \ b' \\ choose \ action \ a' \ e\ -greedily \ from \ \pi(b') \\ Q(b,a)=Q(b,a)+\lambda[Q(b',a')-(Q(b,a)-r)] \\ b=b'; \ a=a'$

Eventually, $Q \rightarrow Q^*$

end

Gaussian Process based Learning – Milica Gasic

For POMDPs, the belief space is continuous and direct representations of Q are intractable. However, Q can be approximated as a zero mean Gaussian process by designing a *kernel* to represent the correlations between points in belief x action space. Thus:

 $Q(b,a) \sim GP(0,k((b,a),(b,a)))$

Given a sequence of state-action pairs

$$B_t = [(b_0, a_0), (b_1, a_1), ..., (b_t, a_t)]'$$
 and rewards $r_t = [r_0, r_1, ..., r_t]'$

there is a closed form solution for the posterior:

$$Q(b,a) \mid B_t, r_t \sim N(\overline{Q}(b,a), \operatorname{cov}((b,a),(b,a)))$$

This suggests a SARSA-like sequential optimisation:

 $b = b_0$; choose action a e-greedily from $\bar{Q}(b,a)$ For each dialogue turn

> Take action a, observe reward r and next state b' choose action a' e-greedily from $\overline{Q}(b',a')$ Update the posterior covariance estimate b = b'; a = a'

end

Benefits of GP-SARSA

- sequential estimation of distribution of Q (not Q itself)
- each new data point can impact on whole distribution via the covariance function
 → very efficient use of training data
- much faster learning than gradient methods such a Natural Actor Critic (NAC)

TownInfo System

ε-greedy exploration

$$a = \begin{cases} \underset{a}{\operatorname{argmax}} \left[\overline{Q}(b, a) \right] \text{ with prob } 1 - \varepsilon \\ \text{random action} \quad \text{with prob } \varepsilon \end{cases}$$

Benefits of GP-SARSA

variance of Q is known at each stage → more intelligent exploration:

Well trained within 3k dialogues
And summary space mapping no longer needed

"On-line policy optimisation of SDS via live interaction with human subjects", Gasic et al, ASRU 2011 "Gaussian processes for policy optimisation of large scale POMDP-based SDS", Gasic et al, SLT 2012.

Parameter Estimation – Blaise Thomson

Factor Graphs and Expectation Propagation

Posterior

$$b(s_t \mid o_t, s_{t-1}, a_{t-1}) \propto \prod_{k=1}^K f_k(S_k)$$

- exact computation is intractable
- can be approximated using belief propagation
- we use Expectation Propagation (EP)
- using EP factors can be discrete & continuous
- hence, parameters can be added and updated simultaneously

Effect of Parameter Learning on TownInfo System

Structure Learning

The ability to learn parameters can be extended to learn structure.

Let $G = \{g_k\}$ be a set of Bayesian Networks (or Factor Graphs):

Conclusions

- Statistical Dialogue Systems based on POMDPs are viable, offer increased robustness to noise and require no hand-crafting
- Good progress is being made on increasing accuracy and speeding up learning
- Learning directly on human users rather than depending on user simulators is now possible
- Current systems are built from static ontologies for closed domains
- Next steps will include building more flexible systems capable of dynamically adapting to new information content.

Acknowledgement - this work is the result of a team effort: Catherin Breslin, Milica Gasic, Matt Henderson, Dongho Kim, Martin Szummer, Blaise Thomson, Pirros Tsiakoulis and former members of the CUED Dialogue Systems Group