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Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for
» Dominant singular subspace
Multipass iteration
Subset selection
Dominant eigenspace of positive definite matrix
Dominant eigenspace for indefinite matrices
» Show accuracy and complexity results
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The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



Dominant singular subspaces

Given Anxn, approximate it by a rank k factorization By x Ckxn
by solving
min ||A— BCll2, k< mn

This has several applications in Image compression, Information
retrieval and Model reduction (POD)



Information retrieval

words n = O(10°)

» Low memory
requirement
e A ~ L k=o' O(k(m +m))

m = O(10%) » Fast queries
Ax =~ L(Ux)
O0(k(m+ n)) time

» Easy to obtain
0(kmn) flops




Proper Orthogonal decomposition (POD)

Compute a state trajectory for one “typical” input

Collect the principal directions to project on
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Quartz reactor Snap shots of "typical” states Ten dominant "states”



We pass once over the data with a window of length k and perform
along the way a set of windowed SVD’s of dimension m x (k + £)
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k1

Step 1 : expand by appending ¢ columns (Gram Schmidt)

+E

Step 2 : contract by deleting the ¢ least important columns (SVD)



Expansion (G-S)

Append column a, to the current approximation URVT to get
R o] VT
v )= a) [ ]

Update with Gram Schmidt to recover a new decomposition URVT :

RQ v
1

using?=U'a,, a=a, — U, 2= 0p (since a, = Ut + Up)



Contraction (SVD)

Now remove the ¢ smallest singular values of this new URV7 via

URVT = (UG,)(GJRG,)(G]VT) =

Ry m vl
i

Ut

and keeping U, R, VT as best approximation of URV”
(just delete the ¢ smallest singular values)



Complexity of one pair of steps

The Gram Schmidt update (expansion) requires 4mk flops per
column (essentially for the products # = UTa,, 2= a, — UP)

1

For G,RG, = [R+ O] one requires the left and right singular

vectors of R which can be obtained in O(k2) flops per singular value
(using inverse iteration)

Multiplying UG, and VG, requires 4mk flops per deflated column

The overall procedure requires 8mk flops per processed column and
hence 8mnk flops for a rank k approximation to a m x n matrix A

R A

One shows that A= U [ 0 Aw

} VT where || [ 2;2 } |2 is known



Error estimates

Let E:=A—A=UsVT —UsVT and 1 := | E||2
Let /i := max p; where p; is the neglected singular value at step i
One shows that the error norm
f< ok Sp<vVn—Ki=cp
6 < 0i 2 6+ [i°/26;
tan 0, < tanfy = 2/(62 — 12), tan¢x < tan gk = 161/(62 — j?)

where 6k, ¢, are the canonical angles of dimension k :

costy = |[UT(:,k)Ull2, cosox == ||[VT(:, k) V|2



The bounds get much better when the gap ok — ok.1 is large

Gap v : 0.19458

Oyl = 0.67978

Gap v : 0.64265

. oppr = 0.20121

o1 0°%0°0, 000%, 00000000000000°000000&
I f s [ R R S Y
—true sv's o;(A), * approxlmated sv's & n). . ](Cn), =] dusmussed SIS fup s spn < o
o1 = 0.99008 51 =0.97613 o] = 0.99430 &1 = 099418
oy = 0.97084 59 = 0.95301 o5 = 0.90840 55 = 0.90815
o5 = 0.96010 &3 =0.93379 oy = 0.80284 &3 = 0.89250
oy = 0.93338 G4 =0.85142 o4 = 0.86560 G4 =0.86551
o5 = 0.87437 55 =0.83675 o5 = 0.84387 55 = 0.84357
po=0.73768 ji = 0.52330 p=0.20140 i =0.13631
cos 8, = 0.93000 | cos ), = 0.82233 cos By, = 0.99998 | cos B, = 0.99459
cos ¢y = 0.83881 | cos gy = 0.71038 cos ¢y = 0.99935 | cos gy = 0.94334




Convergence

How quickly do we track the subpaces ?

Gap ~ : 0.19458 Gap ~ : 0.64265

How cos Gf(i) evolves with the time step 7



Find the dominant behavior in an image sequence

Images can have up to 108 pixels

Each column of A is one image
Original : m = 28341, n = 100

Approximation : k =6




Multipass iteration

Low Rank Incremental SVD can be applied in several passes, say to

Tiaa A

vk

After the first block (or “pass”) a good approximation of the dominant
space U has already been constructed

Going over to the next block (second “pass”) will improve it, etc.

Theorem Convergence of the multipass method is linear, with
approximate ratio of convergence v /(1 — x?) < 1, where

» 1) measures orthogonality of the residual columns of A
> x is the ratio ok /oy Of A



Convergence behavior

for increasing gap between “signal” and “noise"

growing O =0 factor 1.333333
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Convergence behavior

for increasing orthogonality between “residual vectors"

shrinking O = Oy factor 0.750000

' ‘ G-, 28751235
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Eigenfaces analysis

Ten dominant left singular vectors of ORL Database of faces
(40 images, 10 subjects, 92x 112 pixels = 10304 x400 matrix)

Using MATLAB’ SVD function

- — B P

Using one pass of incremental SVD

STSE2

= ﬁ N .
(-

Maximal angle : 16.3°, maximum relative error in sing. values : 4.8%



Conclusions Incremental SVD

A useful and economical SVD approximation of Ay ,
For matrices with columns that are very large or “arrive” with time
Complexity is proportional to mnk and the number of “passes”

Algorithms due to

[1] Manjunath-Chandrasekaran-Wang (95)
[2] Levy-Lindenbaum (00)

[3] Chahlaoui-Gallivan-VanDooren (01)

[4] Brand (03)

[5] Baker-Gallivan-VanDooren (09)

Convergence analysis and accuracy in refs [3],[4],[5]



Subset selection

We want a “good approximation" of A, by a product B« P where
Pnk is a “selection matrix" i.e. a submatrix of the identity /,

This seems connected to

min |A — BPT||,
and maybe similar techniques can be used as for incremental SVD
Clearly, if B= AP, we just select a subset of the columns of A

Rather than minimizing ||A — BPT || we maximize vol(B) where

k
vol(B) = det(B7B)z = [[oi(B), m=>k
i=1

There are Z possible choices and the problem is NP hard

and there is no polynomial time approximation algorithm



Gu-Eisenstat show that the Strong Rank Revealing QR factorization
(SRRQR) solves the following simpler problem

B is sub-optimal if there is no swapping of a single column of A
(yielding B) that has a larger volume (constrained minimum)

Here, we propose a simpler “recursive updating" algorithm that has
complexity O(mnk) rather than O(mn?) for Gu-Eisenstat

The idea is again based on a sliding window of size kK + 1 (or k + )

Sweep through columns of A while maintaining a “best" subset B

» Append a column of A to B, yielding B,
» Contract B, to B by deleting the “weakest" column of B,



Deleting the weakest column

Let B = A(:,1: k) to start with and let B= QR where R is k x k

Append the next column a, of Ato form B, and update its
decomposition using Gram Schmidt

B,—[QR a]-[Q a] {F’ ?]:[o 4 [R ;}:@m

with? = QTa,, a=a, — QF, a= §p (since a, = QF + §p)
Contract B, to B by deleting the “weakest" column of R,

This can be done in O(mk?) using Gu-Eisenstat’'s SRRQR method
but an even simpler heuristic uses only O((m + k)k) flops



Kahan example

Kahan matrices are typical upper-triangular tests with K, = S, T, and

10 - 0 1 = -~ -0

g | ¥ ad T,=|" !
. 0 i
0 0yt 0 01

with ¢2 4 42 = 1 and where 1) = 0.9

Computation time
E | k(A1) | SRRQR  WSS/MWSS

20 | T4 x 107 0.4 0.1
50 | 3.0 x 1010 1.3 0.1
100 | 6.3 x 10% 3.0 0.2
150 | 2.2 x 10% 6.8 0.3
200 | 1.9 x 10% 8.9 0.5

300 | 1.6 x 10% 24.2 1.0




Gap example

Normalized volume

k| w(A ) WSS MWSS RMWSS 1 RMWSSg_2
20 [ 1.3 x10° 0.136  1.008 [1.009; 1.009] [1.009; 1.009]
40 | 21x10'2 0.013  1.009 [0.978; 1.010] [0.994; 1.010]
60 | 9.5 x 101 0.002 1001 [0.984; 1.012] [1.001; 1.015]
80 | 8.2x 10%¥ | < 0.001 1.025 [1.014; 1.034] [1.016; 1.036]

100 | 9.5 % 10*% | < 0.001  1.079 [L.078; L.111] [1.091; 1.114]
TaBLE 5.2
Normalized volume of the subsets of columns returned by the different algorithms for a 1000 x
1000 GKS matriz A = Giooo. The normalization has been done with respect to the volume found
by SRRQR. The condition number of the default initial subset of columns is also shown.

Computation time
k SRRQR WSS MWSS RMWSSp=1 RMWSSp_
20 31 01 0.8 [0.5; 0.6] [1.0; 1.2]
40 94 01 1.2 [0.5; 0.7 [1.1; 1.5]
60 45 0.2 3.2 [1.4;3.2] [3.0; 5.7]
[
[

80 60 03 20 [L6:33 (3867
100 18.8 0.3 24 1.5;2.1] [3.5; 4.4]
TABLE 5.3
Computation time (in seconds) required to return a subset of k columns for a 1000 x 1000 GKS
matriz A = Ggpo-
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