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Dominant feature extraction

Paul Van Dooren, U.C.Louvain, Belgium
(with Gallivan, Chahlaoui, Ipsen, Chia-Tche, Mastronardi)

Eurasip lecture 1, Bari, August 2012
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Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for

I Dominant singular subspace

I Multipass iteration
I Subset selection
I Dominant eigenspace of positive definite matrix
I Dominant eigenspace for indefinite matrices
I Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



-6pt-6pt Dominant feature
extraction

-6pt-6pt

2 / 4

Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for

I Dominant singular subspace
I Multipass iteration

I Subset selection
I Dominant eigenspace of positive definite matrix
I Dominant eigenspace for indefinite matrices
I Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



-6pt-6pt Dominant feature
extraction

-6pt-6pt

2 / 4

Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for

I Dominant singular subspace
I Multipass iteration
I Subset selection

I Dominant eigenspace of positive definite matrix
I Dominant eigenspace for indefinite matrices
I Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



-6pt-6pt Dominant feature
extraction

-6pt-6pt

2 / 4

Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for

I Dominant singular subspace
I Multipass iteration
I Subset selection
I Dominant eigenspace of positive definite matrix

I Dominant eigenspace for indefinite matrices
I Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



-6pt-6pt Dominant feature
extraction

-6pt-6pt

2 / 4

Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for

I Dominant singular subspace
I Multipass iteration
I Subset selection
I Dominant eigenspace of positive definite matrix
I Dominant eigenspace for indefinite matrices

I Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



-6pt-6pt Dominant feature
extraction

-6pt-6pt

2 / 4

Goal of these lectures

Develop basic ideas for large scale dense matrices and recursive
procedures for

I Dominant singular subspace
I Multipass iteration
I Subset selection
I Dominant eigenspace of positive definite matrix
I Dominant eigenspace for indefinite matrices
I Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition
(presented in lecture 2)



-6pt-6pt Dominant feature
extraction

-6pt-6pt

3 / 82

Dominant singular subspaces

Given Am×n, approximate it by a rank k factorization Bm×k Ck×n
by solving

min ‖A− BC‖2, k � m,n

This has several applications in Image compression, Information
retrieval and Model reduction (POD)
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Information retrieval

I Low memory
requirement
0(k(m + n))

I Fast queries
Ax ≈ L(Ux)
0(k(m + n)) time

I Easy to obtain
0(kmn) flops
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Proper Orthogonal decomposition (POD)

Compute a state trajectory for one “typical" input

Collect the principal directions to project on
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Recursivity

We pass once over the data with a window of length k and perform
along the way a set of windowed SVD’s of dimension m × (k + `)

Step 1 : expand by appending ` columns (Gram Schmidt)
Step 2 : contract by deleting the ` least important columns (SVD)
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Expansion (G-S)

Append column a+ to the current approximation URV T to get

[
URV T a+

]
=
[
U a+

] [R 0
1

] [
V T

1

]

Update with Gram Schmidt to recover a new decomposition ÛR̂V̂ T :

using r̂ = UT a+, â = a+ − Ur̂ , â = ûρ̂ (since a+ = Ur̂ + ûρ̂)
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Contraction (SVD)

Now remove the ` smallest singular values of this new ÛR̂V̂ T via

ÛR̂V̂ T = (ÛGu)(GT
u R̂Gv )(GT

v V̂ T ) =

and keeping U+R+V T
+ as best approximation of ÛR̂V̂ T

(just delete the ` smallest singular values)
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Complexity of one pair of steps

The Gram Schmidt update (expansion) requires 4mk flops per
column (essentially for the products r̂ = UT a+, â = a+ − Ur̂ )

For GuR̂Gv =

[
R+ 0

µi

]
one requires the left and right singular

vectors of R̂ which can be obtained in O(k2) flops per singular value
(using inverse iteration)

Multiplying ÛGu and V̂Gv requires 4mk flops per deflated column

The overall procedure requires 8mk flops per processed column and
hence 8mnk flops for a rank k approximation to a m × n matrix A

One shows that A = U
[

R A12
0 A22

]
V T where ‖

[
A12
A22

]
‖2

F is known
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Error estimates

Let E := A− Â = UΣV T − ÛΣ̂V̂ T and µ := ‖E‖2

Let µ̂ := maxµi where µi is the neglected singular value at step i

One shows that the error norm

µ̂ ≤ σk+1 ≤ µ ≤
√

n − k µ̂ ≈ cµ̂

σ̂i ≤ σi � σ̂i + µ̂2/2σ̂i

tan θk � tan θ̂k := µ̂2/(σ̂2
k − µ̂2), tanφk � tan φ̂k := µ̂σ̂1/(σ̂2

k − µ̂2)

where θk , φk are the canonical angles of dimension k :

cos θk := ‖UT (:, k)Û‖2, cosφk := ‖V T (:, k)V̂‖2
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Examples

The bounds get much better when the gap σk − σk+1 is large
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Convergence

How quickly do we track the subpaces ?

How cos θ(i)
k evolves with the time step i
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Example

Find the dominant behavior in an image sequence

Images can have up to 106 pixels
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Multipass iteration

Low Rank Incremental SVD can be applied in several passes, say to

1√
k

[
A A . . . A

]
After the first block (or “pass”) a good approximation of the dominant
space Û has already been constructed

Going over to the next block (second “pass”) will improve it, etc.

Theorem Convergence of the multipass method is linear, with
approximate ratio of convergence ψ/(1− κ2) < 1, where

I ψ measures orthogonality of the residual columns of A
I κ is the ratio σk/σk+1 of A



-6pt-6pt Dominant feature
extraction

-6pt-6pt

15 / 82

Convergence behavior

for increasing gap between “signal" and “noise"

Number of INCSVD steps
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Convergence behavior

for increasing orthogonality between “residual vectors"

Number of INCSVD steps
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Eigenfaces analysis

Ten dominant left singular vectors of ORL Database of faces
(40 images, 10 subjects, 92×112 pixels = 10304×400 matrix)

Using MATLAB’ SVD function

Using one pass of incremental SVD

Maximal angle : 16.3◦, maximum relative error in sing. values : 4.8%
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Conclusions Incremental SVD

A useful and economical SVD approximation of Am,n

For matrices with columns that are very large or “arrive" with time

Complexity is proportional to mnk and the number of “passes"

Algorithms due to
[1] Manjunath-Chandrasekaran-Wang (95)
[2] Levy-Lindenbaum (00)
[3] Chahlaoui-Gallivan-VanDooren (01)
[4] Brand (03)
[5] Baker-Gallivan-VanDooren (09)

Convergence analysis and accuracy in refs [3],[4],[5]
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Subset selection

We want a “good approximation" of Amn by a product Bmk PT where
Pnk is a “selection matrix" i.e. a submatrix of the identity In

This seems connected to

min ‖A− BPT‖2

and maybe similar techniques can be used as for incremental SVD

Clearly, if B = AP, we just select a subset of the columns of A

Rather than minimizing ‖A− BPT‖2 we maximize vol(B) where

vol(B) = det(BT B)
1
2 =

k∏
i=1

σi (B), m ≥ k

There are
(

n
k

)
possible choices and the problem is NP hard

and there is no polynomial time approximation algorithm
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Heuristics

Gu-Eisenstat show that the Strong Rank Revealing QR factorization
(SRRQR) solves the following simpler problem

B is sub-optimal if there is no swapping of a single column of A
(yielding B̂) that has a larger volume (constrained minimum)

Here, we propose a simpler “recursive updating" algorithm that has
complexity O(mnk) rather than O(mn2) for Gu-Eisenstat

The idea is again based on a sliding window of size k + 1 (or k + `)

Sweep through columns of A while maintaining a “best" subset B

I Append a column of A to B, yielding B+

I Contract B+ to B̂ by deleting the “weakest" column of B+
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Deleting the weakest column

Let B = A(:,1 : k) to start with and let B = QR where R is k × k

Append the next column a+ of A to form B+ and update its
decomposition using Gram Schmidt

B+ :=
[
QR a+

]
=
[
Q a+

] [R 0
1

]
=
[
Q q̂

] [R r̂
ρ̂

]
= Q+R+

with r̂ = QT a+, â = a+ −Qr̂ , â = q̂ρ̂ (since a+ = Qr̂ + q̂ρ̂)

Contract B+ to B̂ by deleting the “weakest" column of R+

This can be done in O(mk2) using Gu-Eisenstat’s SRRQR method
but an even simpler heuristic uses only O((m + k)k) flops
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Kahan example

Kahan matrices are typical upper-triangular tests with Kn = SnTn and

with φ2 + ψ2 = 1 and where ψ = 0.9
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Gap example
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