Dominant feature extraction

Paul Van Dooren, U.C.Louvain, Belgium (with Gallivan, Chahlaoui, Ipsen, Chia-Tche, Mastronardi)

Eurasip lecture 1, Bari, August 2012

Dominant singular subspace

- Dominant singular subspace
- Multipass iteration

- Dominant singular subspace
- Multipass iteration
- Subset selection

- Dominant singular subspace
- Multipass iteration
- Subset selection
- Dominant eigenspace of positive definite matrix

- Dominant singular subspace
- Multipass iteration
- Subset selection
- Dominant eigenspace of positive definite matrix
- Dominant eigenspace for indefinite matrices

- Dominant singular subspace
- Multipass iteration
- Subset selection
- Dominant eigenspace of positive definite matrix
- Dominant eigenspace for indefinite matrices
- Show accuracy and complexity results

The indefinite case introduces a new matrix decomposition (presented in lecture 2)

Given $A_{m \times n}$, approximate it by a rank *k* factorization $B_{m \times k}C_{k \times n}$ by solving

 $\min \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}\|_2, \quad k \ll m, n$

This has several applications in Image compression, Information retrieval and Model reduction (POD)

Information retrieval

Proper Orthogonal decomposition (POD)

Compute a state trajectory for one "typical" input

Collect the principal directions to project on

Quartz reactor

Snap shots of "typical" states Ten dominant "states"

We pass once over the data with a window of length *k* and perform along the way a set of windowed SVD's of dimension $m \times (k + \ell)$

Step 1 : expand by appending ℓ columns (Gram Schmidt) Step 2 : contract by deleting the ℓ least important columns (SVD) Append column a_+ to the current approximation URV^T to get

$$\begin{bmatrix} URV^{T} & a_{+} \end{bmatrix} = \begin{bmatrix} U & a_{+} \end{bmatrix} \begin{bmatrix} R & 0 \\ & 1 \end{bmatrix} \begin{bmatrix} V^{T} & \\ & 1 \end{bmatrix}$$

Update with Gram Schmidt to recover a new decomposition $\hat{U}\hat{R}\hat{V}^{T}$:

using
$$\hat{r} = U^T a_+$$
, $\hat{a} = a_+ - U\hat{r}$, $\hat{a} = \hat{u}\hat{\rho}$ (since $a_+ = U\hat{r} + \hat{u}\hat{\rho}$)

Now remove the ℓ smallest singular values of this new $\hat{U}\hat{R}\hat{V}^{T}$ via

$$\hat{U}\hat{R}\hat{V}^{\mathsf{T}} = (\hat{U}G_u)(G_u^{\mathsf{T}}\hat{R}G_v)(G_v^{\mathsf{T}}\hat{V}^{\mathsf{T}}) =$$

and keeping $U_+R_+V_+^{T}$ as best approximation of $\hat{U}\hat{R}\hat{V}^{T}$ (just delete the ℓ smallest singular values)

The Gram Schmidt update (expansion) requires 4mk flops per column (essentially for the products $\hat{r} = U^T a_+$, $\hat{a} = a_+ - U\hat{r}$)

For $G_u \hat{R} G_v = \begin{bmatrix} R_+ & 0 \\ \mu_i \end{bmatrix}$ one requires the left and right singular vectors of \hat{R} which can be obtained in $O(k^2)$ flops per singular value (using inverse iteration)

Multiplying $\hat{U}G_u$ and $\hat{V}G_v$ requires 4mk flops per deflated column

The overall procedure requires 8mk flops per processed column and hence 8mnk flops for a rank *k* approximation to a $m \times n$ matrix *A*

One shows that
$$A = U \begin{bmatrix} R & A_{12} \\ 0 & A_{22} \end{bmatrix} V^T$$
 where $\| \begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix} \|_F^2$ is known

Let
$$E := A - \hat{A} = U \Sigma V^T - \hat{U} \hat{\Sigma} \hat{V}^T$$
 and $\mu := ||E||_2$

Let $\hat{\mu} := \max \mu_i$ where μ_i is the neglected singular value at step *i*

One shows that the error norm

$$oldsymbol{\hat{\mu}} \leq \sigma_{oldsymbol{k}+1} \leq \mu \leq \sqrt{n-oldsymbol{k}} oldsymbol{\hat{\mu}} pprox oldsymbol{c} oldsymbol{\hat{\mu}}$$

$$\hat{\sigma}_i \leq \sigma_i \preceq \hat{\sigma}_i + \hat{\mu}^2 / 2\hat{\sigma}_i$$

 $\tan \theta_k \preceq \tan \hat{\theta}_k := \hat{\mu}^2 / (\hat{\sigma}_k^2 - \hat{\mu}^2), \quad \tan \phi_k \preceq \tan \hat{\phi}_k := \hat{\mu} \hat{\sigma}_1 / (\hat{\sigma}_k^2 - \hat{\mu}^2)$

where θ_k , ϕ_k are the canonical angles of dimension k:

$$\cos \theta_k := \| \boldsymbol{U}^{\mathsf{T}}(:,k) \hat{\boldsymbol{U}} \|_2, \quad \cos \phi_k := \| \boldsymbol{V}^{\mathsf{T}}(:,k) \hat{\boldsymbol{V}} \|_2$$

Examples

The bounds get much better when the gap $\sigma_k - \sigma_{k+1}$ is large

How quickly do we track the subpaces ?

How $\cos \theta_k^{(i)}$ evolves with the time step *i*

Example

Find the dominant behavior in an image sequence

Images can have up to 10⁶ pixels

Each column of A is one image Original : m = 28341, n = 100

 ${\sf Approximation}: \ k=6$

Low Rank Incremental SVD can be applied in several passes, say to

$$\frac{1}{\sqrt{k}} \begin{bmatrix} A & A & \dots & A \end{bmatrix}$$

After the first block (or "pass") a good approximation of the dominant space \hat{U} has already been constructed

Going over to the next block (second "pass") will improve it, etc.

Theorem Convergence of the multipass method is linear, with approximate ratio of convergence $\psi/(1 - \kappa^2) < 1$, where

- ψ measures orthogonality of the residual columns of A
- κ is the ratio σ_k / σ_{k+1} of A

Convergence behavior

for increasing gap between "signal" and "noise"

Convergence behavior

for increasing orthogonality between "residual vectors"

Ten dominant left singular vectors of ORL Database of faces (40 images, 10 subjects, 92×112 pixels = 10304×400 matrix)

Using MATLAB' SVD function

Using one pass of incremental SVD

Maximal angle : 16.3°, maximum relative error in sing. values : 4.8%

A useful and economical SVD approximation of $A_{m,n}$

For matrices with columns that are very large or "arrive" with time

Complexity is proportional to mnk and the number of "passes"

Algorithms due to [1] Manjunath-Chandrasekaran-Wang (95) [2] Levy-Lindenbaum (00) [3] Chahlaoui-Gallivan-VanDooren (01) [4] Brand (03) [5] Baker-Gallivan-VanDooren (09)

Convergence analysis and accuracy in refs [3],[4],[5]

We want a "good approximation" of A_{mn} by a product $B_{mk}P^T$ where P_{nk} is a "selection matrix" i.e. a submatrix of the identity I_n

This seems connected to

$$\min \|\boldsymbol{A} - \boldsymbol{B} \boldsymbol{P}^{\mathsf{T}}\|_2$$

and maybe similar techniques can be used as for incremental SVD

Clearly, if B = AP, we just select a subset of the columns of A

Rather than minimizing $||A - BP^T||_2$ we maximize vol(*B*) where

$$\operatorname{vol}(B) = \det(B^T B)^{\frac{1}{2}} = \prod_{i=1}^k \sigma_i(B), \qquad m \ge k$$

There are $\binom{n}{k}$ possible choices and the problem is NP hard and there is no polynomial time approximation algorithm Gu-Eisenstat show that the Strong Rank Revealing QR factorization (SRRQR) solves the following simpler problem

B is sub-optimal if there is no swapping of a single column of *A* (yielding \hat{B}) that has a larger volume (constrained minimum)

Here, we propose a simpler "recursive updating" algorithm that has complexity O(mnk) rather than $O(mn^2)$ for Gu-Eisenstat

The idea is again based on a sliding window of size k + 1 (or $k + \ell$)

Sweep through columns of A while maintaining a "best" subset B

- Append a column of A to B, yielding B_+
- Contract B₊ to B̂ by deleting the "weakest" column of B₊

Let B = A(:, 1:k) to start with and let B = QR where R is $k \times k$

Append the next column a_+ of A to form B_+ and update its decomposition using Gram Schmidt

$$B_{+} := \begin{bmatrix} QR & a_{+} \end{bmatrix} = \begin{bmatrix} Q & a_{+} \end{bmatrix} \begin{bmatrix} R & 0 \\ & 1 \end{bmatrix} = \begin{bmatrix} Q & \hat{q} \end{bmatrix} \begin{bmatrix} R & \hat{r} \\ & \hat{\rho} \end{bmatrix} = Q_{+}R_{+}$$

with $\hat{r} = Q^T a_+$, $\hat{a} = a_+ - Q\hat{r}$, $\hat{a} = \hat{q}\hat{\rho}$ (since $a_+ = Q\hat{r} + \hat{q}\hat{\rho}$)

Contract B_+ to \hat{B} by deleting the "weakest" column of R_+

This can be done in $O(mk^2)$ using Gu-Eisenstat's SRRQR method but an even simpler heuristic uses only O((m + k)k) flops

Kahan matrices are typical upper-triangular tests with $K_n = S_n T_n$ and

$$S_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \psi & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \psi^{n-1} \end{pmatrix} \quad \text{and} \quad T_n = \begin{pmatrix} 1 & -\phi & \cdots & -\phi \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\phi \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

with $\phi^2 + \psi^2 = 1$ and where $\psi = 0.9$

		Computation time		
k	$\kappa(A_{:,1:k})$	SRRQR	WSS/MWSS	
20	1.4×10^4	0.4	0.1	
50	$3.0 imes 10^{10}$	1.3	0.1	
100	$6.3 imes 10^{20}$	3.0	0.2	
150	$2.2 imes 10^{25}$	6.8	0.3	
200	$1.9 imes10^{28}$	8.9	0.5	
300	1.6×10^{33}	24.2	1.0	

		Normalized volume			
k	$\kappa(A_{:,1:k})$	WSS	MWSS	$RMWSS_{R=1}$	$RMWSS_{R=2}$
20	$1.3 imes 10^6$	0.136	1.008	[1.009; 1.009]	[1.009; 1.009]
40	2.1×10^{12}	0.013	1.009	[0.978; 1.010]	[0.994; 1.010]
60	$9.5 imes 10^{18}$	0.002	1.001	[0.984; 1.012]	[1.001; 1.015]
80	$8.2 imes 10^{18}$	< 0.001	1.025	[1.014; 1.034]	[1.016; 1.036]
100	$9.5 imes 10^{18}$	< 0.001	1.079	[1.078; 1.111]	[1.091; 1.114]
Table 5.2					

Normalized volume of the subsets of columns returned by the different algorithms for a 1000×1000 GKS matrix $A = G_{1000}$. The normalization has been done with respect to the volume found by SRRQR. The condition number of the default initial subset of columns is also shown.

	Computation time					
$_{k}$	SRRQR	WSS	MWSS	$RMWSS_{R=1}$	$RMWSS_{R=2}$	
20	3.1	0.1	0.8	[0.5; 0.6]	[1.0; 1.2]	
40	9.4	0.1	1.2	[0.5; 0.7]	[1.1; 1.5]	
60	4.5	0.2	3.2	[1.4; 3.2]	[3.0; 5.7]	
80	6.0	0.3	2.0	[1.6; 3.3]	[3.8; 6.7]	
100	18.8	0.3	2.4	[1.5; 2.1]	[3.5; 4.4]	
			TABLE	5.3		

Computation time (in seconds) required to return a subset of k columns for a 1000×1000 GKS matrix $A = G_{1000}$.

Gu, Eisenstat, An efficient algorithm for computing a strong rank revealing QR factorization, SIAM SCISC, 1996

Chahlaoui, Gallivan, Van Dooren, *An incremental method for computing dominant singular subspaces*, SIMAX, 2001

Hoegaerts, De Lathauwer, Goethals, Suykens, Vandewalle, De Moor, *Efficiently updating and tracking the dominant kernel principal components* Neural Networks, 2007.

Mastronardi, Tyrtishnikov, Van Dooren, *A fast algorithm for updating and downsizing the dominant kernel principal components*, SIMAX, 2010

Baker, Gallivan, Van Dooren, *Low-rank incrmenetal methods for computing dominant singular subspaces*, submitted, 2010

Ipsen, Van Dooren, *Polynomial Time Subset Selection Via Updating*, in preparation, 2010