Tracking dominant symmetric matrices (including a new matrix factorization)

Paul Van Dooren, U.C.Louvain, Belgium Nicola Mastronardi, CNR Bari, Italy

Eurasip lecture 2, Bari, August 2012

$$H \approx UMU^T$$

where $U^T U = I_r$ and *M* is allowed to be indefinite as well

The optimal approximation is known

- $\Lambda(M)$ contains the *r* largest eigenvalues of *H* (in modulus)
- Im(U) is a basis for the corresponding eigenspace

$$H \approx UMU^T$$

where $U^T U = I_r$ and *M* is allowed to be indefinite as well

The optimal approximation is known

- $\Lambda(M)$ contains the *r* largest eigenvalues of *H* (in modulus)
- ▶ Im(U) is a basis for the corresponding eigenspace

The complexity of this problem is $\mathcal{O}(N^3)$ for a dense matrix H

$$H \approx UMU^T$$

where $U^T U = I_r$ and *M* is allowed to be indefinite as well

The optimal approximation is known

- $\Lambda(M)$ contains the *r* largest eigenvalues of *H* (in modulus)
- ▶ Im(U) is a basis for the corresponding eigenspace

The complexity of this problem is $\mathcal{O}(N^3)$ for a dense matrix H

Goal :

Iterative procedure for large dense matrices in O(Nnr) complexity

$$H \approx UMU^T$$

where $U^T U = I_r$ and *M* is allowed to be indefinite as well

The optimal approximation is known

- $\Lambda(M)$ contains the *r* largest eigenvalues of *H* (in modulus)
- ▶ Im(U) is a basis for the corresponding eigenspace

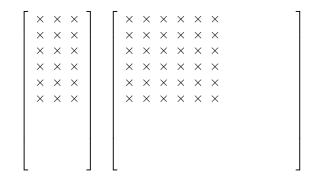
The complexity of this problem is $\mathcal{O}(N^3)$ for a dense matrix H

Goal :

Iterative procedure for large dense matrices in O(Nnr) complexity ($r \ll N$ is the rank of M and $n \leq N$ is the window size of the method)

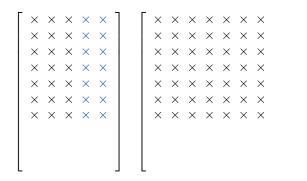
We show only the columns and rows of U and H that are involved

Rank r = 3 and we will use window size n = 6



Start with leading $n \times n$ subproblem (n = 6 is the window size)

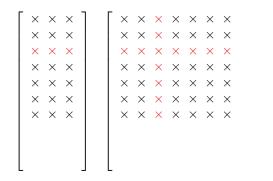
Expand



Expand also U (rank increases by 2)

\times	\times	\times	1	Γ	×	\times	\times	Х	Х	Х	\times
\times	\times	×			×	\times	\times	\times	\times	\times	×
\times	\times	×			×	\times	\times	\times	\times	\times	×
\times	\times	×			×	\times	\times	\times	\times	\times	×
\times	\times	\times			×	\times	\times	\times	\times	\times	×
\times	\times	×			×	\times	\times	\times	\times	\times	×
\times	\times	\times			\times	\times	\times	\times	\times	\times	×

Downdate rank ...



... and also downsize window

· × × >	×] [Х	×	×	×	×	×
\times \times >	×	×	×	×	×	×	×
$\times \times \times$	×	×	×	×	×	×	×
\times \times $>$	×	\times	×	\times	\times	\times	×
$\times \times \times$	×	\times	×	\times	\times	\times	×
\times \times $>$	×	×	\times	Х	×	×	×

$[\times \times \times]$	$[\times \times]$	$\times \times \times \times \times$
$\times \times \times$	× ×	\times \times \times \times \times
$\times \times \times$	× ×	× × × × × ×
$\times \times \times$	$\times \times$	$\times \times \times \times \times$
$\times \times \times$	$\times \times$	$\times \times \times \times \times$
$\times \times \times$	$\times \times$	$\times \times \times \times \times$
	$\times \times$	\times \times \times \times \times

Expand

$\times \times \times$	$[\times \times]$	$\times \times \times \times \times$
$\times \times \times$	× ×	$\times \times \times \times \times$
$\times \times \times$	× ×	$\times \times \times \times \times$
\times \times \times	$\times \times$	\times \times \times \times \times
\times \times \times	$\times \times$	$\times \times \times \times \times$
\times \times \times	$\times \times$	\times \times \times \times \times
$\times \times \times$	$\times \times$	$\times \times \times \times \times$

Downdate and downsize

$[\times \times \times]$	$\int \times \times$	×	\times \times \times
$\times \times \times$	× ×	×	\times \times \times
× × ×	× ×	×	× × ×
$\times \times \times$	× ×	×	\times \times \times
$\times \times \times$	$\times \times$	×	\times \times \times
\times × ×	× ×	Х	× × ×
	L		

$[\times \times \times]$	$[\times \times]$	×	×	Х	×	×
$\times \times \times$	× ×	×	×	×	×	×
$\times \times \times$	× ×	×	×	×	×	×
$\times \times \times$	× ×	×	×	×	×	×
$\times \times \times$	$\times \times$	×	×	\times	\times	×
$\times \times \times$	X X	×	×	\times	\times	X
	$\times \times$	×	×	\times	×	×

Expand

$\times \times \times$	$\times \times$	\times	\times \times \times \times
\times \times \times	× ×	×	\times \times \times \times
× × ×	××	×	× × × ×
$\times \times \times$	× ×	×	× × × ×
\times \times \times	× ×	×	\times \times \times \times
\times \times \times	× ×	×	\times \times \times \times
$\times \times \times$	× ×	\times	\times \times \times \times

Downdate and downsize

[] [•			
\times \times \times	×	×	××	× ×
× × ×	×	×	××	××
× × ×	×	×	× ×	× ×
$\times \times \times$	×	×	\times \times	\times \times
$\times \times \times$	×	Х	$\times \times$	× ×
	×	\times	$\times \times$	× ×

Γ]	Г						1
× × ×	×	×	×	×	×	×	×
$\times \times \times$	×	×	×	×	×	×	×
$\times \times \times$	×	×	×	\times	\times	×	×
$ \times \times \times $	×	\times	×	\times	\times	\times	×
$\times \times \times$	×	\times	×	\times	\times	\times	×
$\times \times \times$	×	×	×	\times	\times	\times	×
$\times \times \times$	L ×	×	×	×	×	×	×

Expand

Γ 7	Γ							٦
$\times \times \times$		×	×	×	×	×	×	×
× × ×		×	×	×	×	×	×	×
\times \times \times		×	×	×	×	×	×	×
$\times \times \times$		×	×	×	\times	\times	\times	×
\times \times \times		×	×	×	\times	\times	\times	×
\times \times \times		×	×	×	\times	\times	\times	×
$ \times \times \times $		×	×	×	×	×	Х	×

Downdate and downsize

Γ]	Г]
$\times \times \times$	×	×	× × ×	×
× × ×	×	×	× × ×	×
× × ×	×	×	× × ×	: ×
$\times \times \times$	×	×	\times \times \times	: ×
$ \times \times \times $	×	×	\times \times \times	: ×
$\left[\times \times \times \right]$		×	\times \times \times	: ×]

Aim

Applications

- Tracking indefinite matrix problems
- Updating in sequential quadratic programming
- Updating saddle point problems

Aim

Applications

- Tracking indefinite matrix problems
- Updating in sequential quadratic programming
- Updating saddle point problems

Tools

- Updating increases $r \rightarrow r + 2$ and $n \rightarrow n + 1$
- Downdating restores the rank r (reduce by 2 again)
- Downsizing restores the window size n (optional)

• $M = VT_{ri}V^T$ (tridiagonalization)

- $M = VT_{ri}V^T$ (tridiagonalization)
- $M = LD_{bl}L^T$ (block diagonal)

- $M = VT_{ri}V^T$ (tridiagonalization)
- $M = LD_{bl}L^T$ (block diagonal)

but they suffer from the following disadvantages :

- $M = VT_{ri}V^T$ (tridiagonalization)
- $M = LD_{bl}L^T$ (block diagonal)

but they suffer from the following disadvantages :

 updating bordered tridiagonal factorizations is expensive because of the updating of V

- $M = VT_{ri}V^T$ (tridiagonalization)
- $M = LD_{bl}L^T$ (block diagonal)

but they suffer from the following disadvantages :

- updating bordered tridiagonal factorizations is expensive because of the updating of V
- deflating eigenvalues from a block diagonal is expensive because of the updating of D_{bl}

An anti-triangular decomposition

Theorem

Every $n \times n$ symmetric matrix H has a factorization $H = UMU^T$ where

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & X & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad X = eLL^{T}$$

where $U^T U = I_n$, $e = \pm 1$, $Y \in \mathbb{R}^{n_1 \times n_1}$, $L \in \mathbb{R}^{n_2 \times n_2}$ and $r = 2n_1 + n_2$

Theorem

Every $n \times n$ symmetric matrix H has a factorization $H = UMU^T$ where

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & X & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad X = eLL^{T}$$

where $U^T U = I_n$, $e = \pm 1$, $Y \in \mathbb{R}^{n_1 \times n_1}$, $L \in \mathbb{R}^{n_2 \times n_2}$ and $r = 2n_1 + n_2$

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{bmatrix} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{bmatrix}, \quad e = \pm 1$$

▶
$$r = n_1 + n_2 + n_1$$

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{bmatrix} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{bmatrix}, \quad e = \pm 1$$

▶
$$r = n_1 + n_2 + n_1$$

• L is full rank n_2 and can be chosen lower-triangular

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad e = \pm 1$$

▶
$$r = n_1 + n_2 + n_1$$

- L is full rank n_2 and can be chosen lower-triangular
- ▶ Y is full rank n₁ and can be chosen anti-triangular

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{bmatrix} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{bmatrix}, \quad e = \pm 1$$

▶
$$r = n_1 + n_2 + n_1$$

- L is full rank n_2 and can be chosen lower-triangular
- ▶ Y is full rank n₁ and can be chosen anti-triangular

▶
$$InM_+ = (n_1 + n_2, n_1, n - r)$$
 and $InM_- = (n_1, n_1 + n_2, n - r)$

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad e = \pm 1$$

- ▶ $r = n_1 + n_2 + n_1$
- ▶ *L* is full rank *n*₂ and can be chosen lower-triangular
- Y is full rank n_1 and can be chosen anti-triangular
- $InM_{+} = (n_1 + n_2, n_1, n r)$ and $InM_{-} = (n_1, n_1 + n_2, n r)$
- U is rectangular when removing zero rows/columns in M

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad e = \pm 1$$

- ▶ $r = n_1 + n_2 + n_1$
- L is full rank n₂ and can be chosen lower-triangular
- ▶ Y is full rank n₁ and can be chosen anti-triangular
- ▶ $InM_+ = (n_1 + n_2, n_1, n r)$ and $InM_- = (n_1, n_1 + n_2, n r)$
- U is rectangular when removing zero rows/columns in M
- ▶ The decomposition of a dense matrix requires $O(n^3)$ flops

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & eLL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix} \begin{cases} n_{0} \\ n_{1} \\ n_{2} \\ n_{1} \end{cases}, \quad e = \pm 1$$

- ▶ $r = n_1 + n_2 + n_1$
- ▶ *L* is full rank *n*₂ and can be chosen lower-triangular
- ▶ Y is full rank n₁ and can be chosen anti-triangular
- ▶ $InM_+ = (n_1 + n_2, n_1, n r)$ and $InM_- = (n_1, n_1 + n_2, n r)$
- U is rectangular when removing zero rows/columns in M
- The decomposition of a dense matrix requires $\mathcal{O}(n^3)$ flops

For
$$\begin{bmatrix} 0 & B^T \\ B & A \end{bmatrix}$$
 one just requires a *QR* of *B* to get a (permuted) *M*

Let
$$U^T H U = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^T \\ 0 & 0 & LL^T & Z^T \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_1 | U_2 | U_3 | U_4]$ then

Let
$$U^T H U = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^T \\ 0 & 0 & LL^T & Z^T \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_1 | U_2 | U_3 | U_4]$ then

• $[U_1]$ spans the *kernel* of *H*

Let
$$U^T H U = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^T \\ 0 & 0 & LL^T & Z^T \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_1 | U_2 | U_3 | U_4]$ then

- $[U_1]$ spans the *kernel* of *H*
- $[U_1|U_2]$ spans a maximal neutral subspace of H

Let
$$U^{T}HU = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & LL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_{1}|U_{2}|U_{3}|U_{4}]$ then

- $[U_1]$ spans the *kernel* of *H*
- $[U_1|U_2]$ spans a maximal neutral subspace of H
- $[U_1|U_2|U_3]$ spans a maximal non-negative subspace of H

Let
$$U^{T}HU = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & LL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_{1}|U_{2}|U_{3}|U_{4}]$ then

- $[U_1]$ spans the kernel of H
- $[U_1|U_2]$ spans a maximal neutral subspace of H
- $[U_1|U_2|U_3]$ spans a maximal non-negative subspace of H
- $[U_1|U_2|U_3|U_4]$ spans \Re^n

Let
$$U^{T}HU = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & LL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_{1}|U_{2}|U_{3}|U_{4}]$ then

- $[U_1]$ spans the kernel of H
- $[U_1|U_2]$ spans a maximal neutral subspace of H
- $[U_1|U_2|U_3]$ spans a maximal non-negative subspace of H
- $[U_1|U_2|U_3|U_4]$ spans \Re^n

The maximal neutral subspace is not unique but

Let
$$U^{T}HU = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y^{T} \\ 0 & 0 & LL^{T} & Z^{T} \\ 0 & Y & Z & W \end{bmatrix}$$
, $U = [U_{1}|U_{2}|U_{3}|U_{4}]$ then

- $[U_1]$ spans the kernel of H
- $[U_1|U_2]$ spans a maximal neutral subspace of H
- $[U_1|U_2|U_3]$ spans a maximal non-negative subspace of H
- $[U_1|U_2|U_3|U_4]$ spans \Re^n

The maximal neutral subspace is not unique but

the maximal non-negative subspace containing it, is unique

(see Gohberg-Lancaster-Rodman)

Let
$$H = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

then neutral vectors are e.g. given by $u_2 =$

$$u_2 = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\a\\b\\\sqrt{a^2 + 2b^2} \end{bmatrix}$$

-

-

Let
$$H = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

then neutral vectors are e.g. given by $u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ a \\ b \\ \sqrt{a^2 + 2b^2} \end{bmatrix}$
In case 1 we have $M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

Let
$$H = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

then neutral vectors are e.g. given by $u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ a \\ b \\ \sqrt{a^2 + 2b^2} \end{bmatrix}$
In case 1 we have $M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

When all positive eigenvalues are equal and all negative eigenvalues are equal, *M* is unique and essentially diagonal !

Rank *r* bordering problem

Let $H \approx UM_r U^T$, find a rank *r* approximation of the bordered matrix

$$\hat{H} = \begin{bmatrix} H & b \\ b^T & \alpha \end{bmatrix}$$

Let $H \approx UM_r U^T$, find a rank *r* approximation of the bordered matrix

$$\hat{H} = \begin{bmatrix} H & b \\ b^T & \alpha \end{bmatrix}$$

We thus need an optimal rank *r* approximation of the rank r + 2 matrix

$$\tilde{H} = \left[\begin{array}{cc} UM_r U^T & b \\ b^T & \alpha \end{array} \right]$$

Let $H \approx UM_r U^T$, find a rank *r* approximation of the bordered matrix

$$\hat{H} = \begin{bmatrix} H & b \\ b^T & \alpha \end{bmatrix}$$

We thus need an optimal rank r approximation of the rank r + 2 matrix

$$\tilde{H} = \left[\begin{array}{cc} UM_r U^T & b \\ b^T & \alpha \end{array} \right]$$

One easily obtains the rank r + 2 factorization $\tilde{H} = \tilde{U}\tilde{M}\tilde{U}^T$ where

$$\tilde{U} := \begin{bmatrix} u_{\perp} \mid U \mid \\ \hline 1 \end{bmatrix}, \quad \tilde{M} := \begin{bmatrix} 0 \mid 0 \mid \rho \\ \hline 0 \quad M_r \mid r \\ \hline \rho \mid r^T \mid \alpha \end{bmatrix}, \quad b = Ur + \rho u_{\perp}$$

comes from a Gram Schmidt orthogonalization of [U|b]

$$\tilde{T} := \begin{bmatrix} 0 & 0 & 0 & 0 & \rho \\ 0 & 0 & 0 & S & r_s \\ 0 & 0 & eLL^T & W & r_w \\ 0 & S^T & W^T & G & r_g \\ \rho & r_s^T & r_w^T & r_g^T & \alpha \end{bmatrix}$$

where the matrix size n_1 increased by 1 (and the rank of \tilde{T} by 2)

We need to "chop off" \tilde{T} 's 2 eigenvalues of smallest modulus : λ_1, λ_2 Inverse iteration (a few solves) will yield good approximations of v_1, v_2

$$\tilde{T} := \begin{bmatrix} 0 & 0 & 0 & 0 & \rho \\ 0 & 0 & 0 & S & r_s \\ 0 & 0 & eLL^T & W & r_w \\ 0 & S^T & W^T & G & r_g \\ \rho & r_s^T & r_w^T & r_g^T & \alpha \end{bmatrix}$$

where the matrix size n_1 increased by 1 (and the rank of \tilde{T} by 2)

We need to "chop off" \tilde{T} 's 2 eigenvalues of smallest modulus : λ_1, λ_2 Inverse iteration (a few solves) will yield good approximations of v_1, v_2

Deflating them out amounts to rotating v_i to e_i and updating \tilde{T} and \tilde{U} (we know the new values of n_1 and n_2 from the signs of λ_1 and λ_2)

$$\tilde{T} := \begin{bmatrix} 0 & 0 & 0 & 0 & \rho \\ 0 & 0 & 0 & S & r_s \\ 0 & 0 & eLL^T & W & r_w \\ 0 & S^T & W^T & G & r_g \\ \rho & r_s^T & r_w^T & r_g^T & \alpha \end{bmatrix}$$

where the matrix size n_1 increased by 1 (and the rank of \tilde{T} by 2)

We need to "chop off" \tilde{T} 's 2 eigenvalues of smallest modulus : λ_1, λ_2 Inverse iteration (a few solves) will yield good approximations of v_1, v_2

Deflating them out amounts to rotating v_i to e_i and updating \tilde{T} and \tilde{U} (we know the new values of n_1 and n_2 from the signs of λ_1 and λ_2)

If $\rho = 0$ the work to deflate the 0 eigenvalues is trivial

$$\tilde{T} := \begin{bmatrix} 0 & 0 & 0 & 0 & \rho \\ 0 & 0 & 0 & S & r_s \\ 0 & 0 & eLL^T & W & r_w \\ 0 & S^T & W^T & G & r_g \\ \rho & r_s^T & r_w^T & r_g^T & \alpha \end{bmatrix}$$

where the matrix size n_1 increased by 1 (and the rank of \tilde{T} by 2)

We need to "chop off" \tilde{T} 's 2 eigenvalues of smallest modulus : λ_1, λ_2 Inverse iteration (a few solves) will yield good approximations of v_1, v_2

Deflating them out amounts to rotating v_i to e_i and updating \tilde{T} and \tilde{U} (we know the new values of n_1 and n_2 from the signs of λ_1 and λ_2)

If $\rho = 0$ the work to deflate the 0 eigenvalues is trivial All of these steps can be performed in O(Nr) flops

• Let H_v be an orthogonal (Householder) transformation such that

$$H_{\mathbf{v}}\mathbf{v} = v \ \boldsymbol{e}_{1}, \qquad v = \mp \|\mathbf{v}\|_{2}, \quad \tilde{U} = \begin{bmatrix} \mathbf{v}^{T} \\ V \end{bmatrix}$$

• Let H_v be an orthogonal (Householder) transformation such that

$$H_{v}\mathbf{v} = v \ \boldsymbol{e}_{1}, \qquad v = \mp \|\mathbf{v}\|_{2}, \quad \tilde{U} = \begin{bmatrix} \mathbf{v}^{T} \\ V \end{bmatrix}$$

$$\tilde{U}H_{v} = \begin{bmatrix} v \mid 0 \cdots & 0 \\ \hline VH_{v} \end{bmatrix}$$

• Let H_v be an orthogonal (Householder) transformation such that

$$H_{\mathbf{v}}\mathbf{v} = v \ \boldsymbol{e}_{1}, \qquad v = \mp \|\mathbf{v}\|_{2}, \quad \tilde{U} = \begin{bmatrix} \mathbf{v}^{T} \\ V \end{bmatrix}$$

Then

$$\tilde{U}H_{v} = \begin{bmatrix} v & 0 & \cdots & 0 \\ \hline & VH_{v} & \end{bmatrix}$$

• To recover orthonormality of VH_v , divide its first column by $\tau := \sqrt{1 - v^2}$ and multiply the first column and row of $H_v \tilde{T} H_v$ by τ

• Let H_v be an orthogonal (Householder) transformation such that

$$H_{\mathbf{v}}\mathbf{v} = v \ \mathbf{e}_{1}, \qquad v = \mp \|\mathbf{v}\|_{2}, \quad \tilde{U} = \begin{bmatrix} \mathbf{v}^{T} \\ V \end{bmatrix}$$

$$\tilde{U}H_{v} = \begin{bmatrix} v & 0 & \cdots & 0 \\ \hline & VH_{v} & \end{bmatrix}$$

- ► To recover orthonormality of VH_v , divide its first column by $\tau := \sqrt{1 v^2}$ and multiply the first column and row of $H_v \tilde{T} H_v$ by τ
- The batman factorization of the scaled T then has to be restored

• Let H_v be an orthogonal (Householder) transformation such that

$$H_{\mathbf{v}}\mathbf{v} = v \ \boldsymbol{e}_{1}, \qquad v = \mp \|\mathbf{v}\|_{2}, \quad \tilde{U} = \begin{bmatrix} \mathbf{v}^{T} \\ V \end{bmatrix}$$

$$\tilde{U}H_{v} = \begin{bmatrix} v & 0 & \cdots & 0 \\ \hline & VH_{v} & \end{bmatrix}$$

- To recover orthonormality of VH_v , divide its first column by $\tau := \sqrt{1 v^2}$ and multiply the first column and row of $H_v \tilde{T} H_v$ by τ
- The batman factorization of the scaled \tilde{T} then has to be restored
- Any row of U
 can be chosen to be removed this way

• Let H_v be an orthogonal (Householder) transformation such that

$$H_{\mathbf{v}}\mathbf{v} = v \ \boldsymbol{e}_{1}, \qquad v = \mp \|\mathbf{v}\|_{2}, \quad \tilde{U} = \begin{bmatrix} \mathbf{v}^{T} \\ V \end{bmatrix}$$

$$\tilde{U}H_{v} = \begin{bmatrix} v & 0 & \cdots & 0 \\ \hline & VH_{v} & \end{bmatrix}$$

- ► To recover orthonormality of VH_v , divide its first column by $\tau := \sqrt{1 v^2}$ and multiply the first column and row of $H_v \tilde{T} H_v$ by τ
- The batman factorization of the scaled \tilde{T} then has to be restored
- Any row of U
 can be chosen to be removed this way
- Choose the row of least norm to get a better approximation

The following matrix has rank 3

$$F(i,j) = \sum_{k=1}^{3} \exp\left(-\frac{(i-\mu_k)^2 + (j-\mu_k)^2}{2\sigma_k}\right), \qquad i,j = 1,\dots, 100,$$

with

$$\boldsymbol{\mu} = \left[\begin{array}{ccc} \mathbf{4} & \mathbf{18} & \mathbf{76} \end{array} \right], \quad \boldsymbol{\sigma} = \left[\begin{array}{cccc} \mathbf{10} & \mathbf{20} & \mathbf{5} \end{array} \right].$$

Let $F = Q \wedge Q^T$ be its spectral decomposition and let $\tilde{\Delta} \in \mathbb{R}^{100 \times 100}$ be a matrix of random numbers generated by the matlab function randn, and define $\Delta = \tilde{\Delta}/\|\tilde{\Delta}\|_2$. Consider the matrix

$$H = F + \varepsilon \Delta \Delta^T$$
, $\varepsilon = 1.0e - 5$

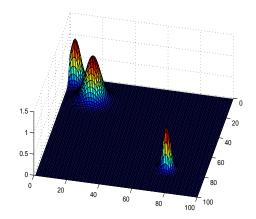


Figure: Graph of the size of the entries of the matrix H.

Example

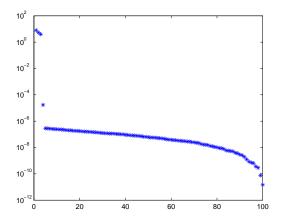


Figure: Distribution of the eigenvalues of the matrix *H* in logarithmic scale.

Example

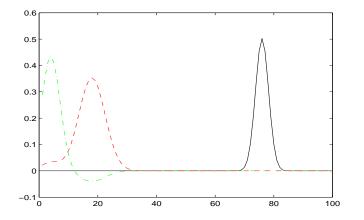


Figure: Plot of the three dominant eigenvectors of H

Largest three eigenvalues of the matrix H (first column)

Largest three eigenvalues computed with our procedure (next cols) with rank r = 3 and window n = 30, 40, 50

λ_i	$\mu_i, n = 30$	$\mu_i, n = 40$	$\mu_i, n = 50$
7.949478e0	7.375113e0	7.820407e0	7.947127e0
5.261405e0	5.2 <mark>55163</mark> e0	5.26 <mark>0243</mark> e0	5.261 <mark>384</mark> e0
3.963329e0	3.9 <mark>48244</mark> e0	3.963 <mark>213</mark> e0	3.963329e0

Largest three eigenvalues of the matrix H (first column)

Largest three eigenvalues computed with our procedure (next cols) with rank r = 3 and window n = 30, 40, 50

λ_i	$\mu_i, n = 30$	$\mu_i, n = 40$	$\mu_i, n = 50$
7.949478e0	7.375113e0	7.820407e0	7.947127e0
5.261405e0	5.2 <mark>55163</mark> e0	5.26 <mark>0243</mark> e0	5.261 <mark>384</mark> e0
3.963329e0	3.9 <mark>48244</mark> e0	3.963 <mark>213</mark> e0	3.963329e0

Reconstruction of dominant eigenvalues is quite good

Largest three eigenvalues of the matrix H (first column)

Largest three eigenvalues computed with our procedure (next cols) with rank r = 3 and window n = 30, 40, 50

λ_i	$\mu_i, n = 30$	$\mu_i, n = 40$	$\mu_i, n = 50$
7.949478e0	7.375113e0	7.820407e0	7.947127e0
5.261405e0	5.2 <mark>55163</mark> e0	5.26 <mark>0243</mark> e0	5.261 <mark>384</mark> e0
3.963329e0	3.9 <mark>48244</mark> e0	3.963 <mark>213</mark> e0	3.963329e0

Reconstruction of dominant eigenvalues is quite good

The quality is improving with increasing window size n

We will consider a few examples of full decompositions i.e. no downdating or downsizing

Ex1: A = randn(100); A = A + A'; Inertia(A) = (50, 0, 50)Ex2: A = rand(100); A = A + A'; Inertia(A) = (48, 0, 52)Ex3: A low rank Ex4: A diagonal dominant

In each of the case we had good backward stability

See movies

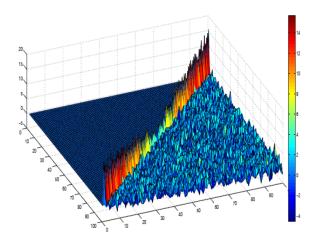


Figure: A random matrix $A = B + B^T$ with B generated by randn (100, 100)

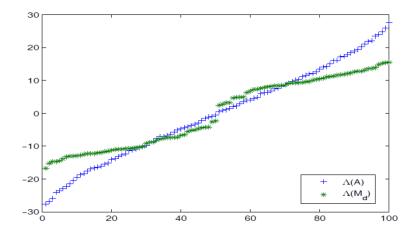


Figure: Eigenvalues and estimates based on the diagonal and anti-diagonal

Clustered example

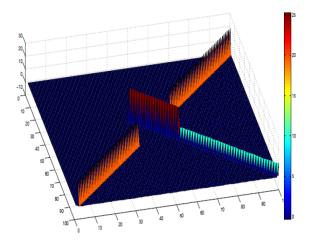


Figure: Matrix with a cluster of positive and a cluster of negative eigenvalues, generated by $A = Udiag (-60I_{40}, 40I_{60}) U^T + E$ with $||E|| \le 1$

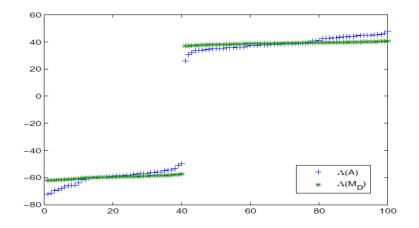


Figure: Eigenvalues and estimates based on the diagonal and anti-diagonal

We presented

 An efficient algorithm for computing incrementally the dominant eigenspace of a symmetric matrix

We presented

- An efficient algorithm for computing incrementally the dominant eigenspace of a symmetric matrix
- ► The overall complexity of the incremental updating technique to compute an N × r basis matrix U for the dominant eigenspace of H, is reduced to O(N²r)

We presented

- An efficient algorithm for computing incrementally the dominant eigenspace of a symmetric matrix
- ► The overall complexity of the incremental updating technique to compute an N × r basis matrix U for the dominant eigenspace of H, is reduced to O(N²r)
- When using both incremental updating and downsizing to compute the dominant eigenspace of Ĥ_n (an n × n principal submatrix of H_N), the complexity is reduced to O(Nnr).

Chahlaoui, Gallivan, Van Dooren, *An incremental method for computing dominant singular subspaces*, SIMAX, 2001

Hoegaerts, De Lathauwer, Goethals, Suykens, Vandewalle, De Moor, *Efficiently updating and tracking the dominant kernel principal components* Neural Networks, 2007.

Mastronardi, Tyrtishnikov, Van Dooren, *A fast algorithm for updating and downsizing the dominant kernel principal components*, SIMAX, 2010

Baker, Gallivan, Van Dooren, *Low-rank incrmenetal methods for computing dominant singular subspaces*, accepted, Lin. Alg. Appl., 2011

Mastronardi, Van Dooren, *Anti-triangular factorizations of symmetric matrices*, in preparation, 2011