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Goal

We want to approximate an N × N indefinite symmetric matrix H
by a rank r factorization

H ≈ UMUT

where UT U = Ir and M is allowed to be indefinite as well

The optimal approximation is known

I Λ(M) contains the r largest eigenvalues of H (in modulus)
I Im(U) is a basis for the corresponding eigenspace

The complexity of this problem is O(N3) for a dense matrix H

Goal :
Iterative procedure for large dense matrices in O(Nnr) complexity
(r � N is the rank of M and n ≤ N is the window size of the method)
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"Sweeping" through H

We show only the columns and rows of U and H that are involved

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×





× × × × × × × × × ×
× × × × × × × × × ×
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× × × × × × × × × ×
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× × × × × × × × × ×
× × × × × × × × × ×


Rank r = 3 and we will use window size n = 6
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step 1


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
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
Start with leading n × n subproblem (n = 6 is the window size)
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
Expand
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
Expand also U (rank increases by 2)



-6pt-6pt Updating indefinite
matrix approximations

-6pt-6pt

8 / 32

step 3
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
Downdate rank ...
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
... and also downsize window



-6pt-6pt Updating indefinite
matrix approximations

-6pt-6pt

10 / 32

step 4



× × ×
× × ×

× × ×
× × ×
× × ×
× × ×





× × × × × ×
× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×





-6pt-6pt Updating indefinite
matrix approximations

-6pt-6pt

11 / 32

step 5



× × ×
× × ×

× × ×
× × ×
× × ×
× × ×





× × × × × × ×
× × × × × × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×


Expand



-6pt-6pt Updating indefinite
matrix approximations

-6pt-6pt

12 / 32

step 6



× × ×
× × ×

× × ×
× × ×
× × ×
× × ×
× × ×





× × × × × × ×
× × × × × × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×


Downdate and downsize
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Aim

Applications

I Tracking indefinite matrix problems
I Updating in sequential quadratic programming
I Updating saddle point problems

Tools

I Updating increases r → r + 2 and n→ n + 1
I Downdating restores the rank r (reduce by 2 again)
I Downsizing restores the window size n (optional)

This requires a new indefinite matrix factorization for M rather than
I M = VTriV T (tridiagonalization)
I M = LDblLT (block diagonal)
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The competitors

The following factorizations are frequently used :

I M = VTriV T (tridiagonalization)
I M = LDblLT (block diagonal)

but they suffer from the following disadvantages :

I updating bordered tridiagonal factorizations is expensive
because of the updating of V

I deflating eigenvalues from a block diagonal is expensive
because of the updating of Dbl
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An anti-triangular decomposition

Theorem

Every n× n symmetric matrix H has a factorization H = UMUT where

M =


0 0 0 0
0 0 0 Y T

0 0 X Z T

0 Y Z W


}n0
}n1
}n2
}n1

, X = eLLT

where UT U = In, e = ±1, Y ∈ Rn1×n1 , L ∈ Rn2×n2 and r = 2n1 + n2

Ex : T =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ×
0 0 0 0 0 0 × ×
0 0 0 × × × × ×
0 0 0 × × × × ×
0 0 0 × × × × ×
0 0 × × × × × ×
0 × × × × × × ×


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Properties

M =


0 0 0 0
0 0 0 Y T

0 0 eLLT Z T

0 Y Z W


}n0
}n1
}n2
}n1

, e = ±1

I r = n1 + n2 + n1

I L is full rank n2 and can be chosen lower-triangular
I Y is full rank n1 and can be chosen anti-triangular
I InM+ = (n1 + n2,n1,n − r) and InM− = (n1,n1 + n2,n − r)
I U is rectangular when removing zero rows/columns in M
I The decomposition of a dense matrix requires O(n3) flops

For
[

0 BT

B A

]
one just requires a QR of B to get a (permuted) M
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Proof (for e=1)

Let UT HU =


0 0 0 0
0 0 0 Y T

0 0 LLT Z T

0 Y Z W

 , U = [U1|U2|U3|U4] then

I [U1] spans the kernel of H
I [U1|U2] spans a maximal neutral subspace of H
I [U1|U2|U3] spans a maximal non-negative subspace of H
I [U1|U2|U3|U4] spans <n

The maximal neutral subspace is not unique but

the maximal non-negative subspace containing it, is unique

(see Gohberg-Lancaster-Rodman)
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Some examples

Let H =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 −1



then neutral vectors are e.g. given by u2 =


0
1
0
1

 ,


0
a
b√

a2 + 2b2



In case 1 we have M =


0 0 0 0
0 0 0 1
0 0 2 0
0 1 0 0


When all positive eigenvalues are equal and all negative eigenvalues
are equal, M is unique and essentially diagonal !
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Rank r bordering problem

Let H ≈ UMr UT , find a rank r approximation of the bordered matrix

Ĥ =

[
H b
bT α

]

We thus need an optimal rank r approximation of the rank r + 2 matrix

H̃ =

[
UMr UT b

bT α

]
.

One easily obtains the rank r + 2 factorization H̃ = ŨM̃ŨT where

Ũ :=

[
u⊥ U

1

]
, M̃ :=

0 0 ρ
0 Mr r
ρ rT α

 , b = Ur + ρu⊥

comes from a Gram Schmidt orthogonalization of [U|b]
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Updating + downdating problem

Notice that up to a symmetric permutation, T̃ is anti-triangular :

T̃ :=


0 0 0 0 ρ
0 0 0 S rs
0 0 eLLT W rw
0 ST W T G rg
ρ rT

s rT
w rT

g α


where the matrix size n1 increased by 1 (and the rank of T̃ by 2)

We need to “chop off” T̃ ’s 2 eigenvalues of smallest modulus : λ1, λ2
Inverse iteration (a few solves) will yield good approximations of v1, v2

Deflating them out amounts to rotating vi to ei and updating T̃ and Ũ
(we know the new values of n1 and n2 from the signs of λ1 and λ2)

If ρ = 0 the work to deflate the 0 eigenvalues is trivial
All of these steps can be performed in O(Nr) flops
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Downsizing problem

I Let Hv be an orthogonal (Householder) transformation such that

Hv v = υ e1, υ = ∓‖v‖2, Ũ =

[
vT

V

]

I Then

ŨHv =

[
υ 0 · · · 0

VHv

]
I To recover orthonormality of VHv , divide its first column by
τ :=

√
1− υ2 and multiply the first column and row of Hv T̃Hv by τ

I The batman factorization of the scaled T̃ then has to be restored
I Any row of Ũ can be chosen to be removed this way
I Choose the row of least norm to get a better approximation
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[
vT

V

]
I Then
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Example (positive semi-definite)

The following matrix has rank 3

F (i , j) =
3∑

k=1

exp
(
− (i − µk )2 + (j − µk )2

2σk

)
, i , j = 1, . . . ,100,

with
µ =

[
4 18 76

]
, σ =

[
10 20 5

]
.

Let F = QΛQT be its spectral decomposition and let ∆̃ ∈ R100×100 be
a matrix of random numbers generated by the matlab function
randn, and define ∆ = ∆̃/‖∆̃‖2. Consider the matrix

H = F + ε∆∆T , ε = 1.0e − 5
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Example
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Figure: Graph of the size of the entries of the matrix H.
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Example
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Figure: Distribution of the eigenvalues of the matrix H in logarithmic scale.
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Example
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Figure: Plot of the three dominant eigenvectors of H
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Example

Largest three eigenvalues of the matrix H (first column)

Largest three eigenvalues computed with our procedure
(next cols) with rank r = 3 and window n = 30,40,50

λi µi , n = 30 µi , n = 40 µi , n = 50
7.949478e0 7.375113e0 7.820407e0 7.947127e0
5.261405e0 5.255163e0 5.260243e0 5.261384e0
3.963329e0 3.948244e0 3.963213e0 3.963329e0

Reconstruction of dominant eigenvalues is quite good

The quality is improving with increasing window size n
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Examples

We will consider a few examples of full decompositions
i.e. no downdating or downsizing

Ex1: A = randn(100); A = A + A′; Inertia(A) = (50,0,50)
Ex2: A = rand(100); A = A + A′; Inertia(A) = (48,0,52)
Ex3: A low rank
Ex4: A diagonal dominant

In each of the case we had good backward stability

‖QMQT−A‖2
‖A‖2

‖LU−PA‖2
‖A‖2

‖QR−A‖2
‖A‖2

2.49e-15 7.27e-16 1.12e-15

See movies
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Random example

Figure: A random matrix A = B +BT with B generated by randn(100,100)
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Random example

Figure: Eigenvalues and estimates based on the diagonal and anti-diagonal
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Clustered example

Figure: Matrix with a cluster of positive and a cluster of negative
eigenvalues, generated by A = Udiag (−60I40, 40I60)UT + E with ‖E‖ ≤ 1
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Clustered example

Figure: Eigenvalues and estimates based on the diagonal and anti-diagonal
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Conclusions

We presented
I An efficient algorithm for computing incrementally the dominant

eigenspace of a symmetric matrix

I The overall complexity of the incremental updating technique to
compute an N × r basis matrix U for the dominant eigenspace of
H, is reduced to O(N2r)

I When using both incremental updating and downsizing to
compute the dominant eigenspace of Ĥn (an n × n principal
submatrix of HN ), the complexity is reduced to O(Nnr).



-6pt-6pt Updating indefinite
matrix approximations

-6pt-6pt

31 / 32

Conclusions

We presented
I An efficient algorithm for computing incrementally the dominant

eigenspace of a symmetric matrix
I The overall complexity of the incremental updating technique to

compute an N × r basis matrix U for the dominant eigenspace of
H, is reduced to O(N2r)

I When using both incremental updating and downsizing to
compute the dominant eigenspace of Ĥn (an n × n principal
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