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Cognitive radios (CRs) and spectrum sharing
Motivation and context 

Collaborative and distributed CR sensing
RF interference spectrum cartography  
Channel gain cartography

Sequential CR sensing 
… if time allows …

Outline
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What is a cognitive radio ? 

Fixed radio
policy-based: parameters set 
by operators

Software-defined radio (SDR)
programmable: can adjust 
parameters to intended link

Cognitive radio (CR)
intelligent: can sense the 
environment & learn to adapt
[Mitola’00]

RX

TX

CR

Dynamic 
Resource 
Allocation

RF
environment

- sensing
- learning

- adapting to 
spectrum 

Cognizant receiver: sensing
Agile transmitter: adaptation
Intelligent DRA: decision making

radio reconfiguration decisions
spectrum access decisions
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Spectrum scarcity problem

fixed spectrum access policies have 
useful radio spectrum pre-assigned

US FCC

inefficient occupancy

0       1        2       3        4       5      6GHz
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Dynamical access under user hierarchy

Spectrum underlay
restriction on transmit-power levels 
operation over ultra wide bandwidths

Primary Users (PUs) versus secondary users (SUs/CRs)

PSD

f

SU

PU1

PU2
PU3

noise 
floor

PSD

f

SU
PU1

PU2

PU3

Spectrum overlay
constraints on when and where to transmit
avoid interference to PUs via sensing and adaptive allocation
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Third party access in 
licensed networks

TV bands (400-800 MHz)

Non-voluntary third party 
access 

Licensee sets a protection 
threshold

Licensed networks 

Unlicensed networks

Cellular, PCS band

Improved spectrum 
efficiency

Improved capacity

Secondary markets

Public safety band

Voluntary agreements 
between licensees 
and third party

Limited QoS

Automatic frequency 
coordination 

Interoperability

Co-existence

ISM, UNII, Ad-hoc

√

 

more users/services √

 

higher rates √

 

better quality √

 

less interference

Motivating applications
Future pervasive networks: efficient spectrum sharing

http://www.hvac.cc/kidsandcomputers/kids/lessons/images/tv.gif
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Efficient sharing requires sensing

Benefits of cooperation
spatial diversity gain mitigates multipath fading/shadowing
reduced sensing time and local processing
ability to cope with hidden terminal problem

Multiple CRs jointly detect the spectrum [Ganesan-Li’06 Ghasemi-Sousa’07]

Source: Office of 
Communications (UK)

Limitation: existing approaches do not exploit spatial dimension
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Cooperative PSD cartography

Idea:  collaborate to form a spatial map of the RF spectrum

Specifications: coarse approx. suffices

Approach: basis expansion of

J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive radio networks by exploiting
sparsity,''    IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1847-1862, March 2010. 

Goal:  Find PSD map                across 

space              and frequency 
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Modeling 
Transmitters

Sensing CRs

Frequency bases

Sensed frequencies

Sparsity present in space and frequency         
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Linear model in

1010

Superimposed Tx spectra measured at CR r

Average path-loss
Frequency bases

Space-frequency basis expansion
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Seek a sparse      to capture the spectrum measured at  

Lasso 

Soft threshold shrinks noisy estimates to zero

Sparse linear regression

R. Tibshirani, ``Regression Shrinkage and  Selection via the Lasso,“ Journal of the Royal Statistical 
Society, Series B, vol. 58, no. 1, pp. 267-288, 1996.

Improves LS performance by incorporating a priori information
Effects sparsity and variable selection
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Constrained optimization using the 
alternating-direction method of multipliers (AD-MoM)

Distributed recursive implementation

Exchange of local 
estimates      

Scalability
Robustness
Lack of infrastructure

Decentralized

Ad-hoc

Centralized

Fusion 
center

Consensus-based approach
solve locally
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RF spectrum cartography 

13

NNLS Lasso

sources
candidate locations,                cognitive radios

As a byproduct, Lasso localizes all sources via variable selection
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MSE performance
Error between estimate     and  

Monte Carlo MSE versus analytical approximations

PA1 with
known

PA2 with 
bounds for        
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Tracking performance
Normalized error

Non-stationarity: one Tx exits at time-slot  t=650

batch  solutions
one per time-slot 

path of distributed 
online updates 

time-slot t
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Centralized sensing 
No fading
I=25
J=15

Simulation: PSD map estimation

sensors

transmitters
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Centralized sensing without fading

“true” Tx
spectrum

BP solution

L1 norm minimization yields a sparse solution

LS solution yields 
spurious peaks
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Distributed consensus with fading  

“true” Tx
spectrum

sensed at the 
consensus step

Starting from a local estimate, sensors reach consensus
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Spline-based PSD cartography
Q: How about shadowing?   A1: Basis expansion w/ coefficient-functions

learn shadowing effects from periodograms at 
spatially distributed CRs

: unknown dependence on spatial variable x

: known bases accommodate prior knowledge

overcomplete expansions allow for uncertainty on Tx parameters

J. A. Bazerque, G. Mateos, and G. B. Giannakis, ``Group-Lasso on Splines for Spectrum Cartography, 
‘‘IEEE Transactions on Signal Processing,’’ submitted June 2010. 
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Smooth and sparse coefficient functions
Twofold regularization of variational LS estimator

Proposition: optimal              admits kernel expansion

Smoothing penalty sparsity enforcing penalty

parameters

(P1)
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Need

21

Estimating kernel parameters

Group Lasso on (P1) equivalent 

X depends on kernels and bases 

Case                  admits closed-form solution

not included   
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Simulation: PSD atlas 
Nr=100  CRs, Nb=90 bases (raised cosines), Ns=5 Tx PUs

Frequency bases identified by enforcing sparsity
Power distribution across space revealed by promoting smoothness
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Cartography for CR sensing

Power spectral density (PSD) maps
Capture ambient power in space-time-frequency
Can identify “crowded” regions to be avoided

Channel gain (CG) maps

Time-freq. channel from any-to-any point

CRs adjust Tx power to min. PU disruption
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Cooperative CG cartography
Wireless CG (in dB)

TDMA-based training yields CR-to-CR shadow fading measurements 

Goal: Given                          ,   estimate                and  for any

path lossgain shadowing

S.-J. Kim, E. Dall'Anese, and G. B. Giannakis, ``Cooperative Spectrum Sensing for Cognitive 
Radios using Kriged Kalman Filtering,'' IEEE J. of Selected Topics in Signal Proc., Feb. 2011. 
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: known, captures interaction between               and

Dynamic shadow fading model 
Shadowing in dB is Gaussian distributed

Spatial loss field-based shadowing model [Agrawal et al. ’09] 

Spatio-temporal loss-field evolution [Mardia ’98] [Wikle et at. ’99] 

: spatio-temporally colored
: temporally white and spatially colored

: zero-mean Gaussian, spatially colored, and temporally white

K. V. Mardia, C. Goodall, E. J. Redfern, and F. J. Alonso, “The Kriged Kalman filter,”
Test, vol. 7, no. 2, pp. 217–285, Dec. 1998.
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Retain K terms and sample at  

State-space model
Basis-expansion representation for              and                   

Recall loss field model

measurement equation

state equation
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Tracking via Kriged Kalman Filtering

Estimated CG map:

Idea: estimate          (and hence               )  via Kalman filtering (KF) 
spatially interpolate with Kriging (KKF) to account for  

Conditioned on                                                 is Gaussian 
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Distributed implementation
Prediction step locally but correction step collaboratively

Distributed solution via alternating direction method of multipliers (AD-MoM)

Kriging can be distributed likewise via AD-MoM and consensus

: local copy of           at CR r
(       proper sub-matrix of         )

E. Dall’Anese, S.-J. Kim, and G.B. Giannakis, “Channel Gain Map Tracking via Distributed Kriging,” 
IEEE Trans. on Vehicular Technology, June 2010 (submitted).
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Simulation: map estimation performance
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Tracking of PU power and position
Given maps                                                           , candidate PU positions 

Estimate sparse power vector 

Sparse regression for tracking [Kim-Dall’Anese-GG’09]
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Simulation: PU power tracking

[Kim ’09]

Average tracking performance 

Power MSE (avg. over all grid points) 
across time (KKF iterations)

Mean spurious power (avg. over 
all grid except PU points) vs. time

Shadowing: 0-mean, std. dev. 10 dB

Area 200m x 200m

Parameters
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CG maps for resource allocation

PU coverage probability:

CR interf. probability:

After having located the PU at       with tx-power       (dB); and rx-PU power            at any x

Coverage region not a disc (due to shadowing)

Interference regions not discs either
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Coverage and interference maps

Path loss-only KKF-based

disc-shaped and time-invariant captures spatial macro-diversity 
and spatio-temporal variations 

CR
Interfer..

PU 
coverage

PU 
coverage

CR
Interfer..
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Sequential sensing for multi-channel CRs

…

Sensing
phase

Data tx phase

Frame duration (T)
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…

Sensing
phase

Data tx phase

Frame duration (T)

su
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el
s …
…

…

1
2

M
n (≤ N)

Extra samples help detection/sensing but lower rate/throughputExtra samples help detection/sensing but lower rate/throughput

SensingSensing--throughput tradeoff in batch singlethroughput tradeoff in batch single--channel [Liang etchannel [Liang et alal’’08]08]

SingleSingle--channel sequential CR sensing [channel sequential CR sensing [ChaudhuriChaudhuri et alet al’’09]09]

MultiMulti--channel (e.g., OFDM) CR sensing [Kimchannel (e.g., OFDM) CR sensing [Kim--GiannakisGiannakis’’09] 09] 
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Joint sensing-throughput optimization

Sense bands in parallel; stop sensing simultaneously (half-duplex constraint)
Throughput-optimal sequential sensing terminates when confident

S.-J. Kim and G. Giannakis, “Sequential and Cooperative Sensing for Multichannel Cognitive 
Radios,” IEEE Transactions on Signal Processing, 2010.

Features

Basic approach: maximize avg. throughput under collision probability constraints
to control Tx-CR interference to PUs (due to miss-detection)  

Admits a constrained Dynamic Programming (DP) formulation  
Reduces to an optimum stopping time problem 
Optimum access: LR test w/ thresholds dependent on Lagrange multipliers
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Simulated test case
M = 10, N = T = 100, chi-square distributed channel gains 
Average performance over 20,000 runs per operating SNR
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Concluding remarks
Power spectrum density cartography

Space-time-frequency view of interference temperature
PU/source localization and tracking

Channel gain cartography
Space-time-frequency links from any-to-any point
KF for tracking and Kriging for interpolation

Parsimony via sparsity and distribution via consensus
Lasso, group Lasso on splines, and method of multipliers 

Acknowledgements: National Science Foundation
J.-A. Bazerque, E. Dall’Anese, S.-J. Kim, G. Mateos Thank You!

Vision: use atlas to enable spatial re-use, hand-off, localization,     
Tx-power tracking, resource allocation, and routing
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