

DISTRIBUTED AND SEQUENTIAL SENSING FOR COGNITIVE RADIO NETWORKS

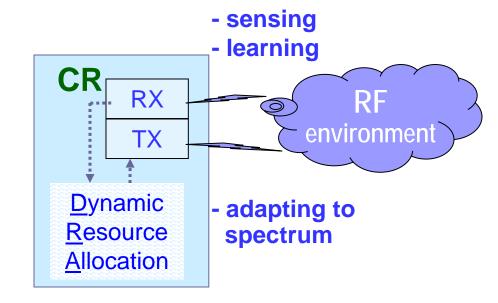
Georgios B. Giannakis
University of Minnesota
georgios@umn.edu

Outline

- Cognitive radios (CRs) and spectrum sharing
 - Motivation and context
- Collaborative and distributed CR sensing
 - RF interference spectrum cartography
 - Channel gain cartography
- Sequential CR sensing
 - > ... if time allows ...

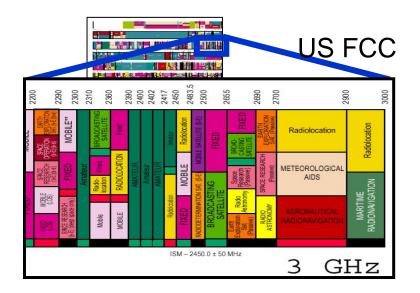
What is a cognitive radio?

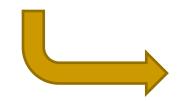
- Fixed radio
 - policy-based: parameters set by operators
- Software-defined radio (SDR)
 - programmable: can adjust parameters to intended link
- Cognitive radio (CR)
 - intelligent: can sense the environment & learn to adapt [Mitola'00]



- Cognizant receiver. sensing
- Agile transmitter. adaptation
- Intelligent DRA: decision making
 - radio reconfiguration decisions
 - spectrum access decisions

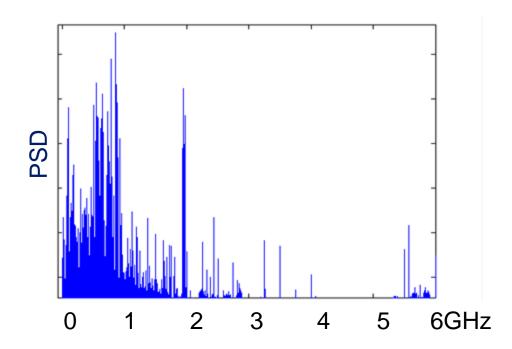
Spectrum scarcity problem





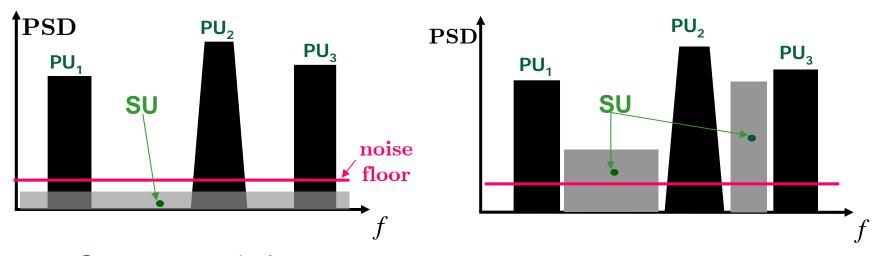
inefficient occupancy

fixed spectrum access policies have useful radio spectrum pre-assigned



Dynamical access under user hierarchy

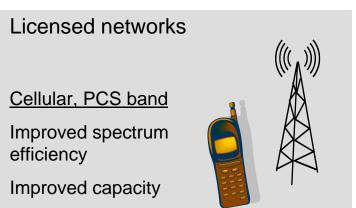
Primary Users (PUs) versus secondary users (SUs/CRs)

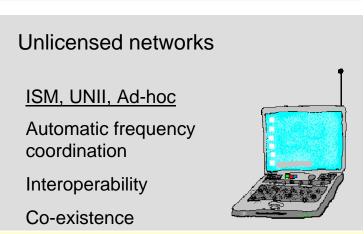


- Spectrum underlay
 - restriction on transmit-power levels
 - operation over ultra wide bandwidths
- Spectrum overlay
 - constraints on when and where to transmit
 - > avoid interference to PUs via sensing and adaptive allocation

Motivating applications

□ Future pervasive networks: efficient spectrum sharing

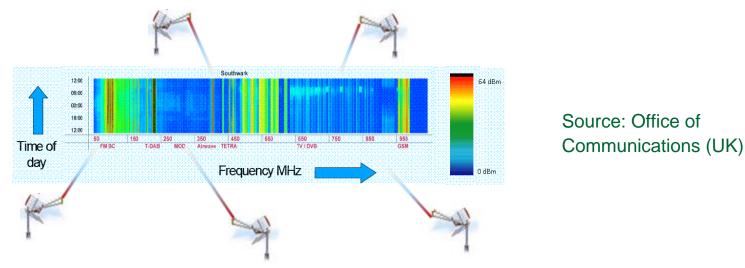




√ more users/services √ higher rates √ better quality √ less interference

Efficient sharing requires sensing

Multiple CRs jointly detect the spectrum [Ganesan-Li'06 Ghasemi-Sousa'07]



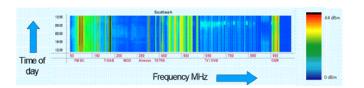
- Benefits of cooperation
 - spatial diversity gain mitigates multipath fading/shadowing
 - reduced sensing time and local processing
 - ability to cope with hidden terminal problem
- Limitation: existing approaches do not exploit spatial dimension

Cooperative PSD cartography

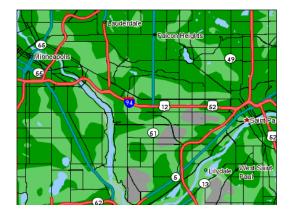
Idea: collaborate to form a spatial map of the RF spectrum

Goal: Find PSD map $\Phi(x, f)$ across

space $x \in \mathbb{R}^2$ and frequency $f \in \mathbb{R}$



- Specifications: coarse approx. suffices
- \triangleright Approach: basis expansion of $\Phi(x, f)$



J. A. Bazerque and G. B. Giannakis, "Distributed spectrum sensing for cognitive radio networks by exploiting sparsity," *IEEE Transactions on Signal Processing*, vol. 58, no. 3, pp. 1847-1862, March 2010.

Modeling

Transmitters

$$\mathsf{Tx}_s, \ s = 1, \ldots, N_s$$

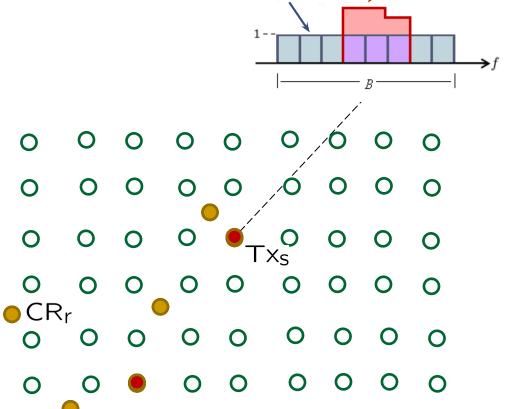
$$CR_r$$
, $r = 1 : N_r$

Frequency bases

$$b_{\nu}(f), \ \nu = 1 : N_b$$

Sensed frequencies

$$f_k, \ k = 1 : K$$



b_v(f)

Sparsity present in space and frequency

 $\Phi_{\mathbf{s}}(\mathbf{f}) = \sum_{k=1}^{N_b} \theta_{\mathbf{s},k} \mathbf{b}_{\mathbf{s},k}(\mathbf{f})$

Space-frequency basis expansion

Superimposed Tx spectra measured at CR r

$$\Phi_r(f) = \sum_{s=1}^{N_s} \gamma_{sr} \Phi_s(f) + \sigma_r^2 = \sum_{s=1}^{N_s} \gamma_{sr} \sum_{\nu=1}^{N_b} \theta_{s\nu} b_{\nu}(f) + \sigma_r^2$$

- > Average path-loss $\gamma_{sr} = \mathbb{E}(|H_{sr}(f)|^2) = \gamma_0 \left(\frac{d_0}{||x_s x_r||}\right)^{-\alpha}, \ \alpha \in [2, 5)$
- Frequency bases $b_{\nu}(f) = \text{rect}(f f_{\nu})$
- Linear model in $\theta_{s\nu}$

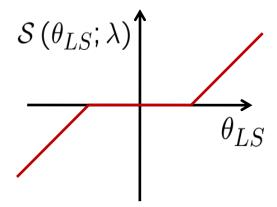
$$\phi = \begin{pmatrix} \Phi_{1}(f_{1}) \\ \vdots \\ \Phi_{1}(f_{K}) \\ \Phi_{2}(f_{1}) \\ \vdots \\ \Phi_{N_{r}}(f_{K}) \\ \vdots \\ \Phi_{N_{r}}(f_{K}) \end{pmatrix} = \begin{pmatrix} b_{1}(f_{1})\gamma_{11} & \dots & b_{N_{b}}(f_{1})\gamma_{N_{s}1} \\ \vdots & \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots \\ 0 & \dots & \vdots \\ \vdots & \vdots \\ 0 & \dots & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0$$

Sparse linear regression

ullet Seek a sparse $oldsymbol{ heta}$ to capture the spectrum measured at CR_r

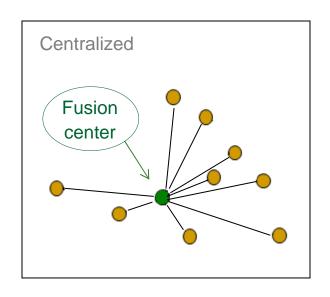
Lasso
$$\hat{\theta} = \operatorname{arg\,min}_{\theta} ||\varphi - B\theta||_2^2 + \lambda ||\theta||_1$$

Soft threshold shrinks noisy estimates to zero

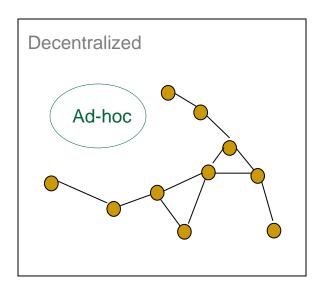


- Effects sparsity and variable selection
- Improves LS performance by incorporating a priori information

Distributed recursive implementation



Scalability
Robustness
Lack of infrastructure



- Consensus-based approach
 - solve locally

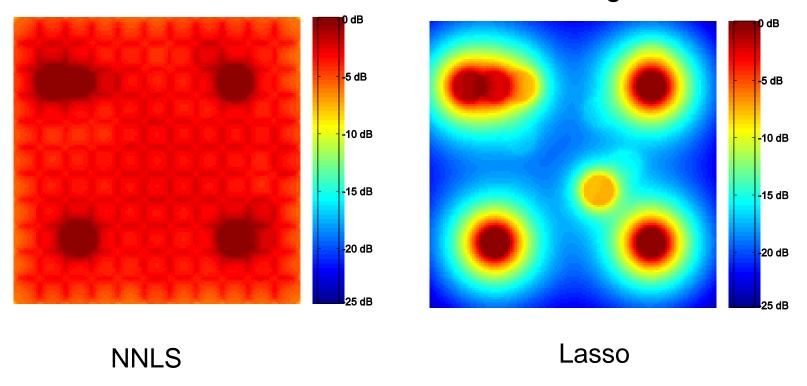
$$\hat{ heta} = \operatorname{arg\,min}_{ heta_r \geq 0} \ ||arphi_{rt} - B_r heta_r||_2^2 + rac{\lambda}{M} || heta_r||_1$$
 s.to $heta_r = heta_{r'}, \ orall r' \in \mathcal{N}_r$

Constrained optimization using the alternating-direction method of multipliers (AD-MoM)

Exchange of local $heta_r$ estimates

RF spectrum cartography

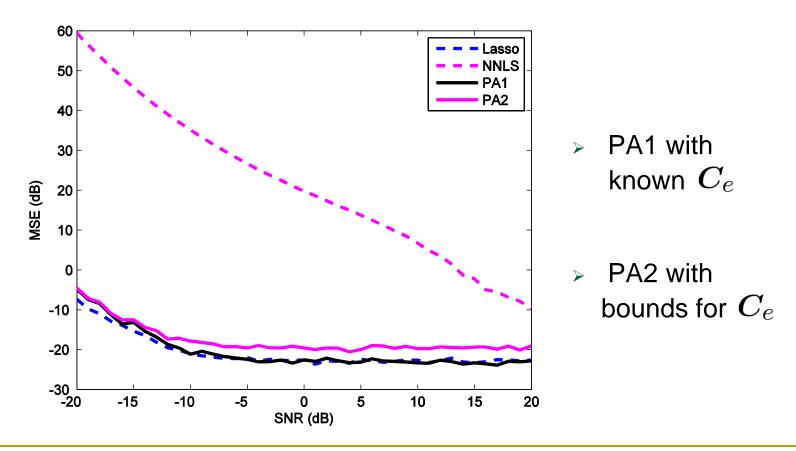
- 5 sources
- $N_s = 121$ candidate locations, $N_r = 50$ cognitive radios



As a byproduct, Lasso localizes all sources via variable selection

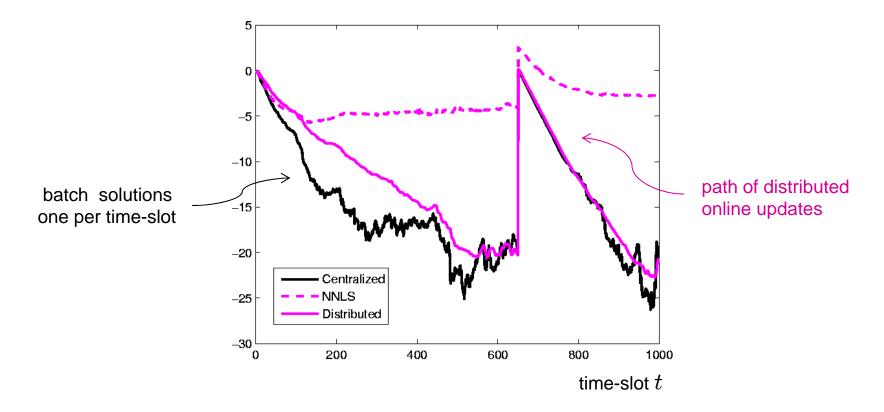
MSE performance

- Error between estimate $\hat{ heta}$ and heta
- Monte Carlo MSE versus analytical approximations



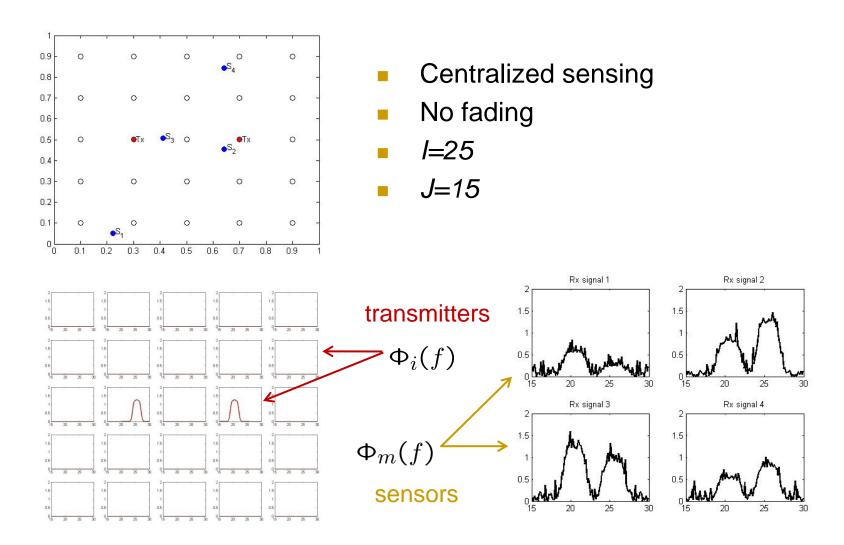
Tracking performance

Normalized error $||\hat{m{ heta}} - m{ heta}||/||m{ heta}||$

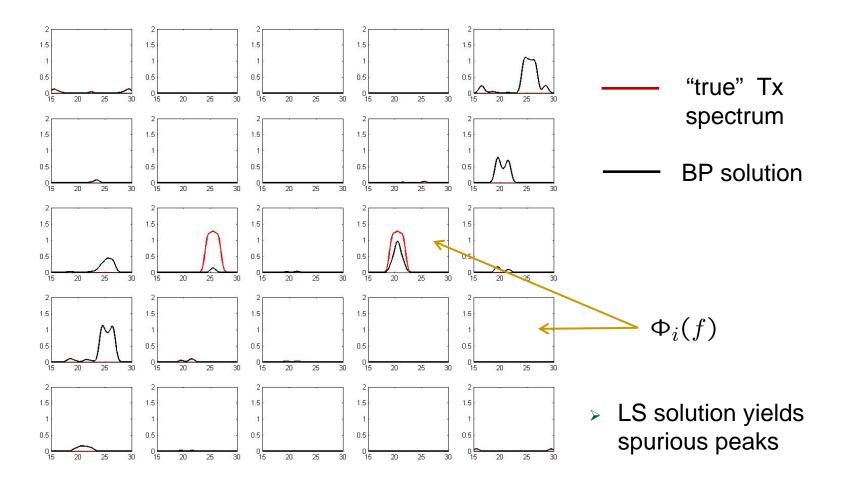


Non-stationarity: one Tx exits at time-slot t=650

Simulation: PSD map estimation

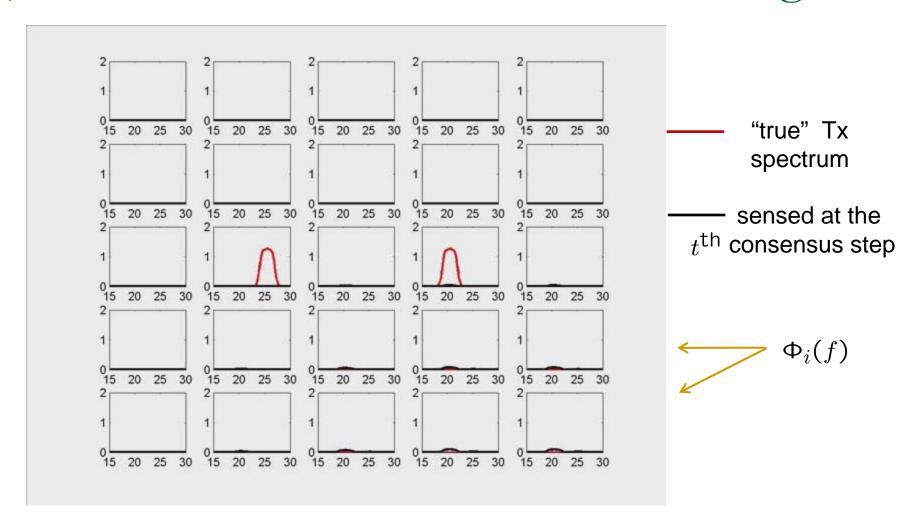


Centralized sensing without fading



L₁ norm minimization yields a sparse solution

Distributed consensus with fading



Starting from a local estimate, sensors reach consensus

Spline-based PSD cartography

Q: How about shadowing? A1: Basis expansion w/ coefficient-functions

$$\Phi(\mathbf{x}, f) = \sum_{\nu=1}^{N_b} g_{\nu}(\mathbf{x}) b_{\nu}(f)$$

- $b_{\nu}(f)$: known bases accommodate prior knowledge
 - overcomplete expansions allow for uncertainty on Tx parameters
- $g_{\nu}(\mathbf{x})$: unknown dependence on spatial variable \mathbf{x}
 - learn shadowing effects from periodograms at spatially distributed CRs

Smooth and sparse coefficient functions

Twofold regularization of variational LS estimator

$$\min_{\{g_{\nu} \in \mathcal{S}\}} \frac{1}{N_r N} \sum_{r=1}^{N_r} \sum_{n=1}^{N} \left(\varphi_{rn} - \sum_{\nu=1}^{N_b} g_{\nu}(\mathbf{x}_r) b_{\nu}(f_n)\right)^2 \tag{P1}$$

$$+ \lambda \sum_{\nu=1}^{N_b} \int_{\mathbb{R}^2} ||\nabla^2 g_{\nu}(\mathbf{x})||_F^2 d\mathbf{x} + \mu \sum_{\nu=1}^{N_b} \left\| \left[g_{\nu}(\mathbf{x}_1), \dots, g_{\nu}(\mathbf{x}_{N_r})\right]'\right\|_2.$$
Smoothing penalty sparsity enforcing penalty

Proposition: optimal $g_{\nu}(\mathbf{X})$ admits kernel expansion

$$g_{\nu}(\mathbf{x}) = \sum_{r=1}^{N_r} \zeta_{\nu r} k(\mathbf{x} - \mathbf{x}_r)$$

$$k(\Delta \mathbf{x}_r) := ||\Delta \mathbf{x}_r||^2 \log(||\Delta \mathbf{x}_r||)$$

Estimating kernel parameters

- Need $oldsymbol{\zeta}_{
 u}=(\zeta_{
 u 1},\ldots,\zeta_{
 u N_r}),\
 u=1,\ldots,N_b$
- Group Lasso on (P1) equivalent

$$\min_{\zeta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\zeta\|_{2}^{2} + \mu \sum_{\nu=1}^{N_{b}} \|\zeta_{\nu}\|_{2}$$

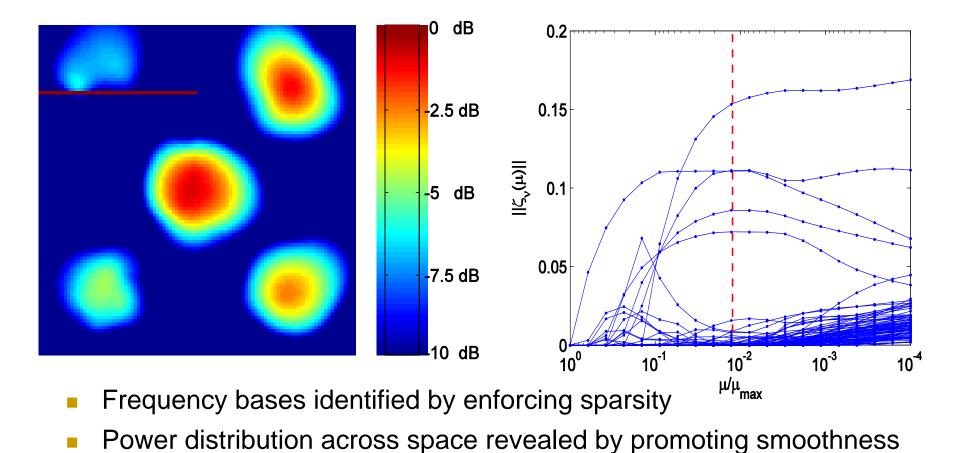
X depends on kernels and bases

Case
$$\mathbf{X} = \mathbf{I}$$
 admits closed-form solution
$$\zeta_{\nu}^{\star} = \frac{\mathbf{y}_{\nu}}{\|\mathbf{y}_{\nu}\|_{2}} (\|\mathbf{y}_{\nu}\|_{2} - \mu)_{+}$$

•
$$\zeta_{\nu} = 0$$
 \longrightarrow $g_{\nu}(\mathbf{x}) = 0 \ \forall \mathbf{x}$ \longrightarrow $b_{\nu}(f)$ not included

Simulation: PSD atlas

• Nr=100 CRs, Nb=90 bases (raised cosines), Ns=5 Tx PUs

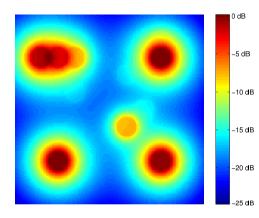


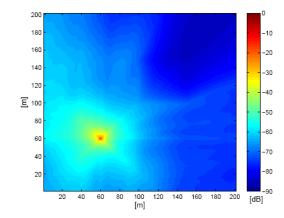
22

Cartography for CR sensing

- Power spectral density (PSD) maps
 - Capture ambient power in space-time-frequency
 - Can identify "crowded" regions to be avoided

- Time-freq. channel from any-to-any point
- CRs adjust Tx power to min. PU disruption





Cooperative CG cartography

Wireless CG (in dB)

$$G_{\mathbf{x} \to \mathbf{y}}(t) = \underbrace{G_0}_{\text{gain}} \underbrace{-10\gamma \log_{10}(||\mathbf{x} - \mathbf{y}||_2)}_{\text{path loss}} + \underbrace{s_{\mathbf{x} \to \mathbf{y}}(t)}_{\text{shadowing}}$$

TDMA-based training yields CR-to-CR shadow fading measurements

$$\breve{s}_{\mathbf{x}_j \to \mathbf{x}_r}(t) = s_{\mathbf{x}_j \to \mathbf{x}_r}(t) + \epsilon_{\mathbf{x}_j \to \mathbf{x}_r}(t)$$

$$\breve{\mathbf{s}}_r(t) \triangleq [\breve{s}_{\mathbf{x}_1 \to \mathbf{x}_r}(t), \dots, \breve{s}_{\mathbf{x}_{r-1} \to \mathbf{x}_r}(t), \breve{s}_{\mathbf{x}_{r+1} \to \mathbf{x}_r}(t), \dots, \breve{s}_{\mathbf{x}_{N_r} \to \mathbf{x}_r}(t)]^T$$

■ Goal: Given $\{\breve{\mathbf{s}}_r(\tau)\} \forall r, \tau \geq 1$, estimate $s_{\mathbf{x} \to \mathbf{y}}(t)$ and $G_{\mathbf{x} \to \mathbf{v}}(t)$ for any $\mathbf{x}, \mathbf{y} \in \mathcal{A}$

S.-J. Kim, E. Dall'Anese, and G. B. Giannakis, ``Cooperative Spectrum Sensing for Cognitive Radios using Kriged Kalman Filtering," *IEEE J. of Selected Topics in Signal Proc.*, Feb. 2011.²⁴

Dynamic shadow fading model

- Shadowing in dB is Gaussian distributed
- Spatial loss field-based shadowing model [Agrawal et al. '09]

$$s_{\mathbf{x} \to \mathbf{y}}(t) = \frac{1}{\|\mathbf{x} - \mathbf{y}\|^{\frac{1}{2}}} \int_{\mathbf{x}}^{\mathbf{y}} \ell(\mathbf{u}, t) d\mathbf{u}$$

Spatio-temporal loss-field evolution [Mardia '98] [Wikle et at. '99]

$$\ell(\mathbf{x},t) = \bar{\ell}(\mathbf{x},t) + \tilde{\ell}(\mathbf{x},t)$$

$$\bar{\ell}(\mathbf{x},t) = \int_{\mathcal{A}} w(\mathbf{x}, \mathbf{u}) \bar{\ell}(\mathbf{u}, t - 1) + \eta(\mathbf{x}, t)$$

 $ar{\ell}(\mathbf{x},t)$: spatio-temporally colored

 $\widetilde{\ell}(\mathbf{x},t)$: temporally white and spatially colored

 $w(\mathbf{x},\mathbf{u})$: known, captures interaction between $\ \bar{\ell}(\mathbf{x},t)$ and $\ \bar{\ell}(\mathbf{u},t-1)$

 $\eta(\mathbf{x},t)$: zero-mean Gaussian, spatially colored, and temporally white

State-space model

Basis-expansion representation for $\bar{\ell}(\mathbf{x},t)$ and $w(\mathbf{x},\mathbf{u})$

$$\bar{\ell}(\mathbf{x},t) = \sum_{k=1}^{\infty} \alpha_k(t)\psi_k(\mathbf{x})$$
 $w(\mathbf{x},\mathbf{u}) = \sum_{k=1}^{\infty} \beta_k(\mathbf{x})\psi_k(\mathbf{u})$

Retain K terms and sample at $\{\mathbf{x}_r \ \in \ \mathcal{A}\}_{r=1}^{N_r}$

> state equation
$$oldsymbol{lpha}(t) = \mathbf{T} oldsymbol{lpha}(t-1) + oldsymbol{\Psi}^\dagger oldsymbol{\eta}(t)$$

Recall loss field model

$$\bar{s}_{\mathbf{x} \to \mathbf{y}}(t) = \sum_{k=1}^{\infty} \underbrace{\left[\frac{1}{\|\mathbf{x} - \mathbf{y}\|^{1/2}} \int_{\mathbf{x}}^{\mathbf{y}} \psi_k(\mathbf{u}) d\mathbf{u} \right]}_{\triangleq \phi_{\mathbf{x} \to \mathbf{y}, k}} \alpha_k(t) \approx \phi_{\mathbf{x} \to \mathbf{y}}^T \alpha(t)$$

measurement equation

$$\check{\mathbf{s}}(t) = \mathbf{\Phi}\alpha(t) + \tilde{\mathbf{s}}(t) + \epsilon(t)$$

Tracking via Kriged Kalman Filtering

Idea: estimate $\alpha(t)$ (and hence $\bar{s}_{x\to y}(t)$) via Kalman filtering (KF) spatially interpolate with Kriging (KKF) to account for $\tilde{s}(x,t)$

> Conditioned on $\breve{\mathbf{s}}_{1:t} \triangleq \{\breve{\mathbf{s}}(\tau)\}_{\tau=1}^t \quad s_{\mathbf{x} \to \mathbf{y}}(t) \quad \mathbf{x}, \mathbf{y} \in \mathcal{A} \quad \text{is Gaussian}$

$$\begin{split} \hat{s}_{\mathbf{x} \to \mathbf{u}}(t) &\triangleq \mathbb{E}\{s_{\mathbf{x} \to \mathbf{u}}(t) | \breve{\mathbf{s}}_{1:t}\} = \boldsymbol{\phi}_{\mathbf{x} \to \mathbf{u}}^T \hat{\boldsymbol{\alpha}}(t|t) + \mathbf{c}_{\tilde{s}}^T(\mathbf{x}, \mathbf{u}) \boldsymbol{\Sigma}^{-1} \left[\breve{\mathbf{s}}(t) - \boldsymbol{\Phi} \hat{\boldsymbol{\alpha}}(t|t) \right] \\ & \text{var}\{s_{\mathbf{x} \to \mathbf{u}}(t) | \breve{\mathbf{s}}_{1:t}\} = \sigma_{\tilde{s}}^2 - \mathbf{c}_{\tilde{s}}^T(\mathbf{x}, \mathbf{u}) \boldsymbol{\Sigma}^{-1} \mathbf{c}_{\tilde{s}}(\mathbf{x}, \mathbf{u}) + \\ & + \left[\boldsymbol{\phi}_{\mathbf{x} \to \mathbf{u}}^T - \mathbf{c}_{\tilde{s}}(\mathbf{x}, \mathbf{u}) \boldsymbol{\Sigma}^{-1} \boldsymbol{\Phi} \right] \mathbf{P}(t|t) \left[\boldsymbol{\phi}_{\mathbf{x} \to \mathbf{u}} - \boldsymbol{\Phi}^T \boldsymbol{\Sigma}^{-1} \mathbf{c}_{\tilde{s}}(\mathbf{x}, \mathbf{u}) \right] \end{split}$$

$$\mathbf{c}_{\tilde{s}}(\mathbf{x}, \mathbf{y}) \triangleq \mathbb{E}\{\tilde{\mathbf{s}}(t)\tilde{s}_{\mathbf{x} \to \mathbf{y}}(t)\}$$

■ Estimated CG map: $\hat{G}_{\mathbf{x} \to \mathbf{y}}(t) = G_0 - 10\gamma \log_{10}(\|\mathbf{x} - \mathbf{y}\|) + \hat{s}_{\mathbf{x} \to \mathbf{y}}(t)$

Distributed implementation

Prediction step locally but correction step collaboratively

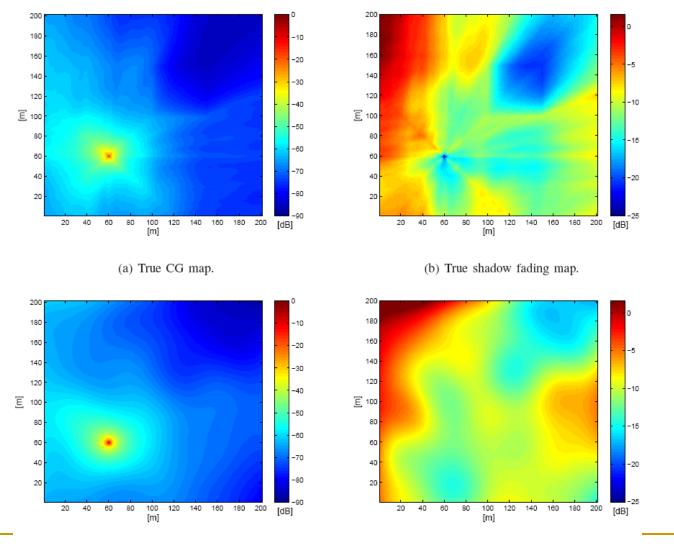
$$\hat{\boldsymbol{\alpha}}(t|t) = \hat{\boldsymbol{\alpha}}(t|t-1) + \mathbf{P}(t|t)\boldsymbol{\Phi}^T\boldsymbol{\Sigma}^{-1}\left[\breve{\mathbf{s}}(t) - \boldsymbol{\Phi}\hat{\boldsymbol{\alpha}}(t|t-1)\right]$$

$$\begin{split} \{ \boldsymbol{\chi}_r(t) \}_{r=1}^{N_r} &= \arg \min_{\{ \boldsymbol{\chi}_r \}} \sum_{r=1}^{N_r} \| \boldsymbol{\chi}_r - N_r \mathbf{H}_r \mathbf{y}_r(t) \|^2 \\ \text{subject to } \boldsymbol{\chi}_r &= \boldsymbol{\chi}_\varrho, \quad \forall \varrho \in \mathcal{N}_r, \quad r = 1, \dots, N_r \\ \boldsymbol{\chi}_r(t) \text{ : local copy of } \boldsymbol{\chi}(t) \text{ at CR } r \end{split}$$

$$\begin{aligned} \mathbf{y}_r(t) &\triangleq \breve{\mathbf{s}}_r(t) - \Phi_r \alpha(t|t-1) \\ \chi(t) &= \sum_{r=1}^{N_r} \mathbf{H}_r \mathbf{y}_r(t) \\ (\mathbf{H}_r \text{ proper sub-matrix of } \Phi^T \Sigma^{-1} \text{)} \end{aligned}$$

- Distributed solution via alternating direction method of multipliers (AD-MoM)
- Kriging can be distributed likewise via AD-MoM and consensus

Simulation: map estimation performance



(d) Estimated shadow fading map.

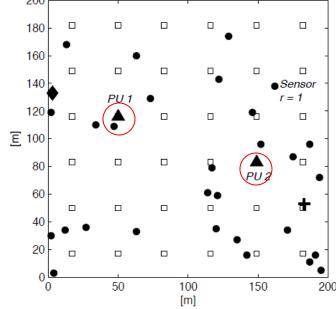
Tracking of PU power and position

■ Given maps $\mathbf{g}_r(t) \triangleq [g_{\mathbf{x}_1 \to \mathbf{x}_r}(t) \ \dots \ g_{\mathbf{x}_{N_s} \to \mathbf{x}_r}(t)]^T$, $\{\mathbf{x}_s \in \mathcal{A}\}_{s=1}^{N_s}$ candidate PU positions

$$\pi_r(t) = \mathbf{g}_r^T(t)\mathbf{p}(t) + z_r(t)$$

Estimate sparse power vector

$$\mathbf{p}(t) \triangleq [p_1(t) \dots p_{N_s}(t)]$$



$$\hat{\mathbf{p}}(t) = \arg\min_{\mathbf{p} \succeq \mathbf{0}} J_t(\mathbf{p}), \quad J_t(\mathbf{p}) \triangleq \left[\frac{1}{2} \sum_{\tau=1}^t \mu^{t-\tau} \sum_{r=1}^{N_r} \left(\pi_r(\tau) - \hat{\mathbf{g}}_r^T(\tau) \mathbf{p} \right)^2 + \lambda_t \|\mathbf{p}\|_1 \right]$$

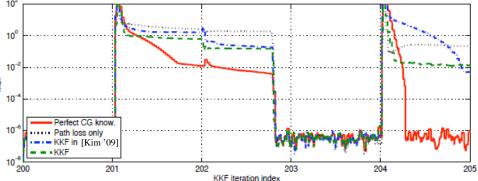
Simulation: PU power tracking

Average tracking performance

- Power MSE (avg. over all grid points) across time (KKF iterations)
- Mean spurious power (avg. over all grid except PU points) vs. time
- Area 200m x 200m
- Parameters

$$N_s = 36$$
, $N_r = 20$ CR, $d_{\text{comm}} = 125$ m
var $\{\epsilon_{\mathbf{x}_j \to \mathbf{x}_r}(t)\} = 10$, var $\{z_r(t)\} = 10^{-10}$

10²
10⁴
10⁴
10⁴
10⁸



> Shadowing: 0-mean, std. dev. 10 dB

CG maps for resource allocation

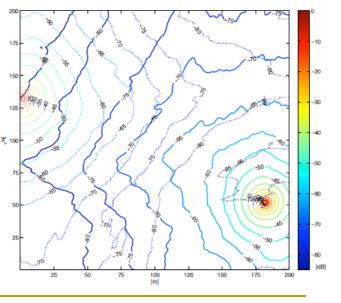
- After having located the PU at x_s with tx-power P_s (dB); and rx-PU power $\Pi(x)$ at any x
- PU coverage probability: $P_{cov}(\mathbf{x}) \triangleq \Pr{\{\Pi(\mathbf{x}) \geq \Pi_{min}\}}$

$$P_{\text{cov}}(\mathbf{x}) = Q\left(\frac{\prod_{\min} - P_s - G_0 + 10\gamma \log_{10} \|\mathbf{x}_s - \mathbf{x}\| - \hat{s}_{\mathbf{x}_s \to \mathbf{x}}}{\sigma_{s_{\mathbf{x}_s \to \mathbf{x}}}}\right)$$

- > Coverage region not a disc [(due to shadowing)]
- CR interf. probability $P_{\text{int}}(\mathbf{x}) \triangleq \Pr{\Pi^{\text{CR}}(\mathbf{x}) \geq I_{\text{max}}}$

$$P_{\text{int}}(\mathbf{x}) = Q\left(\frac{I_{\text{max}} - P_r - G_0 + 10\gamma \log_{10}||\mathbf{x}_r - \mathbf{x}||_2 - \hat{s}_{\mathbf{x}_r \to \mathbf{x}}}{\sigma_{s_{\mathbf{x}_r \to \mathbf{x}}}}\right)$$

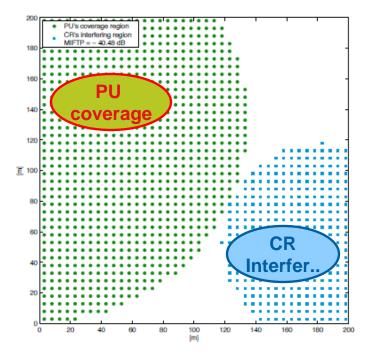
Interference regions not discs either

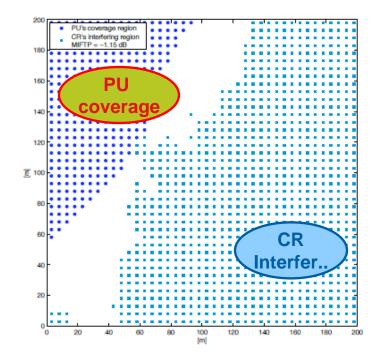


Coverage and interference maps

$$C_s \triangleq \{\mathbf{x} \in \mathcal{A} | P_{\text{cov}}(\mathbf{x}) \ge 0.4\}, C_I \triangleq \{\mathbf{x} \in \mathcal{A} | P_{\text{int}}(\mathbf{x}) \ge 0.01\}$$

 $P_s = 0 \text{dBW}, \Pi_{\text{min}} = -60 \text{dBW}, I_{\text{max}} = -40 \text{dBW}$





Path loss-only

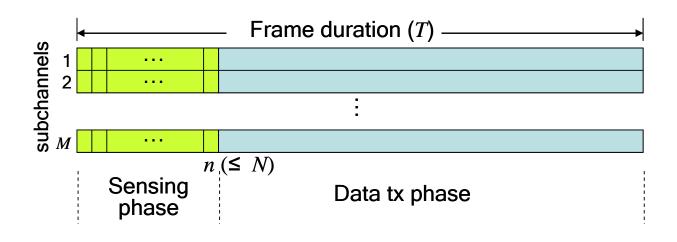
disc-shaped and time-invariant

KKF-based

captures spatial macro-diversity and spatio-temporal variations

Sequential sensing for multi-channel CRs

- Extra samples help detection/sensing but lower rate/throughput
 - Sensing-throughput tradeoff in batch single-channel [Liang et al'08]
 - Single-channel sequential CR sensing [Chaudhuri et al'09]
 - Multi-channel (e.g., OFDM) CR sensing [Kim-Giannakis'09]



Joint sensing-throughput optimization

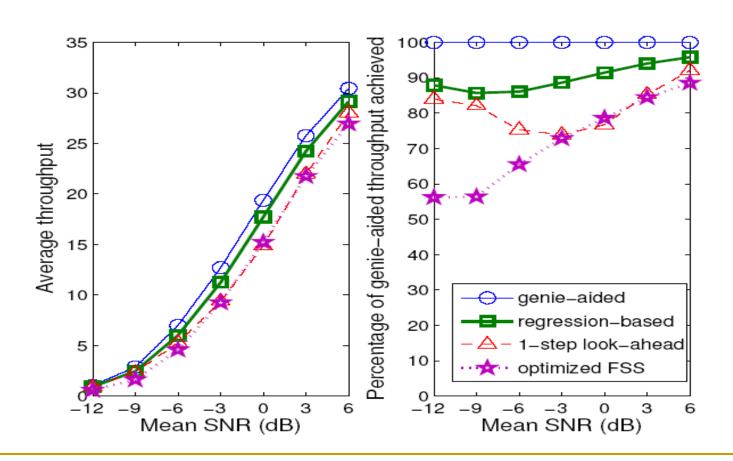
Features

- Sense bands in parallel; stop sensing simultaneously (half-duplex constraint)
- Throughput-optimal sequential sensing terminates when confident

- Basic approach: maximize avg. throughput under collision probability constraints to control Tx-CR interference to PUs (due to miss-detection)
 - Admits a constrained Dynamic Programming (DP) formulation
 - Reduces to an optimum stopping time problem
 - Optimum access: LR test w/ thresholds dependent on Lagrange multipliers

Simulated test case

- M = 10, N = T = 100, chi-square distributed channel gains
- Average performance over 20,000 runs per operating SNR



Concluding remarks

- Power spectrum density cartography
 - Space-time-frequency view of interference temperature
 - PU/source localization and tracking
- Channel gain cartography
 - Space-time-frequency links from any-to-any point
 - KF for tracking and Kriging for interpolation
- Parsimony via sparsity and distribution via consensus
 - Lasso, group Lasso on splines, and method of multipliers
- Vision: use atlas to enable spatial re-use, hand-off, localization,
 Tx-power tracking, resource allocation, and routing

Acknowledgements: National Science Foundation
J.-A. Bazerque, E. Dall'Anese, S.-J. Kim, G. Mateos

Thank You!

